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Agenda

• Tuning
• Application

• C/C++ 

• Middleware
• Java

• Linux
• Networking

• Virtualization
• Hardware / Setup

• Monitoring
• Linux
• z/VM



Optimize your stack in the right 
direction

• Diminishing effect of tuning efforts

• Application design

• Application implementation

• Middleware 

• Operating system

• Virtualization layer 

• Hardware



Optimizing C/C++ code

• Use -O3 optimization as default
• no debugging options

Further optimization: 

• architecture dependent options
• -march=values <G5,z900,z990> <z9-109 with gcc-4.1> 
• -mtune=values <G5,z900,z990> <z9-109 with gcc-4.1> 

• inline assembler functions

• Next step: application design
• dynamic or static linking

• Avoid –fPIC for executables

• right use of inlined C / C++ functions

• Fine Tuning: additional general options on a file by file basis 
• -funroll-loops -ffast-math



Results of changing compiler options

Comparison lower vs. higher optimization

-O0  gcc-4.1-051111 
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• Using -O3 instead of no optimization cuts runtime up to 50% 



Java basics

• Try to use latest Java version
• Up to 20% release to release improvements
• True as well for newer service releases (SR)

• Make sure that you've got enabled JIT
• Verify Java output and look for “JIT enabled: jitc”

• Don't use Java in batch mode:
• If you do 100 calls “java -jar myprogram.jar” you compile 

myprogram 100 times 

• can take more CPU power than the program itself
• the JIT compiler can't do its optimization work

• Instead pull the loop inside the Java program and call “java 
-jar myprogram100.jar” once



Java heap size

• Useful parameters
• Setting heap size: -Xms (minimal), -Xmx (maximal), use min=max
• -verbose:gc -- monitor GC

• Max heap <= available memory
• Avoid paging - Linux and VM
• remember: heap memory will be used eventually!

• Larger heap size usually implies better performance
• in 31bit SLES8, SLES9 & SLES10 use /proc/<pid>/mapped_base to 

define heaps up to 1.7 GB
• In 31bit RHEL4 environments use flex-mmap mechanism

• Watch out for prelinked applications!
• Works also in 31bit emulation on 64 bit distros



Mapped_base HowTo

• Only available for Novell distribution 
SLES8,9,10 (31 bit)

• PID is the process ID of the process 
you want to change

• In bash $$ gives you the current process, 
from any process /proc/self/... works as 
well

• Display memory map of any PID by 
cat /proc/PID/maps

• Check the mapped_base value by 
cat /proc/PID/mapped_base

• Change value to e.g. 256 Mb by
echo 268435456 
>/proc/PID/mapped_base

256 Mb

2 Gb

mapped_base

shared libraries

1400 Mb



Networking performance

• Which connectivity to use:
• External connectivity:

• Use new 10 GbE cards with MTU 8992
• Attach OSA directly to Linux guest image

• Internal connectivity:
• Hipersockets for LPAR-LPAR communication
• Guest LAN for guest-guest communication

• For really busy network devices consider to
• use channel bonding
• Increase the number of inbound buffers in the qeth driver

• Device has to be offline
• # echo <number> > 
/sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/buffer
_count

• Channel bonding for HA creates only a small overhead

• Choose your MTU size carefully
• Avoid fragmentation, lots of small packages can drive up CPU 

utilization



Networking throughput for various 
connection types
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Networking throughput overview 
(SLES10)

equal 1.5x

1.1x 1.1x

1.8x 1.4x

Online 
transaction 

(rr200x1000)

Database 
query 

(rr200x32k)

Website 
access 
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File transfer 
(strp, strg 
20Mx20)

Advantage of 
large MTU size 

over default 
MTU size

1.2x (1 GbE), 
2.1x (10 GbE)

3.4x (only 10 
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How to improve disk performance

• Hardware choices
• Use SCSI instead of ECKD

• Use FICON instead of ESCON 
• 4Gb FICON > 2Gb FICON > 1Gb FICON

• Utilize your hardware
• Use “striped” logical volumes from different ranks

• Consider using PAV 

• Carefully set up your storage system

• http://www.ibm.com/developerworks/linux/linux390/perf/tuning_rec_d
asd_optimizedisk.shtml



Effect of dasdfmt block size on 
throughput and capacity

• Use 4k block size on ECKD DASDs whenever possible !
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z/VM 2 GB considerations

• Solution: upgrade z/VM to 5.2 or 5.3 level

• Read at
• http://www.vm.ibm.com/perf/tips/2gstorag.html

• http://www.vm.ibm.com/perf/reports/zvm/html/64bit.html

• http://www.ibm.com/developerworks/linux/linux390/perf/tuning_rec_fixed_io_buffers.shtml

• Old workarounds
• Cooperative Memory Management 

• fixed I/O buffers with kernel 2.6 and ECKD

• distribute your guests to multiple z/VMs

• Move large guest to LPAR

http://www.vm.ibm.com/perf/tips/2gstorag.html
http://www.vm.ibm.com/perf/reports/zvm/html/64bit.html
http://www.ibm.com/developerworks/linux/linux390/perf/tuning_rec_fixed_io_buffers.shtml


“On Demand Timer” patch

• Linux uses HZ based timer interrupts

• Timer interrupts for idle guests create unnecessary 
overhead

• Starting with SLES8: enable & disable on the fly
• /proc/sys/kernel/hz_timer

• 1 = timer interrupts occurring every 10 ms

• 0 = timer interrupts generated on demand only

• Included in SLES9, SLES10 and RHEL4, RHEL5 
s390/s390x distributions



spin_retry 

• Problem: 
• with many guests in z/VM it can happen that CP is busy executing 

diagnose instructions for the guest

• What's behind it:
• in a so-called spin lock, Linux guests give their CPU share back to 

the hipervisor using DIAG 44
• Hipervisor can be overloaded

• Solution: 
• Linux tries to get a lock n times before issuing a DIAG
• Value of n is adjustable in /proc/sys/kernel/spin_retry (default 1000)
• Included in latest SLES9 + SLES10 + RHEL4 + RHEL5



CMM

• 2 methods available:
• VMRM-CMM (VM Resource Manager – Cooperative Memory 

Management) aka CMM1
• Resource manager controls the size of the guests

• CMMA (Collaborative Memory Management Assist) aka CMM2
• Linux indicates which pages don't need to be saved

• Both methods show performance improvements when z/VM 
hits a system memory constraint.



CMM1 scenario

• Large Oracle guests, total used Linux memory = 2x of z/VM 
central storage, OLTP workload

• Advantages with CMM1

• Guests did not suffer  
from less page cache

z/VM 5.2  z/VM 5.3  CMMA  VMRM-CMM  VMRM-CMM & 
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CMM2 scenario

• Workload
• 15 guests, touching all their memory, all z/VM storage used. A guest orders now 

150MB, 500MB, 1.5GB of memory. We measure the duration of this operation  

• Result
• In case of sudden memory claims CMM2 is the best choice
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# of CPUs per Linux image

• Use as few virtual CPUs as possible

• For LPAR definitions: 
• # all virtual CPUs : # real CPUs  <= 4:1

• For z/VM:
• #of guest CPUs <= #of CPUs for VM (LPAR)

• You don't get done more by defining more CPUs! 



Agenda

• Tuning
• Application

• C/C++ 

• Middleware
• Java

• Linux
• Disk I/O
• Networking

• Virtualization
• Hardware / Setup

• Monitoring
• Linux
• z/VM



Linux command 'top' – the snapshot 
tool

• Adds new field “CPU steal time” 
• Is time Linux wanted to run, but the hipervisor was not able to 

schedule CPU
• Is included in SLES10 and RHEL5

top - 09:50:20 up 11 min,  3 users,  load average: 8.94, 7.17, 3.82
Tasks:  78 total,   8 running,  70 sleeping,   0 stopped,   0 zombie
 Cpu0 : 38.7%us,  4.2%sy,  0.0%ni,  0.0%id,  2.4%wa,  1.8%hi,  0.0%si, 53.0%st
 Cpu1 : 38.5%us,  0.6%sy,  0.0%ni,  5.1%id,  1.3%wa,  1.9%hi,  0.0%si, 52.6%st
 Cpu2 : 54.0%us,  0.6%sy,  0.0%ni,  0.6%id,  4.9%wa,  1.2%hi,  0.0%si, 38.7%st
 Cpu3 : 49.1%us,  0.6%sy,  0.0%ni,  1.2%id,  0.0%wa,  0.0%hi,  0.0%si, 49.1%st
 Cpu4 : 35.9%us,  1.2%sy,  0.0%ni, 15.0%id,  0.6%wa,  1.8%hi,  0.0%si, 45.5%st
 Cpu5 : 43.0%us,  2.1%sy,  0.7%ni,  0.0%id,  4.2%wa,  1.4%hi,  0.0%si, 48.6%st
Mem:    251832k total,   155448k used,    96384k free,     1212k buffers
Swap:   524248k total,    17716k used,   506532k free,    18096k cached



Tick based CPU Time inaccuracy
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Tick based CPU accounting on 
virtual systems
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New Virtual CPU time accounting
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Sysstat – the 'long' term data 
collection

• Contains four parts
• sadc: data gatherer - stores data in binary file
• Sar: reporting tool - reads binary file and converts it to readable 

output
• mpstat processor utilization
• iostat I/O utilization

• “steal time” included starting version 7.0.0

• Install the sysstat package and configure it depending on 
your distribution (crontab)

• by default data is collected in /var/log/sa

• More info at: http://perso.orange.fr/sebastien.godard
and with “man sar” on your system

http://perso.orange.fr/sebastien.godard


Oprofile – the Open Source sampling 
tool

• Oprofile offers profiling of all running code on Linux systems, 
providing a variety of statistics.

• By default, kernel mode and user mode information is gathered for 
configurable events

• System z hardware currently does not have support for 
hardware performance counters, instead timer interrupt is 
used

• Enable the hz_timer(!)

• The timer is set to whatever the jiffy rate is and is not user-
settable

• Novell / SUSE: oprofile is on the SDK CDs

• More info at: 
• http://oprofile.sourceforge.net/docs/
• http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/sysadmin-guide/ch-oprofile.html

http://oprofile.sourceforge.net/docs/
http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/sysadmin-guide/ch-oprofile.html


Oprofile – short how-to

• Example from 
http://www.ibm.com/developerworks/linux/linux390/perf/tuning_how_tools.html#oprofile

sysctl -w kernel.hz_timer=1

gunzip /boot/vmlinux-2.6.5-7.201-s390x.gz

opcontrol --vmlinux=/boot/vmlinux-2.6.5-7.201-s390x

opcontrol --start

<DO TEST>

opcontrol --shutdown

opreport

http://www.ibm.com/developerworks/linux/linux390/perf/tuning_how_tools.html#oprofile


Oprofile – output example

CPU: CPU with timer interrupt, speed 0 MHz (estimated)

Profiling through timer interrupt

vma    samples %      app name        symbol name

80002840 5862     34.8970  mcf_base.z_Linux    price_out_impl

800012c8 5221     31.0811  mcf_base.z_Linux    refresh_potential

80003cb4 4398     26.1817  mcf_base.z_Linux    primal_bea_mpp

80003b60 408       2.4289  mcf_base.z_Linux    sort_basket

0001a67c 345       2.0538  vmlinux             default_idle

800013d8 138       0.8215  mcf_base.z_Linux    flow_cost

800033bc 98        0.5834  mcf_base.z_Linux    update_tree

800020f8 88        0.5239  mcf_base.z_Linux    dual_feasible

800036a4 72        0.4286  mcf_base.z_Linux    primal_iminus

8000323c 40        0.2381  mcf_base.z_Linux    write_circulations

80002720 24        0.1429  mcf_base.z_Linux    insert_new_arc



/proc/dasd/statistics (1)

• Linux can collect performance stats on DASD activity as 
seen by Linux(!)

• Turn on with 
echo on > /proc/dasd/statistics

• Turn off with
echo off > /proc/dasd/statistics

• To reset: turn off and then on again

• Can be read for the whole system by
cat /proc/dasd/statistics

• Can be read for individual DASDs by
tunedasd -P /dev/dasda



/proc/dasd/statistics (2)

• Collects statistics (mostly processing times) of IO operations

• Each line represents a histogram of times for a certain operation

• Operations split up into the following :

Histogram of I/O till ssch
Histogram of I/O between 

ssch and IRQ
Histogram between 

I/O and End
Start End

Histogram of I/O times 

Build channel program
wait till subchannel is 
free

Processing data transfer
from/to storage server

Tell block dev layer
Data has arrived

http://www.ibm.com/developerworks/linux/linux390/perf/tuning_how_tools_dasd.html



/proc/dasd/statistics (3)

Tue Jan 18 20:52:50 EST 2005
21155901 dasd I/O requests
with 433275376 sectors(512B each)
   __<4    ___8    __16    __32    __64    _128    _256    _512    __1k    __2k    __4k    __8k    _16k    _32k    _64k    128k
   _256    _512    __1M    __2M    __4M    __8M    _16M    _32M    _64M    128M    256M    512M    __1G    __2G    __4G    _>4G
Histogram of sizes (512B secs)
      0       0 3774298  838941  352193  232188   43222   30563   16163    1403       0       0       0       0       0       0
      0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Histogram of I/O times (microseconds)
      0       0       0       0       0       0       0       2 3005329  352056  726353  671293  355198  147238   29245    2201
     51       3       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Histogram of I/O times per sector
      0       0   24686  204678  524222 2803252  500319  537993  249088  316175  111592   15932    1005      26       3       0
      0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Histogram of I/O time till ssch
3498191   51615   86168   21601    2756    1927    4348   22793  177758  138465  955964  214188   61200   42284    9075     621
     14       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Histogram of I/O time between ssch and irq
      0       0       0       0       0       0       0       4 4252115  408592   78374  122000  309317  108290    9848     416
     13       3       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Histogram of I/O time between ssch and irq per sector
      0       0   41819  517428  890743 3323127   21897   23329  103966  280533   79777    6056     282      10       2       0
      0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Histogram of I/O time between irq and end
4531949  633301   75411   41903    4984     791     516      48      40       3       3      20       0       0       0       0
      0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
# of req in chanq at enqueuing (1..32)
      0 3658672  277906  128989   97542 1125789      27       0       0       0       0       0       0       0       0       0
      0       0       0       0       0       0       0       0       0       0       0       0       0       0      0       0



SCSI statistics (1)

• In SLES9 and SLES10 SCSI statistics can be collected 

• The parameter CONFIG_STATISTICS=y must be set in the 
kernel config file

• If debugfs is mounted at /sys/kernel/debug/ , all the 
statistics data collected can be found at 
/sys/kernel/debug/statistics/

• The names of these subdirectories consist of 
zfcp-<device-bus-id> for an adapter and  
zfcp-<device-bus-id>-<WWPN>-<LUN> for a LUN. 



SCSI statistics (2)

• Each subdirectory contains two files, a data and a definition 
file. 

• Using
echo on=1 > definition 
the data gathering can be switched on for each device,

• With  
echo on=0 > definition
the gathering is switched off again. It defaults to data 
gathering being turned off. 

• The command
echo data=reset > definition 
enables you to reset the collected data to 0. 



SCSI statistics example

cat /sys/kernel/debug/statistics/zfcp-0.0.1700-0x5005076303010482-0x4014400500000000/data
...
request_sizes_scsi_read 0x1000 1163
request_sizes_scsi_read 0x80000 805
request_sizes_scsi_read 0x54000 47
request_sizes_scsi_read 0x2d000 44
request_sizes_scsi_read 0x2a000 26
request_sizes_scsi_read 0x57000 25
request_sizes_scsi_read 0x1e000 25
request_sizes_scsi_read 0x63000 24
request_sizes_scsi_read 0x6f000 19
request_sizes_scsi_read 0x12000 19
...
latencies_scsi_read <=1 1076
latencies_scsi_read <=2 205
latencies_scsi_read <=4 575
latencies_scsi_read <=8 368
latencies_scsi_read <=16 0
...
channel_latency_read <=16000 0
channel_latency_read <=32000 983
channel_latency_read <=64000 99
channel_latency_read <=128000 115
channel_latency_read <=256000 753
channel_latency_read <=512000 106
channel_latency_read <=1024000 141
channel_latency_read <=2048000 27
channel_latency_read <=4096000 0
...
fabric_latency_read <=1000000 1238
fabric_latency_read <=2000000 328
fabric_latency_read <=4000000 522
fabric_latency_read <=8000000 136
fabric_latency_read <=16000000 0
...



Comparing SCSI and ECKD request 
sizes 
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• Similar request sizes for sequential and random I/O



Comparing SCSI and ECKD latencies 
 (1)

• SCSI sequential write latencies are longer
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Comparing SCSI and ECKD latencies 
 (2)

• SCSI sequential read latencies are shorter
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How to collect z/VM monitor data

• Cheat Sheet at: http://www.vm.ibm.com/perf/tips/collect.html

• 5 basic steps
• Create monitor DCSS

• Setup userid to issue monwrite command

• Start and configure monitor

• Start monwrite

• Stop monwrite and save data



How to insert Linux data in z/VM 
monitor stream

• Enable your guest for inserting data into the monitor stream
• set APPLMON option to user direct

• Insert Linux modules
• modprobe appldata_mem

• modprobe appdata_os

• modprobe appldata_net_sum

• Turn on monitoring
• echo 1 > /proc/sys/appldata/timer

• echo 1 > /proc/sys/appldata/mem

• echo 1 > /proc/sys/appldata/os

• echo 1 > /proc/sys/appldata/net_sum

• Details can be found in chapter 15 of Device Drivers, 
Features, and Commands (SC33-8281-02)
http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/docu/l26bdd02.pdf

http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/docu/l26bdd02.pdf


Visit us !

• Linux on zSeries Tuning Hints and Tips
• http://www.ibm.com/developerworks/linux/linux390/perf/

• Linux-VM Performance Website:
• http://www.vm.ibm.com/perf/tips/linuxper.html

http://www.ibm.com/developerworks/linux/linux390/perf/


Questions


