
Linux on System z
performance hints and tips

Session 2591

Martin Kammerer
kammerer@de.ibm.com

Feb 25, 2008 11:00 - 12:00

mailto:kammerer@de.ibm.com

2

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

The following are trademarks or registered trademarks of other companies.

* Registered trademarks of IBM Corporation

* All other products may be trademarks or registered trademarks of their respective companies.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.
SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will
vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be
given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice.
Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or
any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

DB2*
DB2 Connect
DB2 Universal Database
e-business logo
IBM*
IBM eServer
IBM logo*
Informix®

System z
Tivoli*
WebSphere*
z/VM*
zSeries*
z/OS*

ECKD
Enterprise Storage Server®
FICON
FICON Express
HiperSocket
OSA
OSA Express

Agenda

• Tuning
• Application

• C/C++

• Middleware
• Java

• Linux
• Networking

• Virtualization
• Hardware / Setup

• Monitoring
• Linux
• z/VM

Optimize your stack in the right
direction

• Diminishing effect of tuning efforts

• Application design

• Application implementation

• Middleware

• Operating system

• Virtualization layer

• Hardware

Optimizing C/C++ code

• Use -O3 optimization as default
• no debugging options

Further optimization:

• architecture dependent options
• -march=values <G5,z900,z990> <z9-109 with gcc-4.1>
• -mtune=values <G5,z900,z990> <z9-109 with gcc-4.1>

• inline assembler functions

• Next step: application design
• dynamic or static linking

• Avoid –fPIC for executables

• right use of inlined C / C++ functions

• Fine Tuning: additional general options on a file by file basis
• -funroll-loops -ffast-math

Results of changing compiler options

Comparison lower vs. higher optimization

-O0 gcc-4.1-051111
glibc-2.3.5-10

-O3 -march=z990 -fpro-
file-generate|use gcc-
4.1-051111 glibc-2.3.5-

test cases

e
xe

cu
ti

o
n
 t

im
e

• Using -O3 instead of no optimization cuts runtime up to 50%

Java basics

• Try to use latest Java version
• Up to 20% release to release improvements
• True as well for newer service releases (SR)

• Make sure that you've got enabled JIT
• Verify Java output and look for “JIT enabled: jitc”

• Don't use Java in batch mode:
• If you do 100 calls “java -jar myprogram.jar” you compile

myprogram 100 times

• can take more CPU power than the program itself
• the JIT compiler can't do its optimization work

• Instead pull the loop inside the Java program and call “java
-jar myprogram100.jar” once

Java heap size

• Useful parameters
• Setting heap size: -Xms (minimal), -Xmx (maximal), use min=max
• -verbose:gc -- monitor GC

• Max heap <= available memory
• Avoid paging - Linux and VM
• remember: heap memory will be used eventually!

• Larger heap size usually implies better performance
• in 31bit SLES8, SLES9 & SLES10 use /proc/<pid>/mapped_base to

define heaps up to 1.7 GB
• In 31bit RHEL4 environments use flex-mmap mechanism

• Watch out for prelinked applications!
• Works also in 31bit emulation on 64 bit distros

Mapped_base HowTo

• Only available for Novell distribution
SLES8,9,10 (31 bit)

• PID is the process ID of the process
you want to change

• In bash $$ gives you the current process,
from any process /proc/self/... works as
well

• Display memory map of any PID by
cat /proc/PID/maps

• Check the mapped_base value by
cat /proc/PID/mapped_base

• Change value to e.g. 256 Mb by
echo 268435456
>/proc/PID/mapped_base

256 Mb

2 Gb

mapped_base

shared libraries

1400 Mb

Networking performance

• Which connectivity to use:
• External connectivity:

• Use new 10 GbE cards with MTU 8992
• Attach OSA directly to Linux guest image

• Internal connectivity:
• Hipersockets for LPAR-LPAR communication
• Guest LAN for guest-guest communication

• For really busy network devices consider to
• use channel bonding
• Increase the number of inbound buffers in the qeth driver

• Device has to be offline
• # echo <number> >
/sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/buffer
_count

• Channel bonding for HA creates only a small overhead

• Choose your MTU size carefully
• Avoid fragmentation, lots of small packages can drive up CPU

utilization

Networking throughput for various
connection types

GuestLAN Type QDIO MTU 32k

GuestLAN Type HiperSockets MTU 32k

HiperSockets MTU 32k z/VM

HiperSockets MTU 32k LPAR

10 GbE MTU 8992 LPAR

10 GbE MTU 1492 LPAR

1 GbE MTU 8992 LPAR

1 GbE MTU 1492 LPAR

1000Base-T MTU 8992 LPAR

1000Base-T MTU 1492 LPAR

0

2
5
0
0

5
0
0
0

7
5
0
0

1
0
0
0
0

1
2
5
0
0

1
5
0
0
0

1
7
5
0
0

Website access example,10 simultaneous connections (crr64x8k)
Linux to Linux, SLES10

transactions/s

Networking throughput overview
(SLES10)

equal 1.5x

1.1x 1.1x

1.8x 1.4x

Online
transaction

(rr200x1000)

Database
query

(rr200x32k)

Website
access

(crr64x8k)

File transfer
(strp, strg
20Mx20)

Advantage of
large MTU size

over default
MTU size

1.2x (1 GbE),
2.1x (10 GbE)

3.4x (only 10
GbE)

Advantage of
10 GbE over 1

GbE

1.9x (large
MTU)

3.3x (large
MTU)

Advantage of
GuestLAN over

OSA

3.4x (1 GbE),
1.7x (10 GbE)

4.5x (1 GbE),
1.3x (10 GbE)

Fastest
connection

HiperSockets
LPAR

HiperSockets
LPAR

HiperSockets
LPAR

HiperSockets
LPAR

How to improve disk performance

• Hardware choices
• Use SCSI instead of ECKD

• Use FICON instead of ESCON
• 4Gb FICON > 2Gb FICON > 1Gb FICON

• Utilize your hardware
• Use “striped” logical volumes from different ranks

• Consider using PAV

• Carefully set up your storage system

• http://www.ibm.com/developerworks/linux/linux390/perf/tuning_rec_d
asd_optimizedisk.shtml

Effect of dasdfmt block size on
throughput and capacity

• Use 4k block size on ECKD DASDs whenever possible !

0

10

20

30

40

50

60

70

Sequential
Write

Sequential
Read

Random
write

Random
Read

M
B

/s

512

1024

2048

4096

block size

disk space

512b 3.5G
1024b 4.7G
2048b 6G
4096b 6.8G

dasdfmt
blocksize

z/VM 2 GB considerations

• Solution: upgrade z/VM to 5.2 or 5.3 level

• Read at
• http://www.vm.ibm.com/perf/tips/2gstorag.html

• http://www.vm.ibm.com/perf/reports/zvm/html/64bit.html

• http://www.ibm.com/developerworks/linux/linux390/perf/tuning_rec_fixed_io_buffers.shtml

• Old workarounds
• Cooperative Memory Management

• fixed I/O buffers with kernel 2.6 and ECKD

• distribute your guests to multiple z/VMs

• Move large guest to LPAR

http://www.vm.ibm.com/perf/tips/2gstorag.html
http://www.vm.ibm.com/perf/reports/zvm/html/64bit.html
http://www.ibm.com/developerworks/linux/linux390/perf/tuning_rec_fixed_io_buffers.shtml

“On Demand Timer” patch

• Linux uses HZ based timer interrupts

• Timer interrupts for idle guests create unnecessary
overhead

• Starting with SLES8: enable & disable on the fly
• /proc/sys/kernel/hz_timer

• 1 = timer interrupts occurring every 10 ms

• 0 = timer interrupts generated on demand only

• Included in SLES9, SLES10 and RHEL4, RHEL5
s390/s390x distributions

spin_retry

• Problem:
• with many guests in z/VM it can happen that CP is busy executing

diagnose instructions for the guest

• What's behind it:
• in a so-called spin lock, Linux guests give their CPU share back to

the hipervisor using DIAG 44
• Hipervisor can be overloaded

• Solution:
• Linux tries to get a lock n times before issuing a DIAG
• Value of n is adjustable in /proc/sys/kernel/spin_retry (default 1000)
• Included in latest SLES9 + SLES10 + RHEL4 + RHEL5

CMM

• 2 methods available:
• VMRM-CMM (VM Resource Manager – Cooperative Memory

Management) aka CMM1
• Resource manager controls the size of the guests

• CMMA (Collaborative Memory Management Assist) aka CMM2
• Linux indicates which pages don't need to be saved

• Both methods show performance improvements when z/VM
hits a system memory constraint.

CMM1 scenario

• Large Oracle guests, total used Linux memory = 2x of z/VM
central storage, OLTP workload

• Advantages with CMM1

• Guests did not suffer
from less page cache

z/VM 5.2 z/VM 5.3 CMMA VMRM-CMM VMRM-CMM &
CMMA

0%

50%

100%

150%

200%

250%

300%

Throughput for 10 guests
z/VM 5.2, z/VM 5.3, CMMA, VMRM-CMM, VMRM-CMM & CMMA

N
o

rm
a

liz
e

d
 T

ra
n

sa
ct

io
n

a
l T

h
ro

u
g

h
p

u
t

CMM2 scenario

• Workload
• 15 guests, touching all their memory, all z/VM storage used. A guest orders now

150MB, 500MB, 1.5GB of memory. We measure the duration of this operation

• Result
• In case of sudden memory claims CMM2 is the best choice

150 500 1500
0

10

20

30

40

50

60

70

80

2.53

11.96

49.32

0.38 1.59

13.5

0.2 0.62

279.38

Duration of claiming Memory

Duration avg.
[sec] w/o cmm
Duration avg.
[sec] w/ cmm2
Duration avg.
[sec] w/ cmm1

Memory in MiB to be claimed

D
u

ra
ti
o

n
 i
n

 s
e

c

150 500 1500
0

2

4

6

8

10

12

14

16

18

20

Improvement factor for
 claiming Memory (normalized)

Memory in MiB to be claimed

of CPUs per Linux image

• Use as few virtual CPUs as possible

• For LPAR definitions:
• # all virtual CPUs : # real CPUs <= 4:1

• For z/VM:
• #of guest CPUs <= #of CPUs for VM (LPAR)

• You don't get done more by defining more CPUs!

Agenda

• Tuning
• Application

• C/C++

• Middleware
• Java

• Linux
• Disk I/O
• Networking

• Virtualization
• Hardware / Setup

• Monitoring
• Linux
• z/VM

Linux command 'top' – the snapshot
tool

• Adds new field “CPU steal time”
• Is time Linux wanted to run, but the hipervisor was not able to

schedule CPU
• Is included in SLES10 and RHEL5

top - 09:50:20 up 11 min, 3 users, load average: 8.94, 7.17, 3.82
Tasks: 78 total, 8 running, 70 sleeping, 0 stopped, 0 zombie
 Cpu0 : 38.7%us, 4.2%sy, 0.0%ni, 0.0%id, 2.4%wa, 1.8%hi, 0.0%si, 53.0%st
 Cpu1 : 38.5%us, 0.6%sy, 0.0%ni, 5.1%id, 1.3%wa, 1.9%hi, 0.0%si, 52.6%st
 Cpu2 : 54.0%us, 0.6%sy, 0.0%ni, 0.6%id, 4.9%wa, 1.2%hi, 0.0%si, 38.7%st
 Cpu3 : 49.1%us, 0.6%sy, 0.0%ni, 1.2%id, 0.0%wa, 0.0%hi, 0.0%si, 49.1%st
 Cpu4 : 35.9%us, 1.2%sy, 0.0%ni, 15.0%id, 0.6%wa, 1.8%hi, 0.0%si, 45.5%st
 Cpu5 : 43.0%us, 2.1%sy, 0.7%ni, 0.0%id, 4.2%wa, 1.4%hi, 0.0%si, 48.6%st
Mem: 251832k total, 155448k used, 96384k free, 1212k buffers
Swap: 524248k total, 17716k used, 506532k free, 18096k cached

Tick based CPU Time inaccuracy

kernel context

user context

kernel context

user context

timer ticks

U

U K U U U U U U

kernel context

user context

K K U K U K U U

timer ticks

U

2/100 s

7/100 s

1/100 s

8/100 s

4/100 s

5/100 s

Tick based CPU accounting on
virtual systems

kernel context

user context

kernel context

user context

timer ticks

U

U K U U U U U U

kernel context

user context

K K U K U K UU

timer ticks

U

1/100 s

5/100 s

1/100 s

8/100 s

4/100 s

5/100 s

New Virtual CPU time accounting

kernel context

user context

kernel context

user context

1/100 s

5/100 s

5/100 s

1/100 s

stpt

stop

stpt stpt stpt stpt stpt

stop stopstart start startstop start

stpt stpt

Host action

Guest action

kernel time
user time

steal time 3/100 s

stpt = Store CPU Timer

Sysstat – the 'long' term data
collection

• Contains four parts
• sadc: data gatherer - stores data in binary file
• Sar: reporting tool - reads binary file and converts it to readable

output
• mpstat processor utilization
• iostat I/O utilization

• “steal time” included starting version 7.0.0

• Install the sysstat package and configure it depending on
your distribution (crontab)

• by default data is collected in /var/log/sa

• More info at: http://perso.orange.fr/sebastien.godard
and with “man sar” on your system

http://perso.orange.fr/sebastien.godard

Oprofile – the Open Source sampling
tool

• Oprofile offers profiling of all running code on Linux systems,
providing a variety of statistics.

• By default, kernel mode and user mode information is gathered for
configurable events

• System z hardware currently does not have support for
hardware performance counters, instead timer interrupt is
used

• Enable the hz_timer(!)

• The timer is set to whatever the jiffy rate is and is not user-
settable

• Novell / SUSE: oprofile is on the SDK CDs

• More info at:
• http://oprofile.sourceforge.net/docs/
• http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/sysadmin-guide/ch-oprofile.html

http://oprofile.sourceforge.net/docs/
http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/sysadmin-guide/ch-oprofile.html

Oprofile – short how-to

• Example from
http://www.ibm.com/developerworks/linux/linux390/perf/tuning_how_tools.html#oprofile

sysctl -w kernel.hz_timer=1

gunzip /boot/vmlinux-2.6.5-7.201-s390x.gz

opcontrol --vmlinux=/boot/vmlinux-2.6.5-7.201-s390x

opcontrol --start

<DO TEST>

opcontrol --shutdown

opreport

http://www.ibm.com/developerworks/linux/linux390/perf/tuning_how_tools.html#oprofile

Oprofile – output example

CPU: CPU with timer interrupt, speed 0 MHz (estimated)

Profiling through timer interrupt

vma samples % app name symbol name

80002840 5862 34.8970 mcf_base.z_Linux price_out_impl

800012c8 5221 31.0811 mcf_base.z_Linux refresh_potential

80003cb4 4398 26.1817 mcf_base.z_Linux primal_bea_mpp

80003b60 408 2.4289 mcf_base.z_Linux sort_basket

0001a67c 345 2.0538 vmlinux default_idle

800013d8 138 0.8215 mcf_base.z_Linux flow_cost

800033bc 98 0.5834 mcf_base.z_Linux update_tree

800020f8 88 0.5239 mcf_base.z_Linux dual_feasible

800036a4 72 0.4286 mcf_base.z_Linux primal_iminus

8000323c 40 0.2381 mcf_base.z_Linux write_circulations

80002720 24 0.1429 mcf_base.z_Linux insert_new_arc

/proc/dasd/statistics (1)

• Linux can collect performance stats on DASD activity as
seen by Linux(!)

• Turn on with
echo on > /proc/dasd/statistics

• Turn off with
echo off > /proc/dasd/statistics

• To reset: turn off and then on again

• Can be read for the whole system by
cat /proc/dasd/statistics

• Can be read for individual DASDs by
tunedasd -P /dev/dasda

/proc/dasd/statistics (2)

• Collects statistics (mostly processing times) of IO operations

• Each line represents a histogram of times for a certain operation

• Operations split up into the following :

Histogram of I/O till ssch
Histogram of I/O between

ssch and IRQ
Histogram between

I/O and End
Start End

Histogram of I/O times

Build channel program
wait till subchannel is
free

Processing data transfer
from/to storage server

Tell block dev layer
Data has arrived

http://www.ibm.com/developerworks/linux/linux390/perf/tuning_how_tools_dasd.html

/proc/dasd/statistics (3)

Tue Jan 18 20:52:50 EST 2005
21155901 dasd I/O requests
with 433275376 sectors(512B each)
 __<4 ___8 __16 __32 __64 _128 _256 _512 __1k __2k __4k __8k _16k _32k _64k 128k
 _256 _512 __1M __2M __4M __8M _16M _32M _64M 128M 256M 512M __1G __2G __4G _>4G
Histogram of sizes (512B secs)
 0 0 3774298 838941 352193 232188 43222 30563 16163 1403 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O times (microseconds)
 0 0 0 0 0 0 0 2 3005329 352056 726353 671293 355198 147238 29245 2201
 51 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O times per sector
 0 0 24686 204678 524222 2803252 500319 537993 249088 316175 111592 15932 1005 26 3 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time till ssch
3498191 51615 86168 21601 2756 1927 4348 22793 177758 138465 955964 214188 61200 42284 9075 621
 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between ssch and irq
 0 0 0 0 0 0 0 4 4252115 408592 78374 122000 309317 108290 9848 416
 13 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between ssch and irq per sector
 0 0 41819 517428 890743 3323127 21897 23329 103966 280533 79777 6056 282 10 2 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between irq and end
4531949 633301 75411 41903 4984 791 516 48 40 3 3 20 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
of req in chanq at enqueuing (1..32)
 0 3658672 277906 128989 97542 1125789 27 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCSI statistics (1)

• In SLES9 and SLES10 SCSI statistics can be collected

• The parameter CONFIG_STATISTICS=y must be set in the
kernel config file

• If debugfs is mounted at /sys/kernel/debug/ , all the
statistics data collected can be found at
/sys/kernel/debug/statistics/

• The names of these subdirectories consist of
zfcp-<device-bus-id> for an adapter and
zfcp-<device-bus-id>-<WWPN>-<LUN> for a LUN.

SCSI statistics (2)

• Each subdirectory contains two files, a data and a definition
file.

• Using
echo on=1 > definition
the data gathering can be switched on for each device,

• With
echo on=0 > definition
the gathering is switched off again. It defaults to data
gathering being turned off.

• The command
echo data=reset > definition
enables you to reset the collected data to 0.

SCSI statistics example

cat /sys/kernel/debug/statistics/zfcp-0.0.1700-0x5005076303010482-0x4014400500000000/data
...
request_sizes_scsi_read 0x1000 1163
request_sizes_scsi_read 0x80000 805
request_sizes_scsi_read 0x54000 47
request_sizes_scsi_read 0x2d000 44
request_sizes_scsi_read 0x2a000 26
request_sizes_scsi_read 0x57000 25
request_sizes_scsi_read 0x1e000 25
request_sizes_scsi_read 0x63000 24
request_sizes_scsi_read 0x6f000 19
request_sizes_scsi_read 0x12000 19
...
latencies_scsi_read <=1 1076
latencies_scsi_read <=2 205
latencies_scsi_read <=4 575
latencies_scsi_read <=8 368
latencies_scsi_read <=16 0
...
channel_latency_read <=16000 0
channel_latency_read <=32000 983
channel_latency_read <=64000 99
channel_latency_read <=128000 115
channel_latency_read <=256000 753
channel_latency_read <=512000 106
channel_latency_read <=1024000 141
channel_latency_read <=2048000 27
channel_latency_read <=4096000 0
...
fabric_latency_read <=1000000 1238
fabric_latency_read <=2000000 328
fabric_latency_read <=4000000 522
fabric_latency_read <=8000000 136
fabric_latency_read <=16000000 0
...

Comparing SCSI and ECKD request
sizes

<
8k

<
16k

<
32k

<
64k

<
128k

<
256k

<
512k

<
1024k

0

10000

20000

30000

40000

50000

60000

70000

80000

Request sizes (IOzone 16 processes)

SCSI Seq. Write
ECKD Seq. Write

SCSI Seq. Read
ECKD Seq. Read

SCSI Rdm.
Write/Read
ECKD Rdm.
Write/Read

Request sizes

N
u
m

b
e
r
 o

f
r
e
q
u
e
s
ts

• Similar request sizes for sequential and random I/O

Comparing SCSI and ECKD latencies
 (1)

• SCSI sequential write latencies are longer

<=0.5

<=1
<=2

<=4
<=8

<=16

<=32

<=64

<=128

<=256

0

10,000

20,000

30,000

40,000

50,000

60,000

Latencies Seq. Write

SCSI overall
ECKD overall
SCSI fabric
ECKD ssch till irq

Latencies in ms

N
u

m
b

e
r

o
f
o

c
c
u

rr
e

n
c
e

s

Comparing SCSI and ECKD latencies
 (2)

• SCSI sequential read latencies are shorter

<=0.5

<=1
<=2

<=4
<=8

<=16

<=32

0

5,000

10,000

15,000

20,000

25,000

Latencies Seq. Read

SCSI overall
ECKD overall
SCSI fabric
ECKD ssch till irq

Latencies in ms

N
u
m

b
e
r

o
f
o
c
c
u
rr

e
n
c
e
s

How to collect z/VM monitor data

• Cheat Sheet at: http://www.vm.ibm.com/perf/tips/collect.html

• 5 basic steps
• Create monitor DCSS

• Setup userid to issue monwrite command

• Start and configure monitor

• Start monwrite

• Stop monwrite and save data

How to insert Linux data in z/VM
monitor stream

• Enable your guest for inserting data into the monitor stream
• set APPLMON option to user direct

• Insert Linux modules
• modprobe appldata_mem

• modprobe appdata_os

• modprobe appldata_net_sum

• Turn on monitoring
• echo 1 > /proc/sys/appldata/timer

• echo 1 > /proc/sys/appldata/mem

• echo 1 > /proc/sys/appldata/os

• echo 1 > /proc/sys/appldata/net_sum

• Details can be found in chapter 15 of Device Drivers,
Features, and Commands (SC33-8281-02)
http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/docu/l26bdd02.pdf

http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/docu/l26bdd02.pdf

Visit us !

• Linux on zSeries Tuning Hints and Tips
• http://www.ibm.com/developerworks/linux/linux390/perf/

• Linux-VM Performance Website:
• http://www.vm.ibm.com/perf/tips/linuxper.html

http://www.ibm.com/developerworks/linux/linux390/perf/

Questions

