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The difference between 
applications people and systems people:

Applications people worry about how it will work.

Why We’re Here

Systems people worry about how it will fail.

If you support production, you’re a systems person!



Agenda

• We’ll cover:
• Ways Linux can get sick
• Techniques to decide what’s wrong
• Debugging information you can gather

• We won’t cover:
• Detailed use of debugging tools (gdb, et al.)
• Dump (core) analysis

Paramedic / First Responder functionality, not 
ER surgery or pathology lab forensic reports!



Penguins and Bears, 
Oh My!

Penguin Diseases 101



The Modal Penguin Ailment

• “Why isn’t my Linux virtual machine responding?” AKA:
• Can I get from here to there?
• If I can get there, is there a “there” there?
• If there is a “there” there, is it open?

• These problems correspond to:
• Networking problems
• Linux issues
• VM troubles



A Baseline is Useful!

• Linux guests vary widely
• Networking configuration
• Performance profile
• Services provided

• Keep written (and online) notes about your guests
• IP addresses, network interfaces, routing, etc.
• Typical/observed performance characteristics
• Disk space usage

In a crisis, you need to know 
how things should look!



Network Issues

• Is it a network issue:
• Between the user and VM?
• Between the VM stack and the Linux virtual machine?
• Within the Linux virtual machine?

• If you can’t get to the machine, it sure won’t respond!



VM Troubles

• Is the Linux virtual machine even logged on?
• Someone might have logged it off, FORCEd it, etc.

• Is the virtual machine in a stopped state?
• Users may disconnect from machines carelessly, leaving them stopped

• Is VM broken?
• If VM is sick, Linux sure won’t run!

• Is VM letting the virtual machine run?
• CP might not be giving it resource



Linux Issues

• Is it a kernel problem within the Linux guest?
• Even Linux can have problems — OOMs (Out-Of-Memory errors), loops, 

or Oopses (kernel errors)

• Is a specific service (ssh, ftp, etc.) broken?
• If target service is down, Linux will appear to be down

• Is it resource exhaustion within Linux?
• Insufficient disk space, or suffering from OOMs can cause some/all Linux 

services to wait
• Is an application or service hogging resources within the Linux virtual 

machine?



Penguin Problem 
Identification

Taking Your Penguin’s Temperature 
and Pulse



Linux Diagnostic Tools

• Use Linux commands for diagnosis:
• ps (Process Status)
• df (Display Filesystems)
• free (memory usage display)
• etc…

• Many of these just display /proc files
• /proc is a pseudo-filesystem whose files contain various system 

settings, counters, etc.
• Better than running control blocks in memory!
• Access files like any other file: cat, etc.
• Write to /proc to change system settings on-the-fly



Diagnosing Network Issues

• Try to ping Linux from user’s machine
• Success means network OK between user & Linux
• Helps if you know the Linux hostname/IP address
• Also good to know whether Linux guest normally responds (some don’t; 

some firewalls block ICMP)

• Try traceroute to Linux from user’s machine
• traceroute failure at last hop before Linux implicates Linux networking
• Must know normal routing and thus normal “last hop”!
• Linux, Windows, VM all have traceroute, spelled varying ways



Diagnosing Network Issues

• If Linux networking appears broken:
• Log onto guest virtual machine directly
• Then log into Linux as root
• May not be possible if local root login disabled (may be able to login as 

another user and su to root)

• Use ifconfig and/or netstat -i to examine network 
configuration and status

• Bouncing connection sometimes helps 
(ifconfig down followed by ifconfig up)



Diagnosing Network Issues (continued)

• Useful CP commands:
• #CP QUERY VIRTUAL NIC shows whether virtual NICs on Guest LANs 

are connected
• #CP QUERY LAN DETAILS shows what Guest LANs look like, including 

IP addresses assigned
• Use #CP QUERY LAN DETAILS lanname if many LANs

• Try cat /proc/net/arp
• Shows cached hardware addresses
• If none, that may tell you network isn’t very happy
• Recommendation is to disable ARP caching anyway if using VSWITCH, so 

of limited usefulness



Diagnosing Network Issues (continued)

• If network is broadcast-capable (QDIO), ping the 
Bcast (broadcast) address shown by ifconfig:
ping -b -c 1 10.3.2.255
WARNING: pinging broadcast address
PING 10.3.2.255 from 10.3.2.2 : 56(84) bytes of data.
64 bytes from 10.3.2.2: icmp_seq=0 ttl=64 time=41 usec
• On 3270, use ping –c 1, or ping will run forever

• No <Cntrl>C on 3270; some distros support ^C

• More than one response from an IP address means duplicate IP!

• Learn to use tcpdump (or equivalent tool)
• Beyond scope of this presentation, but very powerful!



Diagnosing VM Troubles

• Is VM broken?
• Try to log onto another VM userid
• If that doesn’t work, head for the machine room!

• Is network to/from VM healthy?
• Try to ping and traceroute VM from your PC
• Try to ping external host from VM
• If you can get out but not back in, look for routing problem external to VM

• Is the Linux virtual machine even logged on?
• Log onto a VM userid and issue #CP QUERY USER linuxid
• Response linuxid NOT LOGGED ON is a problem!



(Digression) VM SPOOLed Consoles

• VM lets you keep a copy of all console activity for a virtual machine
• Conceptually similar to having root logged on using a hardcopy terminal

• Files are saved in VM system SPOOL space

• Closed on demand or automatically at system shutdown or user logoff

• Invaluable resource for determining abnormal virtual machine events
• A bit less useful for Linux, since most services do not log to console
• Oopses, OOMs, some segfaults are logged to console



How To SPOOL the Console

• CP SPOOL command turns on SPOOLing:
CP SPOOL CONSOLE START

• CP TERMINAL TIMESTMP ON useful: 
• Timestamps all output

• Various options control default destination userid, class, 
filename/filetype

• Useful to indicate date/time SPOOL started:
CP SPOOL CONSOLE START NAME yyyymmdd hh:mm:ss

• Once file is closed, file timestamp will be close time, so this adds useful info

• May want to centralize console collection:
CP SPOOL CONSOLE START TO CONSAVER



Finding (Open) SPOOLed Consoles

• To determine if a running virtual machine has its console 
SPOOLed:
#CP QUERY PRT ALL linuxid

• Look for open CON file:
ORIGINID FILE CLASS RECORDS  CPY HOLD DATE  TIME NAME TYPE
linuxid 6216 T CON nnnnnnnn 001 NONE OPEN- 0009 name type

• Mere existence of file is useful data point

• To close the console and send it to yourself:
#CP SEND CP linuxid CLOSE CONSOLE yourid

(where yourid is your userid)
• CP SEND requires privilege class C



Processing VM SPOOLed Consoles

• Result of previous command is message:
RDR FILE nnnn SENT FROM linuxid CON WAS mmmm RECS rr …

• Note the “nnnn” value — that’s the SPOOL file number in your virtual 
reader

• Issue CMS PEEK command to view the file:
PEEK nnnn (FOR *
• Places you in XEDIT session, viewing file contents
• Large files require time, virtual storage to read
• Note: files may span days; HCPMID6001I appears each midnight

• CMS RECEIVE command reads file to disk
• PF9 in PEEK, or:
RECEIVE nnnn fn ft fm



Finding (Closed) Console Files

• To find SPOOLed consoles for non-running virtual machines (or 
from previous logons):
#CP QUERY RDR ALL linuxid
#CP QUERY PRT ALL linuxid
• Shows files in linuxid ‘s virtual reader or printer
#CP QUERY RDR ALL XFER ALL linuxid

• Shows files sent/transferred to other virtual machines

• Use CP TRANSFER to move files to your reader:
TRANSFER ownerid RDR nnnn *
• Then use PEEK, RECEIVE, et al.



Notes About SPOOLed Consoles

• Consoles can become very large
• For guests with significant console activity, consider closing periodically to 

keep files manageable
• E.g., close at midnight via WAKEUP-based service machine
• EOF option closes automatically every 50,000 records (desirability 

depends on how you manage the files)

• Naming consoles rationally helps a lot
• Use NAME option when SPOOLing
• RECEIVE them as “userid yyyymmdd”, perhaps

• Vendor console management products exist



When/Why Was Linux Logged Off?

• Examine operator’s console to see when and why it was logged 
off:

User linuxid LOGOFF AS linuxid USERS= n

• Logged off “normally”, either by a user command or by Linux itself after 
shutdown

User linuxid LOGOFF AS linuxid USERS= n FORCED BY vmid

• Logged off by CP FORCE command issued by vmid

User linuxid LOGOFF AS linuxid USERS= n FORCED BY SYSTEM

• Logged off due to CP “timebomb” logoff, after being in a read for (usually) 
15 minutes while disconnected

• Look for more nuggets at bottom of guest console



Diagnosing VM Troubles

• Is Linux virtual machine stopped in CP READ?
• Issue CP SEND CP linuxid BEGIN to start it

• Harmless at worst
• Use RUNNABLE EXEC (see Resources) to check

• How did it get there?
• Force disconnected with RUN OFF

• by system or because user closed emulator while connected
• Reconnected and left in CP READ (with RUN OFF)
• CP STOP or CP CPU ALL STOP issued on guest

Conclusion: 
Run Linux guests with CP SET RUN ON!!!



Diagnosing VM Troubles

• Is VM giving the virtual machine any service?
• CP might not be giving it resource
• Likely if Linux virtual machine reconnect shows RUNNING with no keyboard 

response
• If it seems normal at reconnect, hit ENTER a couple of times, look for VM 
READ, Linux login: prompt

• If no read, or significant delay before login prompt, VM may not be running 
the virtual machine

Basic understanding of scheduling/dispatching is essential



Scheduler and Dispatcher 101

• Virtual machines must be runnable to do work
• CP must be willing to schedule the virtual machine
• CP must be willing to dispatch the virtual machine

• A virtual machine is in one of three lists:
• Dormant list: virtual machine has no work to do
• Dispatch list: virtual machine is active and CP is allowing it to run
• Eligible list: virtual machine is active, but CP is not allowing it to run

• User can also be running, of course



Scheduler and Dispatcher 101

• Scheduler decides whether there are enough resources to give 
a virtual machine some service

• If not enough resources are available, virtual machine does not get 
scheduled

• Dispatcher gives virtual machines access to CPUs
• If multiple virtual machines are active, they take turns
• VM is very good at this — supports tens of thousands of active users with 

excellent response time



Dispatch Classes – Class 1

Class 1 virtual machines:
• Virtual machines start off as Class 1

• Such users are usually referred to as “Q1 users”
• CP waits one Class 1 elapsed timeslice (C1ETS) to see if it goes 

idle voluntarily
• If virtual machine does not go idle within that timeslice, it is 

preemptively stopped from execution (“queue dropped”) — sent 
back to the scheduler

• C1ETS is dynamically calculated to keep a fixed percentage of 
users in Class 1

• C1ETS should be enough for short, interactive transactions (minor 
CMS commands)



Dispatch Classes – Class 2

Class 2 virtual machines:
• If virtual machine does not go idle voluntarily in one C1ETS, it

enters Class 2
• Such users are usually referred to as “Q2 users”
• Next time CP runs it, it is given 8 times C1ETS
• If virtual machine does not leave the dispatch list within that amount of 

time, it is queue dropped
• Such users are presumed to be running a command, but not necessarily 

doing something “major”



Dispatch Classes – Class 3

Class 3 virtual machines:
• If virtual machine does not go idle voluntarily within class 2 

C1ETS multiple, it enters Class 3
• Such users are usually referred to as “Q3 users”
• Next time CP runs it, it is given 6 times class 2 timeslice (6x8 = 48x 

C1ETS)
• If virtual machine does not leave dispatch list within that amount of time, it 

is queue dropped
• Such users are presumably running a long-running command



Leaving the Dispatch List

• Virtual machines leave dispatch list when they:
• Go idle voluntarily (load a wait PSW)
• Hold execution waiting on CP (paging, DIAGNOSE…)
• Leave SIE emulation due to privileged instruction (privop) execution

• When virtual machine leaves dispatch list, 300ms queue drop 
test timer is set

• If virtual machine resumes activity within that period, it is reinserted into 
previous place in queue

• Not necessarily back to Q1!

• Linux guests without “notimer” patch never go idle long enough to get 
dropped from queue!



How This Plays Out…

• CP scheduling is based on resource analysis
• If not enough resource, virtual machines are held in Eligible list (E-list)
• Assumption: resources will become available soon
• If not, E-listed virtual machines never get scheduled

• Dispatched virtual machines “should” go idle
• Linux tends not to go idle (without “notimer” patch)
• Linux virtual machines thus stay runnable all the time!

• Machines doing I/O are considered active
• Linux machines usually have a pending network I/O
• Fixed so network I/O now ignored for queue drop



Dispatch Classes – Class 0

• Users with OPTION QUICKDSP or
SET QUICKDSP ON bypass eligible list

• Still subject to queue drops

• Interactive users also get a Q0 stay (“hotshot”)
• Users hitting ENTER or PF/PA keys qualify
• Still get queue dropped, but “go to head of line” briefly
• Return to their previous queue level after Q0 stay

• Users holding certain locks are also Q0
• Such “lockshot” users presumably are preventing other users from 

running



How Does This Go Wrong?

• Linux machines tend to:
• Be quite large (virtual storage size)
• Have working set size close to virtual storage size
• Stay active (rarely/never go idle)
• Not use shared pages (DCSS)

• Linux real storage requirements are thus much higher than the 
average CMS virtual machine

• If enough Linux virtual machines are logged on, CP notices it 
will overcommit real storage

• One or more virtual machines are E-listed — forever!



How Does This Manifest?

• System is running along fine
• One guest too many is started
• Things “just stop”

• Remember the queue drop timer:
• Guests never go idle (as far as CP can tell)
• Never cycle out to scheduler, so E-listed guests stay there!



Detection

• CP INDICATE QUEUES EXPANDED command:
LINUX902      Q3 PS  00013577/00013567 .... -232.0 A00
LINUX901      Q3 PS  00030109/00030099 .... -231.7 A00
VSCS          Q1 R   00000128/00000106 .I.. -208.7 A00
VMLINUX3      Q3 IO  00052962/00051162 .... -.9398 A00
VMLINUX3 MP01 Q3 PS  00000000/00000000 ....  .0612 A00
LINUX123      E3 R   00177823/00196608 ....  5255. A00

• HELP INDICATE QUEUES shows meaning of output
• CP privilege class E required
• Virtual machine LINUX123 is not going anywhere anytime soon…!
• Note: “deadline time” (sixth column) sometimes very large — and very 

bogus



Remediation

• Buy more storage ($8K/GB — cheap!)

• Make sure “notimer” patch is enabled
• Obviously only meaningful if guests are nominally idle
• Remember cron et al. may wake them up anyway

• Log off some guests

• Tune guest storage sizes
• Linux uses “extra” storage for file buffers
• Back off virtual storage size until guests swap, then add a bit more (or not)



Diagnosing Kernel Problems

• Log onto Linux guest to see if it’s even alive: 
• Hit ENTER, look for VM READ, login: prompt
• No VM READ means Linux is “hung” (looping, 

E-listed, or somehow busted)
• No login prompt could just mean login isn’t running

• Again, it helps to know what normal behavior is!

• Look at SPOOLed console for Oops messages

• “What’s an Oops?”
• A system ABEND, in VM terms: a kernel failure
• Like VM, may leave system in unusable state
• Doesn't necessarily indicate code bug — faulty hardware can cause an 

Oops (unlikely on VM)



Basic Oops Analysis

• Utility ksymoops maps addresses in Oops output to kernel 
modules

• Uses system map file, usually found in /boot

• Oops output used by ksymoops is in a file
• Usually found in /var/log/messages
• If syslogd not running, extract with dmesg utility 

(dmesg > oops.log)
• If Linux not even that alive, cut&paste from console log, or type it back in!

If cascading Oopses, only first usually relevant



Diagnosing Kernel Loops

• Use #CP INDICATE USER linuxid EXPANDED to watch 
guest CPU time

• If increasing rapidly, guest may be looping (could just be busy, though)
• Also note I/O counts, look for massive I/O load

• If loop suspected, log onto guest, use CP TRACE:
#CP TRACE INST RUN NOTERM PRINT

• Run a while; monitor with #CP QUERY PRT * ALL
• Then issue

#CP TRACE END
#CP CLOSE PRT *
…and RECEIVE the file

• Analyze for repeated hits/patterns (or ask vendor to)



Diagnosing Broken Linux Services

• Use ps aux to show what services are running, pipe through 
grep to find target:
# ps aux | grep ssh
• Finds any processes that mention “ssh” (may find the grep itself, too)

• Restart service that’s not up and should be
• Perhaps restart it anyway if it claims to be up but isn’t responding!



Diagnosing Broken Linux Services

• Look at system log files
• /var/log/messages often interesting

• dmesg also shows recent kernel messages
• Looks at “kernel ring buffer”
• Sort of like CP trace table, but just messages

• Look at logs for service in question
• Location not predictable, alas

• Prescribed by Linux Filesystem Hierarchy Standard, but...
• Try /var/log/servicename, application directories
• Failing that, read documentation (gasp) or code

• Note: Linux & VM times may differ (timezone, drift)
• Default logging levels often omit useful information
• May need to change, wait for reoccurrence



Diagnosing Resource Exhaustion

• If Linux runs short on a resource, results “may be unpredictable”
• Well-behaved applications will fail in graceful ways
• Severe/rapid resource depletion may prevent this

• Nothing unique about Linux resources:
• Disk space
• Memory
• Page (swap) space
• CPU
• All can run short!



Diagnosing Disk Space Exhaustion

• Use “df” (Display Filesystems):
# df -a –h
Filesystem Size  Used Avail Use% Mounted on
none                 592M   94M  464M  17% /
none                    0     0     0   - /proc
none                    0     0     0   - /dev/pts
/dev/dasd/0000/part1 485M   17M  468M   4% /tmp

• Most interesting part is “Use%”
• Filesystems above 90% are suspect 

• May be full due to temporary file usage

• Again, useful to know “normal” usage levels



Diagnosing Memory Exhaustion

• Linux may take OOM errors when insufficient “real” (virtual) memory is 
available

• Applications can get OOMs
• The kernel can get an OOM too (game over!)

• OOMs are reported on Linux console:
Out of Memory: Killed process (processname) 

(application OOM)
Out of memory and no killable processes 

(kernel OOM)

• processname is same as ps would show
• May or may not be actual problem process

• OOM killer configurable as of kernel level 2.4.23
• Now applications may get individual memory allocation failures, must handle



Diagnosing Memory Exhaustion

• free command displays system memory use:
# free -t

total      used    free shared buffers cached
Mem:    191092    185160    5932      0   13032  80548
-/+ buffers/cache: 91580   99512
Swap:   197176      2920  194256
Total:  388268    188092  200176

• “-/+ buffers/cache” line most interesting
• Shows usage without file buffers and cache
• Those pages reclaimable for system use (DPA, in VM terms)
• If Swap space mostly/entirely in use, expect OOMs!



Diagnosing CPU Exhaustion

• As in most environments, a single application can grab enough 
CPU to slow Linux

• Control mechanisms exist, but are not enabled by default

• top command is “performance monitor” tool
• sar is a popular free alternative (see Resources)
• Vendor tools exist (RMF PM, Velocity, Perfman — see Resources)

• uptime shows 1-, 5-, 15-minute CPU averages
• Look for rising trend to show recent problem
• Values above 1.00 mean CPU fully loaded (work waiting)
• Rising values may not mean Linux is using more CPU

• Could mean higher fraction of less available CPU



Output from top Command

4:26pm  up 5 days,  7:10,  2 users,  load average: 1.00, 1.00, 1.00
82 processes: 80 sleeping, 2 running, 0 zombie, 0 stopped
CPU states:  0.8% user, 14.0% system,  0.0% nice, 85.1% idle
Mem:  191092K av, 185808K used,   5284K free,      0K shrd, 12976K buff
Swap: 197176K av,   2920K used, 194256K free                80288K cached

PID USER  PRI  NI  SIZE  RSS SHARE STAT %CPU %MEM   TIME COMMAND
6250 root   17   0  1060 1060   844 R     5.9  0.5   0:01 top
6142 root    9   0  2320 2320  1828 S     0.3  1.2   0:02 sshd

1 root    9   0   556  540   492 S     0.0  0.2   0:02 init
2 root    9   0     0    0     0 SW    0.0  0.0   0:00 kmcheck
3 root    9   0     0    0     0 SW    0.0  0.0   0:00 keventd

etc…

• Note that the top command is top itself!
• Look at other candidates, note “heavy hitters”
• “top d 5” auto-refreshes every 5 seconds, shows some trends

• See man page to interpret, especially STAT
• Note “0.0% nice”
• Negative value means some tasks have priority



Other Performance Measurements

• Look at /proc/loadavg
• 4th value: #processors/#processes running (e.g, “2/81”)
• 5th value: # of processes started since system boot
• Rapidly changing 5th value = something going on!

• SNMP can provide data, depending on settings
• Must be enabled, and SNMP collector operating somewhere!
• Do not leave default passwords (public/private strings) in place (obvious, 

but far too many folks do)

• Linux I/O statistics may be useful
• Enable by echo set on > /proc/dasd/statistics
• Must be enabled before problem to be useful!
• Data saved in /proc/dasd/statistics



Other Performance Measurements

• /proc/chandev shows state of devices
• Useful if other evidence suggests a device problem

• Learn useful CP commands:
QUERY VIRTUAL ALL (lots of output!)
QUERY VIRTUAL DASD (show all virtual DASD)
QUERY VIRTUAL xxxx (show a specific device)
QUERY MDISK (show virtual DASD ownership)

• VM performance tools provide external performance 
measurement

• Can profile usage; most don’t show activity inside Linux

• iostat (partner to sar) also does I/O monitoring



VM Monitor Data

• z/VM generates monitor data on demand
• Highly granular, very efficient mechanism

• Linux for zSeries can, too
• Data generated believed to be suspect
• Must correlate with z/VM data to be meaningful
• Stay tuned…



Penguin Forensics
Recording Evidence Before Burying the 

Body



First Failure Data Capture

• IBM promotes First Failure Data Capture:
• Collecting useful debugging information when a problem first occurs
• “Try a reboot” is not FFDC!
• VM, MVS, AIX, DB2, even Tivoli push FFDC
• Windows XP Error Reporting is (sort of) FFDC

• As Linux matures, FFDC concepts seep in
• Logging, trace tables, memory leak/overlay traps, more dump 

capabilities…
• Still mostly not standard features, however — optional installs



Log Levels

• syslogd (syslog daemon) collects and writes messages from various 
services, applications

• Of course, it has to be running to be useful!
• Can centralize messages from multiple systems

• Level of messages to be logged is configurable
• Understanding logging levels for your services/applications is essential to ensuring 

FFDC

• Standard Linux syslogd isn’t very smart/flexible
• Insufficiently granular in many cases
• Uses UDP—messages get lost due to network congestion
• Alternatives exist, e.g., syslog-ng (www.balabit.com)



Cores

• Traditional *ix dumps were “core files”
• Created when applications did something blatantly illegal
• Created in current working directory, either core or core.pid

• Most distributions ship with cores disabled
• Average wouldn’t know what to do with them!
• May contain sensitive data from running applications

• bash ulimit –c size enables (current login)
• ulimit –c unlimited means “dump everything”
• ulimit –c displays current setting (any value > 0 = enabled)
• See man bash for details



Dumps

• LKCD (lcrash) — Linux Kernel Crash Dump
• Must be installed before the problem occurs
• lcrash is the “IPCS” tool to analyze the dump

• As a VMer, I want to VMDUMP a sick penguin:
#CP VMDUMP 0-END TO MAINT
• Use IBM vmconvert to convert to LKCD format
• VM Dump Tool is programmable, could also handle

• Standalone dump available for zSeries Linux
• IBM mini-manual: Using the Dump Tools (LNUX-1208-01) at 
www.ibm.com/servers/eserver/zseries/os/linux/pdf/l39dmp24.pdf

• Analyze standalone dumps with lcrash, too



Linux Debugging Tools

• Kernel breakpoint tools:
• KProbes (Kernel Probes):  
www-128.ibm.com/developerworks/library/l-kprobes.html

• DProbes (Dynamic KProbes): 
sourceforge.net/projects/dprobes/

• Kernel event (trace table) logging:
• LTT (Linux Trace Toolkit): www.opersys.com/LTT/index.html
• Strace (System call Trace): 

Included in most modern distros (or Google it)



More Linux Debugging Tools

• Memory debuggers:
• YAMD (Yet Another Malloc Debugger): 
www.cs.hmc.edu/~nate/yamd/

• NJAMD (Not Just Another Malloc Debugger): 
fscked.org/proj/njamd.shtml

• General debugger:
• gdb (The GNU Project Debugger): 
www.gnu.org/software/gdb/gdb.html



Learning to Debug Linux

• Zapping Linux bugs:
• Visit www.ibmsystemsmag.com and search

• Mastering Linux debugging techniques:
• www.ibm.com/developerworks/library/l-debug/?n-l-8152



FFDC: What To Save

• Linux data
• System log files
• Application log files
• Any core files
• Application configuration 

files

• VM data
• VM console logs
• CP command output
• Trace files
• Monitor data
• Performance monitor reports
• Any dumps
• Guest directory entries



Conclusion



Summary

• To the VMer, Linux is obscure and opaque

• To the Linux expert, VM is the same!

• To provide proper support, learn to use the tools
• Both VMers and Linux folks can learn from each other

• As always, use the community
• linux-390@marist.edu: zSeries Linux mailing list
• ibmvm@listserv.uark.edu: z/VM mailing list 

z/VM and Linux — even better together!



Resources
RMF PM:

www.ibm.com/servers/eserver/zseries/zos/rmf/rmfhtmls/pmweb/pmlin.html

Velocity Software (ESALPS): www.velocity-software.com

Perfman: www.perfman.com

sar (part of sysstat): freshmeat.net/projects/sysstat/

ksymoops: www.gnu.org/directory/devel/debug/ksymoops.html

Performance tips: www.vm.ibm.com/perf/tips/linuxper.html

RUNNABLE EXEC (display virtual machine status): email me
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