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Introduction: Introduction: Why XEDIT?Why XEDIT?

• Extremely powerful, (almost) infinitely tailorable 
• Macros allow subcommand/function extensions 
• Available on Windows, MS-DOS, OS/2, UNIX 
• If you have VM, you have XEDIT

– You need to at least be able to use the system editor
• Few users fully exploit XEDIT!
• Note that editors are theology:

I like XEDIT, therefore XEDIT is best!

XEDIT Power ToolsXEDIT Power Tools

• Display management

• Automated text processing 

• Editing extensions 

• XEDIT on other platforms

• XEDIT for ISPF users

XEDIT Power ToolsXEDIT Power Tools

• Line targets 
• Chained LOCATEs 
• Little known subcommands 
• Column commands 
• SOS commands 
• Invocation options 
• SET and QUERY
• 327x keys

• Programmable keys 
(PF, PA, Enter) 

• Macros 
• APIs
• Selective line editing 
• Prefix macros 
• Display management 
• Text processing

Line TargetsLine Targets

• One ofXEDIT’s most powerful, least understood features
• Many subcommands use line targets
• Four types:

– Absolute
– Relative
– String
– Named

• Any of these is valid anywhere line a target is used
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Line Targets (continued)Line Targets (continued)

Absolute: File line number; begins with colon:
:18   :197

Relative: Offset (# of lines) relative to current line:
5   +11     -8

String: Delimited string; may use “NOT” sign, logical 
operators:
/abc/   -/def/  ¬/<p>/   /x/|/y/

Named: Line name, set via SET POINT or .xxxx prefix 
subcommand:

.a   .here

Line Targets (continued)Line Targets (continued)

• Most subcommands start at current line 
• LOCATE subcommand means “go to this line target”

– Use 5 rather than DOWN 5
– Use -11 rather than UP 11

• Named lines are often easier, faster than string targets or 
counting lines

ChainedChained LOCATEsLOCATEs

• LOCATE subcommands may be chained together 
• Subcommand may be specified after a LOCATE
• If LOCATE succeeds, subcommand is executed 
• If LOCATE fails, subcommand is not executed 

• Reduces terminal I/O (useful on slow lines!)

“Programming” via Chained “Programming” via Chained LOCATEsLOCATEs

• Allow primitive programming without macros:
/:h1./&/Topics/ 1 c/:h3./:h2./ 

• This command: 
1. Locates next line containing :h1. and Topics
2. Moves to next line 
3. Changes :h3. to :h2.
4.CHANGE is executed only if LOCATE successful 

Chained Chained LOCATEs LOCATEs and REPEATand REPEAT

• Use chained LOCATEs with REPEAT for complex 
operations:

/:h1./&/Topics/ 1 c/:h3./:h2./
repeat *

• Same as previous, but repeated through rest of file

Obscure SubcommandsObscure Subcommands

• XEDIT has almost 100 subcommands 

• Most users only (knowingly) use a handful 

• Even sophisticated users often fail to exploit 
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LPLPrefixrefix —— Logical PrefixLogical Prefix

• Executes prefix subcommand on current line 
– Available even in line-mode XEDIT!

• Faster than moving cursor to current line, then back to 
prefix area, typing prefix subcommand, pressing Enter 

• Example: delete a section from a file: 
– LOCATE start of section 
– Set pending DD prefix subcommand with LP DD
– LOCATE end of section 
– Use another LP DD to delete section

COMPressCOMPress//EXPandEXPand —— Reformat ColumnsReformat Columns

• COMPRESS compresses files at tab stops 
• EXPAND un-compresses 
• If tab settings change between COMPRESS and 
EXPAND , columns are reformatted at new tab stops 

• Example: move data in columns 20, 30, 40 
to columns 20, 40, 60: 
– SET TABS 1 20 30 40 
– COMP * 
– TOP
– SET TABS 1 20 40 60 
– EXP *

SHIFT SHIFT —— Shift Data ColumnsShift Data Columns

• Moves data left or right 
• Data moved, not file view like LEFT, RIGHT, RGTLEFT
• Deletes/spills data if necessary 
• Respects ZONE columns

REPEatREPEat —— ReRe--execute to Targetexecute to Target

• Use with subcommands such as CDELETEwhich 
operate on current line 

• Also use with chained LOCATE subcommands 
• With no operands, equivalent to NEXT followed by re-

typing previous subcommand 
• REPEAT target performs process until target

reached or non-zero return code

Merge Merge —— Merge LinesMerge Lines

• Overlays groups of lines at specific column position 
• Two line targets specify what to merge, column position 

operand specifies where 
• Complex rules govern merging blank/non-blank data 
• Complicated usage, but more efficient than other 

techniques 
• Typically used in macros 

RESET RESET —— Cancel Prefix SubcommandsCancel Prefix Subcommands

• Prefix subcommands not yet executed are pending 
• Use QUERY PENDING to locate 
• RESET avoids having to locate to cancel
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UPPercaseUPPercase//LOWercaseLOWercase —— Convert TextConvert Text

• Convert one or more lines to upper/lower case 
• Text between ZONE columns is changed 
• Useful after text uppercased by SET CASE UPPER 

CANCEL CANCEL —— QUIT Unmodified FilesQUIT Unmodified Files

• XEDIT can edit many files at once 
• CANCEL quits all unmodified files 
• Changed files remain, QQUIT or FILE individually 

• Easier than pressing PF3 many times 
• Safer than typing QQ many times! 

COUntCOUnt —— Count String OccurrencesCount String Occurrences

• Counts string occurrences
• Use to:

– Check quote or parenthesis nesting
– Determine scope of change before starting 

• String to be counted must match exactly
– Actually uses CHANGE code under the covers
– CASE IGNORE not honored (like CHANGE)
– KEDIT adds second IGNORE for CHANGE, which 

KEDIT COUNT honors

LOAD LOAD —— Load File into MemoryLoad File into Memory

• Legal only in PROFILE XEDIT 
• Must be first subcommand (causes error later)

– Executing other subcommands forces implicit LOAD
• Prefix any CMS commands issued before LOAD with 
ADDRESS COMMAND

• LOAD specifies fileid to be edited, options 
• Sophisticated PROFILE can default filetype or entire

fileid, resolve partial fileids, force options 

Column CommandsColumn Commands

• Column pointer points to a column position 
• Setting shown at top of screen, on SCALE line
• Query via QUERY/TRANSFER/EXTRACT COLUMN 
• Column commands set/use column pointer 

– Some use column target operand: 
• Subset of line target varieties: absolute, relative, string 

(including logical NOT) 
– No logical AND, logical OR, or names 

Column CommandsColumn Commands

• CLOCATE sets column pointer to column target 
• CDELETE deletes columns to column target 
• SET STREAM ON lets string targets span lines 
• CFIRST/CLAST set column pointer to first/second 
ZONE column

• CINSERT, CREPLACE, COVERLAY insert, replace, 
overlay string at column pointer 
– Combine with REPEAT for multi-line operation 
– Often avoids need for single-purpose macro 

• CAPPENDmacro (sort of) does “column append”
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SOS CommandsSOS Commands

• SOS: Screen Operation Simulation 

• Legacy of EDGAR, early full-screen CMS editor 
• SOS functions use screen cursor position 

• Simulates terminal actions (keystrokes) 
• Designed for use from macros or PF keys 

SOS CommandsSOS Commands

• Operands include:
– Field tabs
– Tab to command line (backwards or forwards)
– Save/restore cursor position
– “Press” a PFkey
– Add/remove trailing nulls on current line
– Add, delete file line at cursor position

• Cannot “press” PAkeys, Enter key
• No SOS TEXT (text insertion)
• Limited function, but still useful

XEDIT Command OptionsXEDIT Command Options

• WIDTH
– Sets maximum LRECL settable by SET LRECL
– Required because of static internal buffers 
– WIDTH, LRECL, TRUNC, and ZONE all interact —

read about, experiment 
• MEMBER membername

– XEDITsa MACLIB member 
– Changed member replaced in MACLIB on 
FILE/SAVE

Invocation OptionsInvocation Options

• NAMETYPE, BFSLINE
– Byte File System (BFS—Unix file system) support 
– Read BFS documentation to learn concepts 
– Can also XEDIT files in BFS directly, without first
ACCESSing BFS directory 

• NOLOCK
– Avoids acquiring SFS/BFS lock on entry 
– Use for Read/Only editing to avoid conflicts 

Options Useful for ApplicationsOptions Useful for Applications

• NOMSG
– Suppresses XEDIT messages 
– Avoids SET MSGMODE OFF in applications 

• NOCLEAR
– From display-management applications, avoids screen 

flash on XEDIT entry 
– Causes MORE... if in line-mode 

More Invocation OptionsMore Invocation Options

• NOSCREEN
– Forces “line-mode”
– Use to test line-mode operation 

• PROFILE profilename or NOPROFILE
– Specifies inital macro filename 
– Bypasses PROFILE, avoids surprises
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Update Mode: Create Source UpdatesUpdate Mode: Create Source Updates

• Allows creating discrete updates to source files 
• Changes made while editing are automatically saved as 

updates
• Supports source files up to LRECL 255
• CTL ctlfn applies updates using CMS multi-level 

update scheme (CNTRL and AUX files)
• The only way to do product maintenance!

Update Mode: Create Source UpdatesUpdate Mode: Create Source Updates

• UNTIL updatename applies updates only through
updatename , showing code image before a specific 
update

• SIDcode string creates Service IDentifier codes in 
columns 64-71 of updates 

• Merge merges all updates into single update 
• Seq8/NOSeq8 control whether 5- or 8-character 

sequence numbers are expected on source
• Incr n controls minimum update line increment 

SET and QUERYSET and QUERY

• 80+ SET options provide extensive tailorability
• Some poor defaults (SCALE, STAY, MSGLINE)
• Things to learn about: 

– QUERY options which have no matching SET
(RING, NBFile, LENGTH, TARGET, LASTLORC)

– CASE IGNORE
– Complex synonyms, LINEND option
– Uses for SET NULLS ON, SET FULLREAD ON

• STATUS macro displays/saves current settings

Customizing the ScreenCustomizing the Screen

• Many SET commands change screen appearance 
(CMDLINE , PREFIX, SCALE, etc.) 

• Customize screen to your taste
– Experiment with SET PREFIX NULLS, 
SET NUMBER ON, SET SHADOW OFF

• Consider: 
– SET MSGLINE ON 2 23 OVERLAY or 
– SET MSGLINE ON -1 24 OVERLAY with 
SET CMDLINE TOP

Customizing the ScreenCustomizing the Screen

• Some screen features (title line, TOF/EOF lines, etc.) 
cannot be changed directly

• XEDIT builds many of these from message repository
• Customize with user override for the repository!

– Add WIDTH , last subcommand to top line of screen
– Add userid to bottom right
– Add end/top of range info to top/end of range lines

327327xx KeysKeys

• Few users fully exploit 327x architecture 
• If available, use Entry Assist (see GA23-0119) 
• Use hardware (field) tab keys 
• Use Return key 
• Use Field Mark key—tab character 
• Use Erase EOF key—restores changed line 

(Erase EOF + single blank clears line) 
• Understand and use Clear key—restores screen 
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Programmable KeysProgrammable Keys

• PF keys, PAkeys, Enter key are all programmable 
• Most users don’t set keys 
• Consider whether defaults are effective for you: 

– Do you use all PFkeys regularly? 
– Do you have 24 PFkeys? 
– Are there commands you type frequently? 
– Do you have SET NULLS ON in your PROFILE? 

(If so, default PA2 is wasted) 
• Understand BEFORE/AFTER/ONLY/IGNORE operands 

Programmable KeysProgrammable Keys

• Use key to switch among sets of PFkeys 
• Consider setting Enter key:

– Default setting: 
CURSOR CMDLINE PRIORITY 30 

– Meaningless when cursor on command line
– PF12 (CURSOR HOME) performs same function 

• Instead, Enter might do:
– NEXT when on command  line
– Tab cursor to next word when in file 

• See AUTONEXT XEDIT on the Web page

MacrosMacros

• XEDIT macros invoked like subcommands 
– Some native subcommands are actually implemented 

as macros (ALL, JOIN…) 
• If you dislike XEDIT behavior, change it with a macro!

– Can replace native subcommands
• Use ad hoc macros for special editing tasks 
• Beware non-alphabetic macro filenames: 

– THING2 invokes THING with parameter 2
– Can use MACRO THING2 instead 
– Useful to avoid accidental invocation

Easy, Useful Macro ExamplesEasy, Useful Macro Examples

• US — Uppercase string on current line 
• LS — Lowercase string on current line 
• LSERIAL — Locate serial number in UPDATE mode 
• UPFIRST — Uppercase first letter of each word 
• ETW — (Edit-To-Width) — Reformat paragraphs 
• RAC (Right-Align-Comment) — Right-justify comments in 

Rexx and C programs 
• QXT — Perform EXTRACT, display output

– Useful when writing macros

Macro TipsMacro Tips

• EXTract— Put information into macro variables
– Often returns information unavailable by other means

• PREServe/Restore — Save/restore most settings

• CURsor — Position cursor on screen 

• COMMAND— Force subcommand execution

• MACRO— Force macro execution 

• MSG/EMSG/CMSG— Display messages

An XEDIT API:An XEDIT API: DMSXFLDMSXFLxxxx

• DMSXFLxx manipulate in -memory files 
• Call DMSXFLxx from assembler programs to: 

– Check existence of a file 
– Read from a file 
– Write to a file 
– Locate a specific line 

• Used extensively by FILELIST , RECEIVE , others 
• Similar to CMS file I/O interface 
• Documented in CMS Application Development Guide 

for Assembler, and in DMSXFL comments



8

Another API: DMSXMSAnother API: DMSXMS

• DMSXMS MODULE performs SORT function 
– SORT actually only front-end macro for DMSXMS

• Use similar macro/MODULE combination for other high-
performance XEDIT extensions 
– Uses CMS SUBCOM interface 
– Examples: DMSXDB and DMSXUQ to delete 

blank/duplicate lines

Selective Line EditingSelective Line Editing

• Most users know of the ALL macro
– Uses SET SELECT/DISPLAY/SCOPE

• More macros improve selective line editing:
TALL — After ALL, toggle between selective/full display
TN, TU — Go to next/previous selected line after TALL
ALSO — After ALL, add to selection (e.g., after changing 
ZONE)

EXCLUDE — After ALL, remove lines from selection
ALLSIZE — Displays count of lines in current selection

Prefix MacrosPrefix Macros

• Most users use prefix subcommands: C, F/B, etc. 
– Many are unaware of prefix macros 

• SI, >, < prefix subcommands are prefix macros 
• SET PREFIX SYNONYM maps prefix subcommands 

to macros 
• Unrecognized prefix subcommands invoke macros 
• Add prefix subcommands using prefix macros 
• Prefix macros receive special parameter list 

– Can support both command line and prefix invocation

Useful Prefix Macro ExamplesUseful Prefix Macro Examples

• G — Embed (get) lines from another file 
• R — Recover deleted lines 
• U — Convert lines to uppercase 
• L — Convert lines to lowercase 
• ETW— (Edit-To-Width)—Reformat paragraphs 
• ? — Set current line and move cursor to command line
• Any frequent task that requires moving cursor to 

command line is a candidate for a prefix macro!

Display ManagementDisplay Management

• XEDIT can be used for display management 
– Not a true screen manager 
– Best for small, simple applications 
– Advantages: portability, price 

• SET RESERVED defines static lines on screen 
• SET CTLCHAR allows user-defined input fields, 

highlighting, etc. in RESERVED lines 

Display Management: READDisplay Management: READ

• READ subcommand in macros traps (stacks) user input: 
keys, screen changes, etc. 
– Useful for prompting from macros 

• READ ALL traps input to fields in RESERVED lines 
• READ NOCHANGE reflects screen changes to macro 

without changing file 
• READ ALL NOCHANGE interprets CTLCHARs in file 

lines, not just RESERVED lines
– Allows use of file as display template
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XEDIT Text ProcessingXEDIT Text Processing

• Typical example: alter file under program control 
– PROFILE option passes control to application macro 
– NOMSG option suppresses XEDIT messages 
– Pass macro arguments after closing parenthesis: 

'XEDIT A FILE (NOMSG PROFILE XYZ)' args

• Perhaps use “skeleton” file as starting point: 
– Alter default values with CHANGE
– Insert, delete lines as appropriate

XEDIT Text ProcessingXEDIT Text Processing

• Use READ to prompt user
• Indicate result via SAVE followed by QUIT rc
• Exploit in-memory sort—faster than CMS SORT 
• Clean up after errors—avoid leaving user in unexpected 

XEDIT session!

Example: Example: 
XEDITXEDIT--based File Search Utilitybased File Search Utility

• Common problem: search CMS files for a string 
• Many public-domain tools, vendor products exist 
• Free solution: XEDIT, using macro as PROFILE

– XFIND takes search string, file specification
– Searches file(s), lists occurrences 

• Crude but usable—and less than 50 lines of code!
• Handles PACKed files, unlike most such tools 
• Can be extended with controls for column, case, 
ARBCHAR, output, etc…

HygieneHygiene

• Prefix all subcommands in macros with COMMAND to 
force subcommand execution 

• Prefix all macro invocations with MACRO
• Avoid short names or synonyms for macros which may 

be destructive if invoked inadvertently 
• Avoid synonyms to override native subcommands

– Many macros don’t use COMMAND

HygieneHygiene

• Always specify SET— never rely on implicit SET
• Use SET LINEND OFF in macros that execute user 

input or file data to avoid surprises 
• Consider SET AUTOSAVE if system unstable 
• Save file when you stop to think — even stable systems 

can fail!

XEDIT on Other PlatformsXEDIT on Other Platforms

• KEDIT — Mansfield Software Group
– XEDIT for Windows, MS-DOS, OS/2 
– Very similar to CMS XEDIT
– Extensions exploit workstation capabilities 
– Mature, popular product 
– Macros use Rexx or KEXX (built-in REXX subset) 
– Windows version beautifully merges Windows and 

3270 paradigms: intuitive, configurable — usable!
– www.kedit .com offers many powerful macros
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XEDIT on Other PlatformsXEDIT on Other Platforms

• THE — The Hessling Editor
– Freeware UNIX editor by Mark Hessling 
– Modeled on XEDIT, with KEDIT DOS influences 
– Uses Rexx macros
– Includes ISPF compatibility features
– Check out www.lightlink.com/hessling/

• uni-Xedit — The Workstation Group
– XEDIT for UNIX
– uni-Rexx, uni-SPF also available
– Check out www.wrkgrp.com

XEDIT for ISPF UsersXEDIT for ISPF Users

• ISPF users have a particular challenge:
– XEDIT is too close: they’re constantly confused
– Some of the confusion can be destructive
– Customization through macros can help a lot!

• Example: ISPF Line commands
– XEDIT calls them Prefix subcommands
– Use synonyms to change behavior

• ISPF users can make XEDIT tolerable!

ISPF “Line” CommandsISPF “Line” Commands

• B undefined in XEDIT, means Before in ISPF
– Synonym to P in XEDIT

• R undefined in XEDIT, means Repeat in ISPF
– Synonym to “ (duplicate) in XEDIT

• A means Add in XEDIT, After in ISPF
– Synonym to F in XEDIT

• Some others much harder to simulate, but can at least 
come close

ISPF Primary CommandsISPF Primary Commands

• “Regular” ISPF commands are often similar to XEDIT 
subcommands:
– CHANGE syntax is different
– BOUNDS is like XEDIT SET ZONE
– EXCLUDE is similar to ALL, but syntax different
– Commands like DELETE, SORT have operands 

related to excluded lines
– FIND is like XEDIT string LOCATE
– LOCATE is like subset of XEDIT LOCATE
– XEDIT does not support UNDO at all

ConclusionsConclusions

• XEDIT is powerful, rich in function 
• Inexperienced users can add skills easily 
• Learning more about it increases productivity 
• Clones enable skills transfer to other platforms
• Read the manual!
• Note unfamiliar facilities, try them
• Experimenting is fun and easy!

ØWhat XEDIT tips can you share?
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