
Help! My (Virtual)
Penguin Is Sick!

Or
Aptenodytes Patagonicus*

Problems on z/VM

Phil Smith III
SHARE 108

February 2007
Session 9248

* King Penguin, of course!

Copyright Information

SHARE Inc. is hereby granted a non-exclusive license to copy,
reproduce or republish this presentation in whole or in part for
SHARE activities only, and the further right to permit others to copy,
reproduce, or republish this presentation in whole or in part, so long
as such permission is consistent with SHARE's By-laws, Canons of
Conduct, and other directives of the SHARE Board of Directors

The difference between
applications people and systems people:

Applications people worry about how it will work.

Why We’re Here

Systems people worry about how it will fail.

If you support production, you’re a systems person!

Agenda

• We’ll cover:
• Ways Linux can get sick
• Techniques to decide what’s wrong
• Debugging information you can gather

• We won’t cover:
• Detailed use of debugging tools (gdb, et al.)
• Dump (core) analysis

Paramedic / First Responder functionality, not
ER surgery or pathology lab forensic reports!

Penguins and Bears,
Oh My!

Penguin Diseases 101

The Modal Penguin Ailment

• “Why isn’t my Linux virtual machine responding?” AKA:
• Can I get from here to there?
• If I can get there, is there a “there” there?
• If there is a “there” there, is it open?

• These problems correspond to:
• Networking problems
• Linux issues
• VM troubles

A Baseline is Useful!

• Linux guests vary widely
• Networking configuration
• Performance profile
• Services provided

• Keep written (and online) notes about your guests
• IP addresses, network interfaces, routing, etc.
• Typical/observed performance characteristics
• Disk space usage

In a crisis, you need to know
how things should look!

Network Issues

• Is it a network issue:
• Between the user and VM?
• Between the VM stack and the Linux virtual machine?
• Within the Linux virtual machine?

• If you can’t get to the machine, it sure won’t respond!

VM Troubles

• Is the Linux virtual machine even logged on?
• Someone might have logged it off, FORCEd it, etc.

• Is the virtual machine in a stopped state?
• Users may disconnect from machines carelessly, leaving them stopped

• Is VM broken?
• If VM is sick, Linux sure won’t run!

• Is VM letting the virtual machine run?
• CP might not be giving it resource

Linux Issues

• Is it a kernel problem within the Linux guest?
• Even Linux can have problems — OOMs (Out-Of-Memory errors), loops,

or Oopses (kernel errors)

• Is a specific service (ssh, ftp, etc.) broken?
• If target service is down, Linux will appear to be down

• Is it resource exhaustion within Linux?
• Insufficient disk space, or suffering from OOMs can cause some/all Linux

services to wait
• Is an application or service hogging resources within the Linux virtual

machine?

Penguin Problem
Identification

Taking Your Penguin’s Temperature
and Pulse

Linux Diagnostic Tools

• Use Linux commands for diagnosis:
• ps (Process Status)
• df (Display Filesystems)
• free (memory usage display)
• etc…

• Many of these just display /proc files
• /proc is a pseudo-filesystem whose files contain various system

settings, counters, etc.
• Better than running control blocks in memory!
• Access files like any other file: cat, etc.
• Write to /proc to change system settings on-the-fly

Diagnosing Network Issues

• Try to ping Linux from user’s machine
• Success means network OK between user & Linux
• Helps if you know the Linux hostname/IP address
• Also good to know whether Linux guest normally responds (some don’t;

some firewalls block ICMP)

• Try traceroute to Linux from user’s machine
• traceroute failure at last hop before Linux implicates Linux networking
• Must know normal routing and thus normal “last hop”!
• Linux, Windows, VM all have traceroute, spelled varying ways

Diagnosing Network Issues

• If Linux networking appears broken:
• Log onto guest virtual machine directly
• Then log into Linux as root
• May not be possible if local root login disabled (may be able to login as

another user and su to root)

• Use ifconfig and/or netstat -i to examine network
configuration and status

• Bouncing connection sometimes helps
(ifconfig down followed by ifconfig up)

Diagnosing Network Issues (continued)

• Useful CP commands:
• #CP QUERY VIRTUAL NIC shows whether virtual NICs on Guest LANs

are connected
• #CP QUERY LAN DETAILS shows what Guest LANs look like, including

IP addresses assigned
• Use #CP QUERY LAN DETAILS lanname if many LANs

• Try cat /proc/net/arp
• Shows cached hardware addresses
• If none, that may tell you network isn’t very happy
• Recommendation is to disable ARP caching anyway if using VSWITCH, so

of limited usefulness

Diagnosing Network Issues (continued)

• If network is broadcast-capable (QDIO), ping the
Bcast (broadcast) address shown by ifconfig:
ping -b -c 1 10.3.2.255
WARNING: pinging broadcast address
PING 10.3.2.255 from 10.3.2.2 : 56(84) bytes of data.
64 bytes from 10.3.2.2: icmp_seq=0 ttl=64 time=41 usec
• On 3270, use ping –c 1, or ping will run forever

• No <Cntrl>C on 3270; some distros support ^C

• More than one response from an IP address means duplicate IP!

• Learn to use tcpdump (or equivalent tool)
• Beyond scope of this presentation, but very powerful!

Diagnosing VM Troubles

• Is VM broken?
• Try to log onto another VM userid
• If that doesn’t work, head for the machine room!

• Is network to/from VM healthy?
• Try to ping and traceroute VM from your PC
• Try to ping external host from VM
• If you can get out but not back in, look for routing problem external to VM

• Is the Linux virtual machine even logged on?
• Log onto a VM userid and issue #CP QUERY USER linuxid
• Response linuxid NOT LOGGED ON is a problem!

(Digression) VM SPOOLed Consoles

• VM lets you keep a copy of all console activity for a virtual machine
• Conceptually similar to having root logged on using a hardcopy terminal

• Files are saved in VM system SPOOL space

• Closed on demand or automatically at system shutdown or user logoff

• Invaluable resource for determining abnormal virtual machine events
• A bit less useful for Linux, since most services do not log to console
• Oopses, OOMs, some segfaults are logged to console

How To SPOOL the Console

• CP SPOOL command turns on SPOOLing:
CP SPOOL CONSOLE START

• CP TERMINAL TIMESTMP ON useful:
• Timestamps all output

• Various options control default destination userid, class,
filename/filetype

• Useful to indicate date/time SPOOL started:
CP SPOOL CONSOLE START NAME yyyymmdd hh:mm:ss

• Once file is closed, file timestamp will be close time, so this adds useful info

• May want to centralize console collection:
CP SPOOL CONSOLE START TO CONSAVER

Finding (Open) SPOOLed Consoles

• To determine if a running virtual machine has its console
SPOOLed:
#CP QUERY PRT ALL linuxid

• Look for open CON file:
ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE
linuxid 6216 T CON nnnnnnnn 001 NONE OPEN- 0009 name type

• Mere existence of file is useful data point

• To close the console and send it to yourself:
#CP SEND CP linuxid CLOSE CONSOLE yourid

(where yourid is your userid)
• CP SEND requires privilege class C

Processing VM SPOOLed Consoles

• Result of previous command is message:
RDR FILE nnnn SENT FROM linuxid CON WAS mmmm RECS rr …

• Note the “nnnn” value — that’s the SPOOL file number in your virtual
reader

• Issue CMS PEEK command to view the file:
PEEK nnnn (FOR *
• Places you in XEDIT session, viewing file contents
• Large files require time, virtual storage to read
• Note: files may span days; HCPMID6001I appears each midnight

• CMS RECEIVE command reads file to disk
• PF9 in PEEK, or:
RECEIVE nnnn fn ft fm

Finding (Closed) Console Files

• To find SPOOLed consoles for non-running virtual machines (or
from previous logons):
#CP QUERY RDR ALL linuxid
#CP QUERY PRT ALL linuxid
• Shows files in linuxid ‘s virtual reader or printer
#CP QUERY RDR ALL XFER ALL linuxid

• Shows files sent/transferred to other virtual machines

• Use CP TRANSFER to move files to your reader:
TRANSFER ownerid RDR nnnn *
• Then use PEEK, RECEIVE, et al.

Notes About SPOOLed Consoles

• Consoles can become very large
• For guests with significant console activity, consider closing periodically to

keep files manageable
• E.g., close at midnight via WAKEUP-based service machine
• EOF option closes automatically every 50,000 records (desirability

depends on how you manage the files)

• Naming consoles rationally helps a lot
• Use NAME option when SPOOLing
• RECEIVE them as “userid yyyymmdd”, perhaps

• Vendor console management products exist

When/Why Was Linux Logged Off?

• Examine operator’s console to see when and why it was logged
off:

User linuxid LOGOFF AS linuxid USERS= n

• Logged off “normally”, either by a user command or by Linux itself after
shutdown

User linuxid LOGOFF AS linuxid USERS= n FORCED BY vmid

• Logged off by CP FORCE command issued by vmid

User linuxid LOGOFF AS linuxid USERS= n FORCED BY SYSTEM

• Logged off due to CP “timebomb” logoff, after being in a read for (usually)
15 minutes while disconnected

• Look for more nuggets at bottom of guest console

Diagnosing VM Troubles

• Is Linux virtual machine stopped in CP READ?
• Issue CP SEND CP linuxid BEGIN to start it

• Harmless at worst
• Use RUNNABLE EXEC (see Resources) to check

• How did it get there?
• Force disconnected with RUN OFF

• by system or because user closed emulator while connected
• Reconnected and left in CP READ (with RUN OFF)
• CP STOP or CP CPU ALL STOP issued on guest

Conclusion:
Run Linux guests with CP SET RUN ON!!!

Diagnosing VM Troubles

• Is VM giving the virtual machine any service?
• CP might not be giving it resource
• Likely if Linux virtual machine reconnect shows RUNNING with no keyboard

response
• If it seems normal at reconnect, hit ENTER a couple of times, look for VM
READ, Linux login: prompt

• If no read, or significant delay before login prompt, VM may not be running
the virtual machine

Basic understanding of scheduling/dispatching is essential

Scheduler and Dispatcher 101

• Virtual machines must be runnable to do work
• CP must be willing to schedule the virtual machine
• CP must be willing to dispatch the virtual machine

• A virtual machine is in one of three lists:
• Dormant list: virtual machine has no work to do
• Dispatch list: virtual machine is active and CP is allowing it to run
• Eligible list: virtual machine is active, but CP is not allowing it to run

• User can also be running, of course

Scheduler and Dispatcher 101

• Scheduler decides whether there are enough resources to give
a virtual machine some service

• If not enough resources are available, virtual machine does not get
scheduled

• Dispatcher gives virtual machines access to CPUs
• If multiple virtual machines are active, they take turns
• VM is very good at this — supports tens of thousands of active users with

excellent response time

Dispatch Classes – Class 1

Class 1 virtual machines:
• Virtual machines start off as Class 1

• Such users are usually referred to as “Q1 users”
• CP waits one Class 1 elapsed timeslice (C1ETS) to see if it goes

idle voluntarily
• If virtual machine does not go idle within that timeslice, it is

preemptively stopped from execution (“queue dropped”) — sent
back to the scheduler

• C1ETS is dynamically calculated to keep a fixed percentage of
users in Class 1

• C1ETS should be enough for short, interactive transactions (minor
CMS commands)

Dispatch Classes – Class 2

Class 2 virtual machines:
• If virtual machine does not go idle voluntarily in one C1ETS, it

enters Class 2
• Such users are usually referred to as “Q2 users”
• Next time CP runs it, it is given 8 times C1ETS
• If virtual machine does not leave the dispatch list within that amount of

time, it is queue dropped
• Such users are presumed to be running a command, but not necessarily

doing something “major”

Dispatch Classes – Class 3

Class 3 virtual machines:
• If virtual machine does not go idle voluntarily within class 2

C1ETS multiple, it enters Class 3
• Such users are usually referred to as “Q3 users”
• Next time CP runs it, it is given 6 times class 2 timeslice (6x8 = 48x

C1ETS)
• If virtual machine does not leave dispatch list within that amount of time, it

is queue dropped
• Such users are presumably running a long-running command

Leaving the Dispatch List

• Virtual machines leave dispatch list when they:
• Go idle voluntarily (load a wait PSW)
• Hold execution waiting on CP (paging, DIAGNOSE…)
• Leave SIE emulation due to privileged instruction (privop) execution

• When virtual machine leaves dispatch list, 300ms queue drop
test timer is set

• If virtual machine resumes activity within that period, it is reinserted into
previous place in queue

• Not necessarily back to Q1!

• Linux guests without “notimer” patch never go idle long enough to get
dropped from queue!

How This Plays Out…

• CP scheduling is based on resource analysis
• If not enough resource, virtual machines are held in Eligible list (E-list)
• Assumption: resources will become available soon
• If not, E-listed virtual machines never get scheduled

• Dispatched virtual machines “should” go idle
• Linux tends not to go idle (without “notimer” patch)
• Linux virtual machines thus stay runnable all the time!

• Machines doing I/O are considered active
• Linux machines usually have a pending network I/O
• Fixed so network I/O now ignored for queue drop

Dispatch Classes – Class 0

• Users with OPTION QUICKDSP or
SET QUICKDSP ON bypass eligible list

• Still subject to queue drops

• Interactive users also get a Q0 stay (“hotshot”)
• Users hitting ENTER or PF/PA keys qualify
• Still get queue dropped, but “go to head of line” briefly
• Return to their previous queue level after Q0 stay

• Users holding certain locks are also Q0
• Such “lockshot” users presumably are preventing other users from

running

How Does This Go Wrong?

• Linux machines tend to:
• Be quite large (virtual storage size)
• Have working set size close to virtual storage size
• Stay active (rarely/never go idle)
• Not use shared pages (DCSS)

• Linux real storage requirements are thus much higher than the
average CMS virtual machine

• If enough Linux virtual machines are logged on, CP notices it
will overcommit real storage

• One or more virtual machines are E-listed — forever!

How Does This Manifest?

• System is running along fine
• One guest too many is started
• Things “just stop”

• Remember the queue drop timer:
• Guests never go idle (as far as CP can tell)
• Never cycle out to scheduler, so E-listed guests stay there!

Detection

• CP INDICATE QUEUES EXPANDED command:
LINUX902 Q3 PS 00013577/00013567 -232.0 A00
LINUX901 Q3 PS 00030109/00030099 -231.7 A00
VSCS Q1 R 00000128/00000106 .I.. -208.7 A00
VMLINUX3 Q3 IO 00052962/00051162 -.9398 A00
VMLINUX3 MP01 Q3 PS 00000000/000000000612 A00
LINUX123 E3 R 00177823/00196608 5255. A00

• HELP INDICATE QUEUES shows meaning of output
• CP privilege class E required
• Virtual machine LINUX123 is not going anywhere anytime soon…!
• Note: “deadline time” (sixth column) sometimes very large — and very

bogus

Remediation

• Buy more storage ($8K/GB — cheap!)

• Make sure “notimer” patch is enabled
• Obviously only meaningful if guests are nominally idle
• Remember cron et al. may wake them up anyway

• Log off some guests

• Tune guest storage sizes
• Linux uses “extra” storage for file buffers
• Back off virtual storage size until guests swap, then add a bit more (or not)

Diagnosing Kernel Problems

• Log onto Linux guest to see if it’s even alive:
• Hit ENTER, look for VM READ, login: prompt
• No VM READ means Linux is “hung” (looping,

E-listed, or somehow busted)
• No login prompt could just mean login isn’t running

• Again, it helps to know what normal behavior is!

• Look at SPOOLed console for Oops messages

• “What’s an Oops?”
• A system ABEND, in VM terms: a kernel failure
• Like VM, may leave system in unusable state
• Doesn't necessarily indicate code bug — faulty hardware can cause an

Oops (unlikely on VM)

Basic Oops Analysis

• Utility ksymoops maps addresses in Oops output to kernel
modules

• Uses system map file, usually found in /boot

• Oops output used by ksymoops is in a file
• Usually found in /var/log/messages
• If syslogd not running, extract with dmesg utility

(dmesg > oops.log)
• If Linux not even that alive, cut&paste from console log, or type it back in!

If cascading Oopses, only first usually relevant

Diagnosing Kernel Loops

• Use #CP INDICATE USER linuxid EXPANDED to watch
guest CPU time

• If increasing rapidly, guest may be looping (could just be busy, though)
• Also note I/O counts, look for massive I/O load

• If loop suspected, log onto guest, use CP TRACE:
#CP TRACE INST RUN NOTERM PRINT

• Run a while; monitor with #CP QUERY PRT * ALL
• Then issue

#CP TRACE END
#CP CLOSE PRT *
…and RECEIVE the file

• Analyze for repeated hits/patterns (or ask vendor to)

Diagnosing Broken Linux Services

• Use ps aux to show what services are running, pipe through
grep to find target:
ps aux | grep ssh
• Finds any processes that mention “ssh” (may find the grep itself, too)

• Restart service that’s not up and should be
• Perhaps restart it anyway if it claims to be up but isn’t responding!

Diagnosing Broken Linux Services

• Look at system log files
• /var/log/messages often interesting

• dmesg also shows recent kernel messages
• Looks at “kernel ring buffer”
• Sort of like CP trace table, but just messages

• Look at logs for service in question
• Location not predictable, alas

• Prescribed by Linux Filesystem Hierarchy Standard, but...
• Try /var/log/servicename, application directories
• Failing that, read documentation (gasp) or code

• Note: Linux & VM times may differ (timezone, drift)
• Default logging levels often omit useful information
• May need to change, wait for reoccurrence

Diagnosing Resource Exhaustion

• If Linux runs short on a resource, results “may be unpredictable”
• Well-behaved applications will fail in graceful ways
• Severe/rapid resource depletion may prevent this

• Nothing unique about Linux resources:
• Disk space
• Memory
• Page (swap) space
• CPU
• All can run short!

Diagnosing Disk Space Exhaustion

• Use “df” (Display Filesystems):
df -a –h
Filesystem Size Used Avail Use% Mounted on
none 592M 94M 464M 17% /
none 0 0 0 - /proc
none 0 0 0 - /dev/pts
/dev/dasd/0000/part1 485M 17M 468M 4% /tmp

• Most interesting part is “Use%”
• Filesystems above 90% are suspect

• May be full due to temporary file usage

• Again, useful to know “normal” usage levels

Diagnosing Memory Exhaustion

• Linux may take OOM errors when insufficient “real” (virtual) memory is
available

• Applications can get OOMs
• The kernel can get an OOM too (game over!)

• OOMs are reported on Linux console:
Out of Memory: Killed process (processname)

(application OOM)
Out of memory and no killable processes

(kernel OOM)

• processname is same as ps would show
• May or may not be actual problem process

• OOM killer configurable as of kernel level 2.4.23
• Now applications may get individual memory allocation failures, must handle

Diagnosing Memory Exhaustion

• free command displays system memory use:
free -t

total used free shared buffers cached
Mem: 191092 185160 5932 0 13032 80548
-/+ buffers/cache: 91580 99512
Swap: 197176 2920 194256
Total: 388268 188092 200176

• “-/+ buffers/cache” line most interesting
• Shows usage without file buffers and cache
• Those pages reclaimable for system use (DPA, in VM terms)
• If Swap space mostly/entirely in use, expect OOMs!

Diagnosing CPU Exhaustion

• As in most environments, a single application can grab enough
CPU to slow Linux

• Control mechanisms exist, but are not enabled by default

• top command is “performance monitor” tool
• sar is a popular free alternative (see Resources)
• Vendor tools exist (RMF PM, Velocity, Perfman — see Resources)

• uptime shows 1-, 5-, 15-minute CPU averages
• Look for rising trend to show recent problem
• Values above 1.00 mean CPU fully loaded (work waiting)
• Rising values may not mean Linux is using more CPU

• Could mean higher fraction of less available CPU

Output from top Command

4:26pm up 5 days, 7:10, 2 users, load average: 1.00, 1.00, 1.00
82 processes: 80 sleeping, 2 running, 0 zombie, 0 stopped
CPU states: 0.8% user, 14.0% system, 0.0% nice, 85.1% idle
Mem: 191092K av, 185808K used, 5284K free, 0K shrd, 12976K buff
Swap: 197176K av, 2920K used, 194256K free 80288K cached

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
6250 root 17 0 1060 1060 844 R 5.9 0.5 0:01 top
6142 root 9 0 2320 2320 1828 S 0.3 1.2 0:02 sshd

1 root 9 0 556 540 492 S 0.0 0.2 0:02 init
2 root 9 0 0 0 0 SW 0.0 0.0 0:00 kmcheck
3 root 9 0 0 0 0 SW 0.0 0.0 0:00 keventd

etc…

• Note that the top command is top itself!
• Look at other candidates, note “heavy hitters”
• “top d 5” auto-refreshes every 5 seconds, shows some trends

• See man page to interpret, especially STAT
• Note “0.0% nice”
• Negative value means some tasks have priority

Other Performance Measurements

• Look at /proc/loadavg
• 4th value: #processors/#processes running (e.g, “2/81”)
• 5th value: # of processes started since system boot
• Rapidly changing 5th value = something going on!

• SNMP can provide data, depending on settings
• Must be enabled, and SNMP collector operating somewhere!
• Do not leave default passwords (public/private strings) in place (obvious,

but far too many folks do)

• Linux I/O statistics may be useful
• Enable by echo set on > /proc/dasd/statistics
• Must be enabled before problem to be useful!
• Data saved in /proc/dasd/statistics

Other Performance Measurements

• /proc/chandev shows state of devices
• Useful if other evidence suggests a device problem

• Learn useful CP commands:
QUERY VIRTUAL ALL (lots of output!)
QUERY VIRTUAL DASD (show all virtual DASD)
QUERY VIRTUAL xxxx (show a specific device)
QUERY MDISK (show virtual DASD ownership)

• VM performance tools provide external performance
measurement

• Can profile usage; most don’t show activity inside Linux

• iostat (partner to sar) also does I/O monitoring

VM Monitor Data

• z/VM generates monitor data on demand
• Highly granular, very efficient mechanism

• Linux for zSeries can, too
• Data generated believed to be suspect
• Must correlate with z/VM data to be meaningful
• Stay tuned…

Penguin Forensics
Recording Evidence Before Burying the

Body

First Failure Data Capture

• IBM promotes First Failure Data Capture:
• Collecting useful debugging information when a problem first occurs
• “Try a reboot” is not FFDC!
• VM, MVS, AIX, DB2, even Tivoli push FFDC
• Windows XP Error Reporting is (sort of) FFDC

• As Linux matures, FFDC concepts seep in
• Logging, trace tables, memory leak/overlay traps, more dump

capabilities…
• Still mostly not standard features, however — optional installs

Log Levels

• syslogd (syslog daemon) collects and writes messages from various
services, applications

• Of course, it has to be running to be useful!
• Can centralize messages from multiple systems

• Level of messages to be logged is configurable
• Understanding logging levels for your services/applications is essential to ensuring

FFDC

• Standard Linux syslogd isn’t very smart/flexible
• Insufficiently granular in many cases
• Uses UDP—messages get lost due to network congestion
• Alternatives exist, e.g., syslog-ng (www.balabit.com)

Cores

• Traditional *ix dumps were “core files”
• Created when applications did something blatantly illegal
• Created in current working directory, either core or core.pid

• Most distributions ship with cores disabled
• Average wouldn’t know what to do with them!
• May contain sensitive data from running applications

• bash ulimit –c size enables (current login)
• ulimit –c unlimited means “dump everything”
• ulimit –c displays current setting (any value > 0 = enabled)
• See man bash for details

Dumps

• LKCD (lcrash) — Linux Kernel Crash Dump
• Must be installed before the problem occurs
• lcrash is the “IPCS” tool to analyze the dump

• As a VMer, I want to VMDUMP a sick penguin:
#CP VMDUMP 0-END TO MAINT
• Use IBM vmconvert to convert to LKCD format
• VM Dump Tool is programmable, could also handle

• Standalone dump available for zSeries Linux
• IBM mini-manual: Using the Dump Tools (LNUX-1208-01) at
www.ibm.com/servers/eserver/zseries/os/linux/pdf/l39dmp24.pdf

• Analyze standalone dumps with lcrash, too

Linux Debugging Tools

• Kernel breakpoint tools:
• KProbes (Kernel Probes):
www-128.ibm.com/developerworks/library/l-kprobes.html

• DProbes (Dynamic KProbes):
sourceforge.net/projects/dprobes/

• Kernel event (trace table) logging:
• LTT (Linux Trace Toolkit): www.opersys.com/LTT/index.html
• Strace (System call Trace):

Included in most modern distros (or Google it)

More Linux Debugging Tools

• Memory debuggers:
• YAMD (Yet Another Malloc Debugger):
www.cs.hmc.edu/~nate/yamd/

• NJAMD (Not Just Another Malloc Debugger):
fscked.org/proj/njamd.shtml

• General debugger:
• gdb (The GNU Project Debugger):
www.gnu.org/software/gdb/gdb.html

Learning to Debug Linux

• Zapping Linux bugs:
• Visit www.ibmsystemsmag.com and search

• Mastering Linux debugging techniques:
• www.ibm.com/developerworks/library/l-debug/?n-l-8152

FFDC: What To Save

• Linux data
• System log files
• Application log files
• Any core files
• Application configuration

files

• VM data
• VM console logs
• CP command output
• Trace files
• Monitor data
• Performance monitor reports
• Any dumps
• Guest directory entries

Conclusion

Summary

• To the VMer, Linux is obscure and opaque

• To the Linux expert, VM is the same!

• To provide proper support, learn to use the tools
• Both VMers and Linux folks can learn from each other

• As always, use the community
• linux-390@marist.edu: zSeries Linux mailing list
• ibmvm@listserv.uark.edu: z/VM mailing list

z/VM and Linux — even better together!

Resources
RMF PM:

www.ibm.com/servers/eserver/zseries/zos/rmf/rmfhtmls/pmweb/pmlin.html

Velocity Software (ESALPS): www.velocity-software.com

Perfman: www.perfman.com

sar (part of sysstat): freshmeat.net/projects/sysstat/

ksymoops: www.gnu.org/directory/devel/debug/ksymoops.html

Performance tips: www.vm.ibm.com/perf/tips/linuxper.html

RUNNABLE EXEC (display virtual machine status): email me

Contact Information and Credits

Contact Info

Phil Smith III

703.476.4511

phil@velocity-software.com

Thanks To…
Alex “Puffin” deVries
Scott Loveland
Neale Ferguson
Len Reed
Christopher Neufeld
Rod Stewart
Bob Thomas (z/Journal)

