
Introduction to Writing
and Using Shell Scripts

Neale Ferguson

2

Course Outline

  Take a “real life” situation

  Create a shell script to implement it

  Incremental approach
  Work through a topic
  Apply it to the example
  Move on to the next topic
  Repeat

  Investigate
  Shells
  Environment variables
  File manipulation
  Scripting language constructs

3

The Application

  Simple Report Program
  Read 3 files according to day of the week (M-F)
  Concatenate data and write to output file
  Optional parameter to act as report header
  Optional parameter to identify job run

  Job Control
  Specify day of week for which report is to be run
  Allow run for entire week
  Choose between “production” and “QA” runs
  Write log messages to terminal or to a file
  Write output to a file in a directory named after user
  Debug option to show “JCL” preparation
  Handle abnormal termination

4

How do we do this in Linux?

//REPORT JOB 51315,
 NEALE,
 MSGLEVEL=(1,1)

//RPT EXEC PGM=REPORT,PARM=‘Report Title’
//SYSLIB DD DSN=HOME.NEALE,DISP=SHR
//SYSPRINT DD SYSOUT=*
//IN1 DD DSN=TMP.PROD.MON.IN001,DISP=SHR
//IN2 DD DSN=TMP.PROD.MON.IN002,DISP=SHR
//IN3 DD DSN=TMP.PROD.MON.IN003,DISP=SHR
//OUT DD DSN=TMP.PROD.MON.NEALE(OUT),DISP=SHR
/*

//REPORT JOB 51315,
 NEALE,
 MSGLEVEL=(1,1)

//RPTPROC PROC RUN=,DAY=,TITLE=
//RPT EXEC PGM=REPORT,PARM=‘&TITLE.’
//SYSLIB DD DSN=HOME.NEALE,DISP=SHR
//SYSPRINT DD SYSOUT=*
//IN1 DD DSN=TMP.&RUN..&DAY..IN001,DISP=SHR
//IN2 DD DSN=TMP.&RUN..&DAY..IN002,DISP=SHR
//IN3 DD DSN=TMP.&RUN..&DAY..IN003,DISP=SHR
//OUT DD DSN=TMP.&RUN..&DAY..NEALE(OUT),DISP=SHR
// PEND
/*
//MONRPT EXEC PROC=RPTPROC,RUN=PROD,DAY=MON,TITLE=‘Report Title’
//TUERPT EXEC PROC=RPTPROC,RUN=PROD,DAY=TUE,TITLE=‘Report Title’
/*

5

Running the Application on Linux…

  report Program takes several parameters:

report -e <var> -t <title>

where:
 -e - Passes the name of an environment variable to
 program
 -t - Passes a string to be used as the report title

6

…Running the Application on Linux

  Without a script…

  What do all these statements mean?

 export SYSIN_1=$HOME/tmp/Testing/Monday/Input.001

 export SYSIN_2=$HOME/tmp/Testing/Monday/Input.002

 export SYSIN_3=$HOME/tmp/Testing/Monday/Input.003
 export SYSOUT=$HOME/tmp/Testing/Monday/neale/Output

 export REPORT=MON

 export PATH=$PATH:.

 report –e REPORT –t “Monday Report”

 SYSIN_1=$HOME/tmp/Testing/Monday/Input.001 \
SYSIN_2=$HOME/tmp/Testing/Monday/Input.002 \
SYSIN_3=$HOME/tmp/Testing/Monday/Input.003 \
SYSOUT=$HOME/tmp/Testing/Monday/neale/Output \
REPORT=MON \
PATH=$PATH:. \
report –e REPORT –t “Monday Report”

7

Lab Setup

  Click on the “PuTTY” icon

  Select the “Linux Lab” menu item

  Click on “Load” and then “Open” buttons

  Logon as studentnn with password linx101

8

Lab 1 – Getting a feel for things…

  Try running the program and see what happens:

 report –e REPORT –t “Monday Report”

 PATH=$PATH:. \
report –e REPORT –t “Monday Report”

 SYSIN_1=$HOME/tmp/Testing/Monday/Input.001 \
SYSIN_2=$HOME/tmp/Testing/Monday/Input.002 \
SYSIN_3=$HOME/tmp/Testing/Monday/Input.003 \
SYSOUT=Output \
REPORT=MON \
PATH=$PATH:. \
report –e REPORT –t “Monday Report”

 SYSIN_1=$HOME/tmp/Testing/Monday/Input.001 \
 REPORT=MON \
 PATH=$PATH:. \
 report –e REPORT –t “Monday Report”

9

…Lab 1 – Getting a feel for things

  Place the following lines in a file called “monday.sh”

  Run the program: sh monday.sh

  What happens if you put a space after any of those
trailing ‘\’ characters?

#!/bin/bash
SYSIN_1=$HOME/tmp/Testing/Monday/Input.001 \
SYSIN_2=$HOME/tmp/Testing/Monday/Input.002 \
SYSIN_3=$HOME/tmp/Testing/Monday/Input.003 \
SYSOUT=Output \
REPORT=MON \
PATH=$PATH:. \
report –e REPORT –t “Monday Report”

10

Our Objective

  report.sh script that takes several parameters and
invokes report program

report -d -h -e -t <title> -l <log> -x <err> -q days…

where:
 -d - Turns on debug mode
 -h - Prints this message
 -e - Passes the name of an environment variable to
 program
 -t - Passes a string to be used as the report title
 -l - Specifies a log file for messages
 -x - Specifies a log file for error messages
 -q - Specifies this is a QA (testing) run
 days - The names of the days of the week for the report
 Any or all of the following (case insensitive) -
 MONday, TUEsday, WEDnesday, THUrsday, FRIday, ALL

11

Shells

 An interface between the Linux system
and the user

 Used to call commands and programs

 An interpreter

 Powerful programming language
  “Shell scripts” = .bat .cmd EXEC REXX

12

Shells

 sh Bourne shell - the original

 csh C shell - compatible with Bourne shell

 bash Bourne again shell - most common on Linux

 tcsh The enhanced C shell

 zsh Z shell - new, compatible with Bourne shell

 ksh Korn shell - most popular UNIX shell

13

Why Do I Care About The Shell?

 Shell is Not an Integral Part of O/S
  UNIX Among First to Separate

  Compare to MS-DOS, Mac, Win95, VM/CMS

  GUI is NOT Required

  Shell is just a command (usually living in /bin)

  Default Shell Can Be Configured

  chsh -s /bin/bash
  /etc/passwd

  Can swap between at will by invoking the name of the
shell

  Helps To Customize Environment

14

 #!/bin/bash
 while
 true
 do
 cat somefile > /dev/null
 echo .
 done

Shell Scripts

/* */
do forever
 ‘PIPE < SOME FILE | hole’
 say ‘.’
end

15

Environment Variables

  Environment variables are global settings that control
the function of the shell and other Linux programs. They
are sometimes referred to global shell variables.

  Each process has access to its own set of environment
variables

  Variables may be made available between parent and
child processes by “exporting” them

  Setting:
  VAR=/home/fred/doc
  export TERM=ansi
  SYSTEMNAME=`uname -n`

16

Environment Variables

  Using Environment Variables:
  echo $VAR
  cd $VAR
  cd $HOME
  echo “You are running on $SYSTEMNAME”

  Displaying - use the following commands:
  set (displays local & environment variables)
  export
  env

  Variables can be retrieved by a script or a program

17

Some Important Environment Variables

  HOME
  Your home directory (often be abbreviated as “~”)

  TERM
  The type of terminal you are running (for example vt100,

xterm, and ansi)

  PWD
  Current working directory

  PATH
  List of directories to search for commands

18

PATH Environment Variable

  Controls where commands are found
  PATH is a list of directory pathnames separated by colons. For

example:
   PATH=/bin:/usr/bin:/usr/X11R6/bin:/usr/local/bin

  If a command does not contain a slash, the shell tries finding the
command in each directory in PATH. The first match is the
command that will run

  Usually set in /etc/profile

  Often modified in ~/.profile or ~/.bashrc or ~/.login

19

Lab 2

  Use set/export/env to display current variables

  Set your own variables

  Examine effect of PATH

ENVVAR=“MYVAR”; echo $ENVVAR
echo $ENVVAR
export ENVVAR=“MYVAR”
echo $ENVVAR
export ENVVAR=“”

date
PATH=/tmp date

20

Linux Command Basics

 To execute a command, type its name
and arguments at the command line

ls -l /etc

Command name
Options
(flags)

Arguments

21

Standard Files

 UNIX concept of “standard files”
  standard input (where a command gets its input)

- default is the terminal. Represented by file
descriptor 0.

  standard output (where a command writes it
output) - default is the terminal. Represented by
file descriptor 1.

  standard error (where a command writes error
messages) - default is the terminal. Represented
by file descriptor 2.

22

Redirecting Output

 The output of a command may be sent to
a file:

 To redirect the output of standard error
use 2>

 To append to an existing file use >>

ls -l >output

“>” is used to specify
the output file

23

How our Script uses it

if [$xflag -eq 0]; then
 if [$lflag -eq 0]; then
 report "$VSTR" "$TSTR"
 else
 report "$VSTR" "$TSTR" >>$LOGFILE 2>&1
 fi

else
 if [$lflag -eq 0]; then
 report "$VSTR" "$TSTR" 2>>$ERRFILE
 else
 if [$LOGFILE = $ERRFILE]; then
 report "$VSTR" "$TSTR" >>$LOGFILE 2>&1
 else
 report "$VSTR" "$TSTR" >>$LOGFILE 2>>$ERRFILE
 fi
 fi

fi

24

Redirecting Input

 The input of a command may come from
a file:

wc <input

“<” is used to specify
the input file

25

Connecting commands with Pipes

  Not as powerful as CMS/TSO Pipes but the same
principle

  The output of one command can become the input
of another:

ps aux | grep netscape | wc -l

The output of the ps
command is sent to
grep

grep takes input and searches for
“netscape” passing these lines to wc

wc takes this input and
counts the lines its
output going to the
console

Like CMS Pipes, “|” is
used to separate stages

26

How our Script uses it

DAYS=`echo $* | tr '[:lower:]' '[:upper:]'`

27

Command Options

  Command options allow you to control a command to a
certain degree

  Conventions:
  Usually/Historically: a single dash and are a single letter (“-l”)
  POSIX standards complying: double dashes followed by a

keyword (“--help”)
  Sometimes follow no pattern at all

28

Language Structures - Agenda

  Terms and concepts

  Statement types

  Invoking a shell program

  System commands

  Logic constructs

  Arithmetic and logic operators

  Functions and subroutines

  Debugging

29

Terms and Concepts

  BASH = “Bourne Again SHell”

  A shell script is an ordinary text file containing
commands that will eventually be read by the shell

  Generally used to startup, control and/or terminate
application programs and system daemons

  An interpreted language

  The first line of the program identifies the interpreter:
Using #!/bin/<shell> (“sh-bang”) -

  #!/bin/bash2
  #!/bin/sh
  If file does not have “x” privileges then: sh <pathname>

30

Shell

  Most Linux commands are files
  e.g. ls is found in /bin/ls

  Shell also has built-in commands
  export
  cd

  Needed -
  As a programming language construct
  To be able to operate if PATH setting is invalid

  Is it a command or is it a built-in?
  which <command>

31

Lab 3…

  Create a simple script “hw.sh”

  Run the script:
  hw.sh
  ./hw.sh
  bash hw.sh
  csh hw.sh

  Make the file executable:
  chmod +x hw.sh
  ./hw.sh

echo “Hello World”

32

…Lab 3

  Update script to look like:

  Run again:
  ./hw.sh
  bash hw.sh
  csh hw.sh

#!/bin/csh
echo “Hello World”
set I=0
switch ($I)
 case 0:
 echo “Zero”
 breaksw

endsw

33

Comments

  A comment begins with the string # and ends with the
end of the line

  A comment cannot span multiple lines

  It can appear on the same line as an executable
statement

 J=$(($J+1)) # Increment secondary counter

  It cannot be embedded in the middle of an executable
statement

34

Simple Variables

  Symbols when first defined must begin with an
alphabetic or special character “_”

  Symbols may contain alphabetic, special, and numeric

  Symbols referred to by $<symbol name>:
X=1
echo $X

  Symbols are case-sensitive
  $fred is not the same symbol as $Fred is not the same

symbol as $FRED

  Symbols that have never been assigned a value have a
default of “”

  Variables can be read from standard input using “read
<var>”

35

Set variable to result of command

  Use the “tick” format of assignment to set a variable to
the result of a command:

#!/bin/bash
MACHINE=`uname –m`
echo $MACHINE

Yields…

s390x

36

Single and Double Quotes

  Without quotes
MY_VAR='This is my text'
echo $MY_VAR
This is my text

  Using double quotes
echo "$MY_VAR"
This is my text

  Using single quotes
echo '$MY_VAR'
$MY_VAR

  Why use double quotes?
x=“school bag”
if [$x = “abc”]; then versus if [“$x” = “abc”]; then

37

Lab 4

  Examine the difference of using double quotes in the test
of $x (use lab4.sh as a base)

  Examine the difference of using single quotes

#!/bin/sh
set -x
x="school bag"
if [$x == "abc"]; then
 echo "Strange!"
fi

#!/bin/sh
set -x
x="school bag"
if [‘$x’ != “school bag"]; then
 echo "Stranger!"
fi

38

How our Script uses it

ID=`whoami`
vflag=0
tflag=0
lflag=0
xflag=0

ddName() {
 export $1=$2
 message $INFO "$1 has been assigned to $2"

}

if [$TITLE = "@"]; then
 read USRTITLE
 TSTR="-t$USRTITLE"
 message $INFO "Report title set to $USRTITLE"

else

39

How our Program uses it

for (i_fd = 0; i_fd < 3; i_fd++) {
 sprintf (ddName, "SYSIN_%d", i_fd+1);
 in[i_fd] = getenv(ddName);
 if (in[i_fd] != NULL) {
 inFd[i_fd] = open(in[i_fd],O_RDONLY);
 if (inFd[i_fd] < 0) {
 err = errno;
 fprintf(stderr, "Error opening %s - %s\n",
 in[i_fd],strerror(errno));
 return (-err);
 }
 } else {
 fprintf(stderr, "DD name missing for %s\n",ddName);
 return (-1);
 }

}

40

Assignment

  The equal sign = is used as the assignment operator
 i=3
 j=“A string”
 k_q=`expr $i + 2` or k_q=$(($i+2)) or let k_q=$i+2

  It is also used as the comparison operator for numeric
equality

 if [$i == 4]…
 _equal =`expr $i == 4` or _equal=$(($i==4))

  Usage is determined from context
  The last statement above sets the variable _equal to ‘true’

or ‘false’ (1 or 0) depending on whether $i equals 4

41

Array Variables

  Arrays of values are implemented using:

#!/bin/bash2
Y=0
X[$Y]="Q"
echo ${X[$Y]}

Q

42

How our Script uses it

INFO=0
WARN=1
ERRA=2
MSGPRI[$INFO]="info"; MSGPRI[$WARN]="warn"; MSGPRI[$ERRA]="err“
MSGIND[$INFO]="I"; MSGIND[$WARN]="W"; MSGIND[$ERRA]="E"
STAT[$INFO]=0; STAT[$WARN]=0; STAT[$ERRA]=0

message() {
 PRI=$1
 shift
 TOD=`date +"%F %T"`
 echo "$TOD $ID ${MSGIND[$PRI]} $*"
 logger -i -t report -p ${MSGPRI[$PRI]} "$*"
 STAT[$PRI]=$((STAT[$PRI] + 1))
}

stats() {
 msg="${STAT[$INFO]} informational, "
 msg="$msg ${STAT[$WARN]} warning(s), "
 msg="$msg ${STAT[$ERRA]} error(s)"
 message $INFO "Message statistics: $msg"
}

43

Syntax

  A script may have parameters and options using the
same syntax as normal commands

 foo -anycase .therc
  might perform the foo function on file .therc, ignoring case

  We must be able to perform the usual functions of a
program:

  access the parameter string
  produce output
  exit the program when done

44

Accessing Parameters

  Parameters are identified by $0, $1, $2…

  $0 returns the name of the script

  $# returns number of arguments

  $* returns all arguments

  The set function can assign values to $0 etc.

  The shift function makes $1=$2, $2=$3 etc.

45

Lab 5

  Write a script (use lab5.sh as a starting point):
  Displays the script name
  Displays the number of parameters
  Displays the parameters passed
  Use the shift command to shuffle the parameters down by 3 and

display the new 1st parameter

46

Accessing Parameters

  Use getopt function to resolve flags and operands:
getopt <flags> <result>

while getopts put: opt
do
 case "$opt" in

 p) _autoload_dump printable; return 0;;
 u) _autoload_unset=y ;;
 t) _autoload_opt=“$OPTARG” ;;
 *) echo “autoload: usage:”
 echo “ autoload [-put<opt>] [function ...]” >&2

 return 1 ;;
 esac
done
shift $(($OPTIND-1))

47

The echo Instruction

  One way to produce output from a program is simply to
display it on the terminal or monitor

  The echo instruction is used to do this
echo expression
  evaluates the expression and displays its value

  For example

echo “Hello World!”
X=“XYZ”
echo $X

Hello World!
XYZ

48

Tracing the Program

  Prior to executing:

 set –x

  Option of sh command:

 sh –x <shellscript>

  Within a script:

#!/bin/sh
set –x
echo $0

49

How our Script uses it

while getopts dehl:t:qx: name
do

 case $name in
 d) set -x;;

50

Terminating the Program...

  The exit instruction terminates the program immediately.

  It takes an optional parameter of a return code
  The return code must be an integer
  It may be positive, negative, or zero

echo “File not found”
exit 28

51

Structure and Logic

  Several programming constructs are available in the shell
language

  The loop constructs
  At least five unique forms exist
  They can be combined to produce interesting results

  The case … esac construct
  Used to execute one of a set of mutually exclusive code

fragments
  The if/then/fi and if/then/else/fi constructs

  The else clause is optional
  The forms may be nested to execute complex logical

operations

52

Tests

  The test may deal with file characteristics or numerical/
string comparisons.

  Although the left bracket here appears to be part of the
structure, it is actually another name for the Unix test
command (located in /bin/[).

  Since [is the name of a file, there must be spaces before
and after it as well as before the closing bracket.

53

Comparison Functions

  TEST OPTIONS - FILE TESTS
  -s <file> Test if file exists and is not empty.
  -f <file> Test if file is an ordinary file, not a

 directory.
  -d <file> Test if file is a directory.
  -w <file> Test if file has write permission.
  -r <file> Test if file has read permission.
  -x <file> Test if file is executable.
  ! “Not” operation for test.

54

Comparison Functions

  TEST OPTIONS - STRING COMPARISONS
  $X -eq $Y $X is equal to $Y.
  $X -ne $Y $X is not equal to $Y.
  $X -gt $Y $X is greater than $Y.
  $X -lt $Y $X is less than $Y.
  $X -ge $Y $X is greater than or equal to $Y.
  $X -le $Y $X is less than or equal to $Y.
  "$A" = "$B" String $A is equal to string $B.

55

Comparison Functions

  TEST OPTIONS - NOT (!)
  "$A" != "$B" String $A is not equal to string $B.
  $X ! -gt $Y $X is not greater than $Y.

56

The Simple do…done Group

  A group of statements may be preceded by a do
statement and followed by an done statement

  This allows the group of statements to be treated as a unit
  No change in the execution of the statements is produced

  The entire set of statements between the do and done is
executed if condition is true

57

Looping Conditionally

  An until loop always executes at least once

  A while loop will not execute at all if condition is false at
initial entry to the while statement

while condition
do
 statements

done

while condition; do; statements; done

until condition
do
 statements

done

until condition; do; statements; done

58

While 1 -- an Unending Loop

  The while 1 or until 0 construct will loop forever

  Used when the termination condition is not known

  The termination condition (if any) is found inside the group

while [1];
do
 ….
 if [condition]; then
 break
 fi
done

59

The break Instruction

  The break instruction is used to exit an iterative loop

  By default, it exits the innermost loop if it is executed
inside nested loops then break n will exit out of n levels
of loops

  If n is greater than the level of nesting then all levels are
exited

60

The Case Construct…

  Many programming languages have a construct that
allow you to test a series of conditions and execute an
expression when a true condition is found

case $key in Match the variable $key.
pattern1) Test match to pattern1.

statement If $key matches pattern1, then
 execute statement

;; Each pattern ends with ;;.
pattern2) Test match to pattern2

statement If match, then execute
statement

;;

esac Close the case with esac.

61

The Case Construct

  The first condition that evaluates as “true” causes its
corresponding expression to be executed

  Control then transfers to the end of the case group
  No other conditions are tested

  The same rules apply here for expressions as apply with
the if/then/else construct

62

Lab 6

  Use the getopts/while/case constructs to parse the
options of a script that accepts the following options:

  -v Verbose (no operands)
  -t Title (next operand is the actual title)
  -l Logfile (next operand in the name of a file)

  Print a messages that tell the user
  Whether verbose option was specified
  The title (if specified)
  The name of the log file (if specified)

63

How our Script uses it

while getopts dehl:t:qx: name
do

 case $name in
 d) set -x;;
 e) vflag=1;;
 t) tflag=1
 TITLE="$OPTARG";;
 l) lflag=1
 LOGFILE="$OPTARG";;
 x) xflag=1
 ERRFILE="$OPTARG";;
 q) qflag=1;;
 h) usage;;
 esac

done
shift $(($OPTIND - 1))
:
DAYS=`echo $* | tr '[:lower:]' '[:upper:]'`

64

Conditional Execution (if/then/else)

  Uses the traditional form of the conditional execution
statements

if [test]
then then must appear on new line (or use ‘;’)

command

else else is optional also on new line
command

fi if always finishes with fi

if [test]; then command; else command; fi

65

Tests

  Examples:

if [$# -ne 1]
then

echo "This script needs one argument."
exit -1

fi
input="$1"
if [! -f "$input"]
then

echo "Input file does not exist."
exit -1

else
echo "Running program bigmat with input $input."
bigmat < $input

fi

66

Lab 7

  Use the if/then/else/fi and test constructs to:
  Check for the existence of /etc/profile and display a message

informing the user
  Read a variable from stdin using the read command and

compare it against a string “ABORT” and display a message
saying whether the comparison is true

  Repeat the previous test but make the comparison case
insensitive

67

How our Script uses it

if [x$RUNMODE != xProduction]; then
 message $WARN "Run mode has forced report processing to Testing"
 qflag=1

fi

if [$qflag -eq 1]; then
 DIR="Testing"

else
 DIR="Production"

fi

if [$xflag -eq 1]; then
 rm -f $ERRFILE

fi

if [$lflag]; then
 rm -f $LOGFILE

fi

68

Looping Through a List

  There are several forms of a do loop controlled by a
counter

for variable in list
do
 statement Execute statement on each loop.

done Close the do with done.

for month in “January” “February” “March”
do

 echo $month
done

69

Lab 8

  Use the for statement to iterate through a list of
vegetables: “carrot”, “potato”, “turnip”, “bean”, “pea”

  Use the if statement to test for the existence of a file in /
tmp that has the same name as the vegetable

  Display a message telling the user whether that file
exists or not

70

How our Script uses it

for REPORT in $DAYS; do
 case $REPORT in
 MON|MOND|MONDA|MONDAY)
 Report="Monday"
 runday
 ;;
 :
 ALL)
 for Report in "Monday" "Tuesday" "Wednesday" \
 "Thursday" "Friday"; do
 runday
 if [$RC -ne 0]; then
 abort -3
 fi
 done
 ;;
 *)
 usage;;
 esac

done

71

Arithmetic Functions…

  - + unary minus and plus

  ! ~ logical and bitwise negation

  ** exponentiation

  * / % multiplication, division, remainder

  + - addition, subtraction

  << >> left and right bitwise shifts

  <= >= < > comparison

  == != equality and inequality

72

Arithmetic Expressions

  & bitwise AND

  ^ bitwise exclusive OR

  | bitwise OR

  && logical AND

  || logical OR

  expr?expr:expr conditional evaluation

  = *= /= %= +=

  -= <<= >>= &=

  ^= |= assignment

73

More Useful Commands

  printf
  Format and print data

  sort
  Sort lines of text files (also has a –u for unique sorting)

  uniq
  Remove duplicate lines from a sorted file

74

Subroutines

  Defined before where they are called

  Take parameters $1, $2…

  Can return an integer

test() {
 echo “Was passed $1”
 return 0

}

test “First parameter” “Second Parameter”
echo $?
exit

Yields…

Was passed First parameter
0

75

Lab 9

  Create a script which:
  Takes a single parameter
  Based on the value of the parameter call one of 3 subroutines:

  one – which prints “subroutine one called” and returns 1
  two – which prints “subroutine two called” and returns 2
  xxx – which prints “subroutine xxx called with $1” and

returns -1
  The mainline will take the return code from the subroutine and

display it and exit with that code

76

Building the Input Files

#!/bin/sh
init() {
 i=0

 mkdir –p $HOME/tmp/{Production,Testing}/$1
 for name in $1 $2 $3 # or $*
 do
 i=$(($i+1))
 for dir in "Production" "Testing"
 do
 echo -n "$name" >$HOME/tmp/$dir/$1/Input.00$i
 done
 done
}

init "Monday" "Montag" "Lundi"
init "Tuesday" "Dienstag" "Mardi"
init "Wednesday" "Mittwoch" "Mercredi"
init "Thursday" "Donnerstag" "Jeudi"
init "Friday" "Freitag" "Vendredi"
exit

77

Debugging Shell Scripts

  The set instruction is your primary debugging tool
  set –e

  If a simple command fails the shell shall immediately exit

  set –n
  The shell shall read commands but does not execute them

  set –u
  The shell shall write a message to standard error when it tries to expand a

variable that is not set and immediately exit

  set –v
  The shell shall write its input to standard error as it is read

  set –x
  The shell shall write to standard error a trace for each command after it

expands the command and before it executes it

78

Monitoring Jobs…

  Running jobs in background:
  <scriptname> <parameters> &

  Use jobs command to display status
  Only on current session

  Use ps command to display process(es)
  ps
  ps –u <user>
  ps –ef
  ps -L

  Canceling jobs/processes:
  CTRL-C
  kill [-SIGNAL] %<job number>
  kill [-SIGNAL] <process id>
  killall [-SIGNAL] <process name>

79

…Monitoring Jobs

  Redirect script output to file
  report.sh … >report.out 2>report.err &
  report.sh … >report.out 2>&1 &
  report.sh … 2>&1 | tee report.out &

  Monitoring log files:
  tail -20f report.out
  tail -20f report.out | grep –i “title”

80

Trapping Signals

  Use “trap” command to intercept signals

  Used to allow clean-up of job

trap “<action>” <signals…>

trap “echo Received a signal; exit -1” TERM
while [1]
do

 echo –n “.”
 sleep 1s

done

81

How our Script uses it

abort() {
 rm -f $SYSOUT
 message $ERRA "Job processing terminated abnormally"
 exit $1
}
:
:
trap "abort -4" INT QUIT ABRT TERM
:
Report processing
:
trap "" INT QUIT ABRT TERM

82

Lab

  Start the report script using the following:
./report.sh -t "Weekly Report" -l ~/tmp/report.log -e all &

  While the job is running enter:
  jobs - take note of the job number
  kill –ABRT %n - where n is the job number
  Take note of the termination message from the script and from the

shell

  Start the report script again

  While the job is running enter:
  ps –u <user> - where <user> is your id
  Take note of the process id (PID)
  What does the PPID field report
  Wait a few seconds and enter the above command again
  What do you notice about the PID/PPID values?
  What happens if you issue kill –ABRT <PID>

83

Final Grade

  Look at report.broken

  Identify and correct all the mistakes:
  diff -U5 report.sh report.broken

  Once fixed rename to report.new

  Update this program to process data for Saturday

  Update the appropriate directory structure to support
Saturday processing

  Extra credit: Use the mail command to send a note to a
user when the job completes

  Report the completion status
mail -t << _EOF
To: user@node.domain
From: BatchSystem

Text
_EOF

