
1

Exploiting XEDITExploiting XEDIT

Phil Smith III
Linuxcare, Inc.

SHARE 99
August 2002
Session 9201

Copyright InformationCopyright Information

SHARE Inc. is hereby granted a non-exclusive license to 
copy, reproduce or republish this presentation in whole or 
in part for SHARE activities only, and the further right to 
permit others to copy, reproduce, or republish this 
presentation in whole or in part, so long as such 
permission is consistent with SHARE's By -laws, Canons 
of Conduct, and other directives of the SHARE Board of 
Directors

Introduction: Introduction: Why XEDIT?Why XEDIT?

• Extremely powerful, (almost) infinitely tailorable 
• Macros allow subcommand/function extensions 
• Available on Windows, MS-DOS, OS/2, UNIX 
• If you have VM, you have XEDIT

– You need to at least be able to use the system editor
• Few users fully exploit XEDIT!
• Note that editors are theology:

I like XEDIT, therefore XEDIT is best!

XEDIT Power ToolsXEDIT Power Tools

• Display management

• Automated text processing 

• Editing extensions 

• XEDIT on other platforms

• XEDIT for ISPF users

XEDIT Power ToolsXEDIT Power Tools

• Line targets 
• Chained LOCATEs 
• Little known subcommands 
• Column commands 
• SOS commands 
• Invocation options 
• SET and QUERY
• 327x keys

• Programmable keys 
(PF, PA, Enter) 

• Macros 
• APIs
• Selective line editing 
• Prefix macros 
• Display management 
• Text processing

Line TargetsLine Targets

• One ofXEDIT’s most powerful, least understood features
• Many subcommands use line targets
• Four types:

– Absolute
– Relative
– String
– Named

• Any of these is valid anywhere line a target is used



2

Line Targets (continued)Line Targets (continued)

Absolute: File line number; begins with colon:
:18   :197

Relative: Offset (# of lines) relative to current line:
5   +11     -8

String: Delimited string; may use “NOT” sign, logical 
operators:
/abc/   -/def/  ¬/<p>/   /x/|/y/

Named: Line name, set via SET POINT or .xxxx prefix 
subcommand:

.a   .here

Line Targets (continued)Line Targets (continued)

• Most subcommands start at current line 
• LOCATE subcommand means “go to this line target”

– Use 5 rather than DOWN 5
– Use -11 rather than UP 11

• Named lines are often easier, faster than string targets or 
counting lines

ChainedChained LOCATEsLOCATEs

• LOCATE subcommands may be chained together 
• Subcommand may be specified after a LOCATE
• If LOCATE succeeds, subcommand is executed 
• If LOCATE fails, subcommand is not executed 

• Reduces terminal I/O (useful on slow lines!)

“Programming” via Chained “Programming” via Chained LOCATEsLOCATEs

• Allow primitive programming without macros:
/:h1./&/Topics/ 1 c/:h3./:h2./ 

• This command: 
1. Locates next line containing :h1. and Topics
2. Moves to next line 
3. Changes :h3. to :h2.
4.CHANGE is executed only if LOCATE successful 

Chained Chained LOCATEs LOCATEs and REPEATand REPEAT

• Use chained LOCATEs with REPEAT for complex 
operations:

/:h1./&/Topics/ 1 c/:h3./:h2./
repeat *

• Same as previous, but repeated through rest of file

Obscure SubcommandsObscure Subcommands

• XEDIT has almost 100 subcommands 

• Most users only (knowingly) use a handful 

• Even sophisticated users often fail to exploit 



3

LPLPrefixrefix —— Logical PrefixLogical Prefix

• Executes prefix subcommand on current line 
– Available even in line-mode XEDIT!

• Faster than moving cursor to current line, then back to 
prefix area, typing prefix subcommand, pressing Enter 

• Example: delete a section from a file: 
– LOCATE start of section 
– Set pending DD prefix subcommand with LP DD
– LOCATE end of section 
– Use another LP DD to delete section

COMPressCOMPress//EXPandEXPand —— Reformat ColumnsReformat Columns

• COMPRESS compresses files at tab stops 
• EXPAND un-compresses 
• If tab settings change between COMPRESS and 
EXPAND , columns are reformatted at new tab stops 

• Example: move data in columns 20, 30, 40 
to columns 20, 40, 60: 
– SET TABS 1 20 30 40 
– COMP * 
– TOP
– SET TABS 1 20 40 60 
– EXP *

SHIFT SHIFT —— Shift Data ColumnsShift Data Columns

• Moves data left or right 
• Data moved, not file view like LEFT, RIGHT, RGTLEFT
• Deletes/spills data if necessary 
• Respects ZONE columns

REPEatREPEat —— ReRe--execute to Targetexecute to Target

• Use with subcommands such as CDELETEwhich 
operate on current line 

• Also use with chained LOCATE subcommands 
• With no operands, equivalent to NEXT followed by re-

typing previous subcommand 
• REPEAT target performs process until target

reached or non-zero return code

Merge Merge —— Merge LinesMerge Lines

• Overlays groups of lines at specific column position 
• Two line targets specify what to merge, column position 

operand specifies where 
• Complex rules govern merging blank/non-blank data 
• Complicated usage, but more efficient than other 

techniques 
• Typically used in macros 

RESET RESET —— Cancel Prefix SubcommandsCancel Prefix Subcommands

• Prefix subcommands not yet executed are pending 
• Use QUERY PENDING to locate 
• RESET avoids having to locate to cancel



4

UPPercaseUPPercase//LOWercaseLOWercase —— Convert TextConvert Text

• Convert one or more lines to upper/lower case 
• Text between ZONE columns is changed 
• Useful after text uppercased by SET CASE UPPER 

CANCEL CANCEL —— QUIT Unmodified FilesQUIT Unmodified Files

• XEDIT can edit many files at once 
• CANCEL quits all unmodified files 
• Changed files remain, QQUIT or FILE individually 

• Easier than pressing PF3 many times 
• Safer than typing QQ many times! 

COUntCOUnt —— Count String OccurrencesCount String Occurrences

• Counts string occurrences
• Use to:

– Check quote or parenthesis nesting
– Determine scope of change before starting 

• String to be counted must match exactly
– Actually uses CHANGE code under the covers
– CASE IGNORE not honored (like CHANGE)
– KEDIT adds second IGNORE for CHANGE, which 

KEDIT COUNT honors

LOAD LOAD —— Load File into MemoryLoad File into Memory

• Legal only in PROFILE XEDIT 
• Must be first subcommand (causes error later)

– Executing other subcommands forces implicit LOAD
• Prefix any CMS commands issued before LOAD with 
ADDRESS COMMAND

• LOAD specifies fileid to be edited, options 
• Sophisticated PROFILE can default filetype or entire

fileid, resolve partial fileids, force options 

Column CommandsColumn Commands

• Column pointer points to a column position 
• Setting shown at top of screen, on SCALE line
• Query via QUERY/TRANSFER/EXTRACT COLUMN 
• Column commands set/use column pointer 

– Some use column target operand: 
• Subset of line target varieties: absolute, relative, string 

(including logical NOT) 
– No logical AND, logical OR, or names 

Column CommandsColumn Commands

• CLOCATE sets column pointer to column target 
• CDELETE deletes columns to column target 
• SET STREAM ON lets string targets span lines 
• CFIRST/CLAST set column pointer to first/second 
ZONE column

• CINSERT, CREPLACE, COVERLAY insert, replace, 
overlay string at column pointer 
– Combine with REPEAT for multi-line operation 
– Often avoids need for single-purpose macro 

• CAPPENDmacro (sort of) does “column append”



5

SOS CommandsSOS Commands

• SOS: Screen Operation Simulation 

• Legacy of EDGAR, early full-screen CMS editor 
• SOS functions use screen cursor position 

• Simulates terminal actions (keystrokes) 
• Designed for use from macros or PF keys 

SOS CommandsSOS Commands

• Operands include:
– Field tabs
– Tab to command line (backwards or forwards)
– Save/restore cursor position
– “Press” a PFkey
– Add/remove trailing nulls on current line
– Add, delete file line at cursor position

• Cannot “press” PAkeys, Enter key
• No SOS TEXT (text insertion)
• Limited function, but still useful

XEDIT Command OptionsXEDIT Command Options

• WIDTH
– Sets maximum LRECL settable by SET LRECL
– Required because of static internal buffers 
– WIDTH, LRECL, TRUNC, and ZONE all interact —

read about, experiment 
• MEMBER membername

– XEDITsa MACLIB member 
– Changed member replaced in MACLIB on 
FILE/SAVE

Invocation OptionsInvocation Options

• NAMETYPE, BFSLINE
– Byte File System (BFS—Unix file system) support 
– Read BFS documentation to learn concepts 
– Can also XEDIT files in BFS directly, without first
ACCESSing BFS directory 

• NOLOCK
– Avoids acquiring SFS/BFS lock on entry 
– Use for Read/Only editing to avoid conflicts 

Options Useful for ApplicationsOptions Useful for Applications

• NOMSG
– Suppresses XEDIT messages 
– Avoids SET MSGMODE OFF in applications 

• NOCLEAR
– From display-management applications, avoids screen 

flash on XEDIT entry 
– Causes MORE... if in line-mode 

More Invocation OptionsMore Invocation Options

• NOSCREEN
– Forces “line-mode”
– Use to test line-mode operation 

• PROFILE profilename or NOPROFILE
– Specifies inital macro filename 
– Bypasses PROFILE, avoids surprises



6

Update Mode: Create Source UpdatesUpdate Mode: Create Source Updates

• Allows creating discrete updates to source files 
• Changes made while editing are automatically saved as 

updates
• Supports source files up to LRECL 255
• CTL ctlfn applies updates using CMS multi-level 

update scheme (CNTRL and AUX files)
• The only way to do product maintenance!

Update Mode: Create Source UpdatesUpdate Mode: Create Source Updates

• UNTIL updatename applies updates only through
updatename , showing code image before a specific 
update

• SIDcode string creates Service IDentifier codes in 
columns 64-71 of updates 

• Merge merges all updates into single update 
• Seq8/NOSeq8 control whether 5- or 8-character 

sequence numbers are expected on source
• Incr n controls minimum update line increment 

SET and QUERYSET and QUERY

• 80+ SET options provide extensive tailorability
• Some poor defaults (SCALE, STAY, MSGLINE)
• Things to learn about: 

– QUERY options which have no matching SET
(RING, NBFile, LENGTH, TARGET, LASTLORC)

– CASE IGNORE
– Complex synonyms, LINEND option
– Uses for SET NULLS ON, SET FULLREAD ON

• STATUS macro displays/saves current settings

Customizing the ScreenCustomizing the Screen

• Many SET commands change screen appearance 
(CMDLINE , PREFIX, SCALE, etc.) 

• Customize screen to your taste
– Experiment with SET PREFIX NULLS, 
SET NUMBER ON, SET SHADOW OFF

• Consider: 
– SET MSGLINE ON 2 23 OVERLAY or 
– SET MSGLINE ON -1 24 OVERLAY with 
SET CMDLINE TOP

Customizing the ScreenCustomizing the Screen

• Some screen features (title line, TOF/EOF lines, etc.) 
cannot be changed directly

• XEDIT builds many of these from message repository
• Customize with user override for the repository!

– Add WIDTH , last subcommand to top line of screen
– Add userid to bottom right
– Add end/top of range info to top/end of range lines

327327xx KeysKeys

• Few users fully exploit 327x architecture 
• If available, use Entry Assist (see GA23-0119) 
• Use hardware (field) tab keys 
• Use Return key 
• Use Field Mark key—tab character 
• Use Erase EOF key—restores changed line 

(Erase EOF + single blank clears line) 
• Understand and use Clear key—restores screen 



7

Programmable KeysProgrammable Keys

• PF keys, PAkeys, Enter key are all programmable 
• Most users don’t set keys 
• Consider whether defaults are effective for you: 

– Do you use all PFkeys regularly? 
– Do you have 24 PFkeys? 
– Are there commands you type frequently? 
– Do you have SET NULLS ON in your PROFILE? 

(If so, default PA2 is wasted) 
• Understand BEFORE/AFTER/ONLY/IGNORE operands 

Programmable KeysProgrammable Keys

• Use key to switch among sets of PFkeys 
• Consider setting Enter key:

– Default setting: 
CURSOR CMDLINE PRIORITY 30 

– Meaningless when cursor on command line
– PF12 (CURSOR HOME) performs same function 

• Instead, Enter might do:
– NEXT when on command  line
– Tab cursor to next word when in file 

• See AUTONEXT XEDIT on the Web page

MacrosMacros

• XEDIT macros invoked like subcommands 
– Some native subcommands are actually implemented 

as macros (ALL, JOIN…) 
• If you dislike XEDIT behavior, change it with a macro!

– Can replace native subcommands
• Use ad hoc macros for special editing tasks 
• Beware non-alphabetic macro filenames: 

– THING2 invokes THING with parameter 2
– Can use MACRO THING2 instead 
– Useful to avoid accidental invocation

Easy, Useful Macro ExamplesEasy, Useful Macro Examples

• US — Uppercase string on current line 
• LS — Lowercase string on current line 
• LSERIAL — Locate serial number in UPDATE mode 
• UPFIRST — Uppercase first letter of each word 
• ETW — (Edit-To-Width) — Reformat paragraphs 
• RAC (Right-Align-Comment) — Right-justify comments in 

Rexx and C programs 
• QXT — Perform EXTRACT, display output

– Useful when writing macros

Macro TipsMacro Tips

• EXTract— Put information into macro variables
– Often returns information unavailable by other means

• PREServe/Restore — Save/restore most settings

• CURsor — Position cursor on screen 

• COMMAND— Force subcommand execution

• MACRO— Force macro execution 

• MSG/EMSG/CMSG— Display messages

An XEDIT API:An XEDIT API: DMSXFLDMSXFLxxxx

• DMSXFLxx manipulate in -memory files 
• Call DMSXFLxx from assembler programs to: 

– Check existence of a file 
– Read from a file 
– Write to a file 
– Locate a specific line 

• Used extensively by FILELIST , RECEIVE , others 
• Similar to CMS file I/O interface 
• Documented in CMS Application Development Guide 

for Assembler, and in DMSXFL comments



8

Another API: DMSXMSAnother API: DMSXMS

• DMSXMS MODULE performs SORT function 
– SORT actually only front-end macro for DMSXMS

• Use similar macro/MODULE combination for other high-
performance XEDIT extensions 
– Uses CMS SUBCOM interface 
– Examples: DMSXDB and DMSXUQ to delete 

blank/duplicate lines

Selective Line EditingSelective Line Editing

• Most users know of the ALL macro
– Uses SET SELECT/DISPLAY/SCOPE

• More macros improve selective line editing:
TALL — After ALL, toggle between selective/full display
TN, TU — Go to next/previous selected line after TALL
ALSO — After ALL, add to selection (e.g., after changing 
ZONE)

EXCLUDE — After ALL, remove lines from selection
ALLSIZE — Displays count of lines in current selection

Prefix MacrosPrefix Macros

• Most users use prefix subcommands: C, F/B, etc. 
– Many are unaware of prefix macros 

• SI, >, < prefix subcommands are prefix macros 
• SET PREFIX SYNONYM maps prefix subcommands 

to macros 
• Unrecognized prefix subcommands invoke macros 
• Add prefix subcommands using prefix macros 
• Prefix macros receive special parameter list 

– Can support both command line and prefix invocation

Useful Prefix Macro ExamplesUseful Prefix Macro Examples

• G — Embed (get) lines from another file 
• R — Recover deleted lines 
• U — Convert lines to uppercase 
• L — Convert lines to lowercase 
• ETW— (Edit-To-Width)—Reformat paragraphs 
• ? — Set current line and move cursor to command line
• Any frequent task that requires moving cursor to 

command line is a candidate for a prefix macro!

Display ManagementDisplay Management

• XEDIT can be used for display management 
– Not a true screen manager 
– Best for small, simple applications 
– Advantages: portability, price 

• SET RESERVED defines static lines on screen 
• SET CTLCHAR allows user-defined input fields, 

highlighting, etc. in RESERVED lines 

Display Management: READDisplay Management: READ

• READ subcommand in macros traps (stacks) user input: 
keys, screen changes, etc. 
– Useful for prompting from macros 

• READ ALL traps input to fields in RESERVED lines 
• READ NOCHANGE reflects screen changes to macro 

without changing file 
• READ ALL NOCHANGE interprets CTLCHARs in file 

lines, not just RESERVED lines
– Allows use of file as display template



9

XEDIT Text ProcessingXEDIT Text Processing

• Typical example: alter file under program control 
– PROFILE option passes control to application macro 
– NOMSG option suppresses XEDIT messages 
– Pass macro arguments after closing parenthesis: 

'XEDIT A FILE (NOMSG PROFILE XYZ)' args

• Perhaps use “skeleton” file as starting point: 
– Alter default values with CHANGE
– Insert, delete lines as appropriate

XEDIT Text ProcessingXEDIT Text Processing

• Use READ to prompt user
• Indicate result via SAVE followed by QUIT rc
• Exploit in-memory sort—faster than CMS SORT 
• Clean up after errors—avoid leaving user in unexpected 

XEDIT session!

Example: Example: 
XEDITXEDIT--based File Search Utilitybased File Search Utility

• Common problem: search CMS files for a string 
• Many public-domain tools, vendor products exist 
• Free solution: XEDIT, using macro as PROFILE

– XFIND takes search string, file specification
– Searches file(s), lists occurrences 

• Crude but usable—and less than 50 lines of code!
• Handles PACKed files, unlike most such tools 
• Can be extended with controls for column, case, 
ARBCHAR, output, etc…

HygieneHygiene

• Prefix all subcommands in macros with COMMAND to 
force subcommand execution 

• Prefix all macro invocations with MACRO
• Avoid short names or synonyms for macros which may 

be destructive if invoked inadvertently 
• Avoid synonyms to override native subcommands

– Many macros don’t use COMMAND

HygieneHygiene

• Always specify SET— never rely on implicit SET
• Use SET LINEND OFF in macros that execute user 

input or file data to avoid surprises 
• Consider SET AUTOSAVE if system unstable 
• Save file when you stop to think — even stable systems 

can fail!

XEDIT on Other PlatformsXEDIT on Other Platforms

• KEDIT — Mansfield Software Group
– XEDIT for Windows, MS-DOS, OS/2 
– Very similar to CMS XEDIT
– Extensions exploit workstation capabilities 
– Mature, popular product 
– Macros use Rexx or KEXX (built-in REXX subset) 
– Windows version beautifully merges Windows and 

3270 paradigms: intuitive, configurable — usable!
– www.kedit .com offers many powerful macros



10

XEDIT on Other PlatformsXEDIT on Other Platforms

• THE — The Hessling Editor
– Freeware UNIX editor by Mark Hessling 
– Modeled on XEDIT, with KEDIT DOS influences 
– Uses Rexx macros
– Includes ISPF compatibility features
– Check out www.lightlink.com/hessling/

• uni-Xedit — The Workstation Group
– XEDIT for UNIX
– uni-Rexx, uni-SPF also available
– Check out www.wrkgrp.com

XEDIT for ISPF UsersXEDIT for ISPF Users

• ISPF users have a particular challenge:
– XEDIT is too close: they’re constantly confused
– Some of the confusion can be destructive
– Customization through macros can help a lot!

• Example: ISPF Line commands
– XEDIT calls them Prefix subcommands
– Use synonyms to change behavior

• ISPF users can make XEDIT tolerable!

ISPF “Line” CommandsISPF “Line” Commands

• B undefined in XEDIT, means Before in ISPF
– Synonym to P in XEDIT

• R undefined in XEDIT, means Repeat in ISPF
– Synonym to “ (duplicate) in XEDIT

• A means Add in XEDIT, After in ISPF
– Synonym to F in XEDIT

• Some others much harder to simulate, but can at least 
come close

ISPF Primary CommandsISPF Primary Commands

• “Regular” ISPF commands are often similar to XEDIT 
subcommands:
– CHANGE syntax is different
– BOUNDS is like XEDIT SET ZONE
– EXCLUDE is similar to ALL, but syntax different
– Commands like DELETE, SORT have operands 

related to excluded lines
– FIND is like XEDIT string LOCATE
– LOCATE is like subset of XEDIT LOCATE
– XEDIT does not support UNDO at all

ConclusionsConclusions

• XEDIT is powerful, rich in function 
• Inexperienced users can add skills easily 
• Learning more about it increases productivity 
• Clones enable skills transfer to other platforms
• Read the manual!
• Note unfamiliar facilities, try them
• Experimenting is fun and easy!

ØWhat XEDIT tips can you share?

Contact InfoContact Info

Phil Smith III

703.568.6662
psmith@linuxcare.com

www.linuxcare.com


