Linux for zSeries Performance Measuring and Tuning

Session 9304

Jens Osterkamp (Jens.Osterkamp@de.ibm.com)

SHARE, February 22-27, 2004 | Longbeach, CA

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

Enterprise Storage Server

ESCON*

FICON

FICON Express

HiperSockets

IBM*

IBM logo*

IBM eServer

Netfinity*

S/390*

VM/ESA*

WebSphere*

z/VM

zSeries

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

Intel is a trademark of the Intel Corporation in the United States and other countries.

Java and all Java-related trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.

Lotus, Notes, and Domino are trademarks or registered trademarks of Lotus Development Corporation.

Linux is a registered trademark of Linus Torvalds.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

Penguin (Tux) compliments of Larry Ewing.

SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

UNIX is a registered trademark of The Open Group in the United States and other countries.

* All other products may be trademarks or registered trademarks of their respective companies.

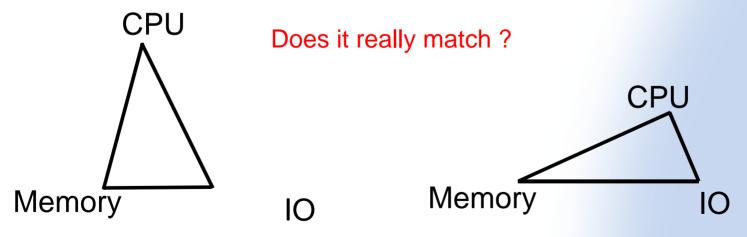
Performance Measuring and Tuning

- Resource profiles
- Linux and z/VM
- Tools
- Storage
- Networking
- Future enhancements

Tracking down performance problems

Questions to be answered

- What do I expect ?
- Do I have numbers for comparison?
- Do I really have a problem?
- Where do I suspect the problem ?
- What data do I want to collect?
- Which tools can I use?
- What do the numbers tell me?
- What measures evolve from the numbers?



resource profiles

- Know your applications resource profile
- Know your systems resource profile

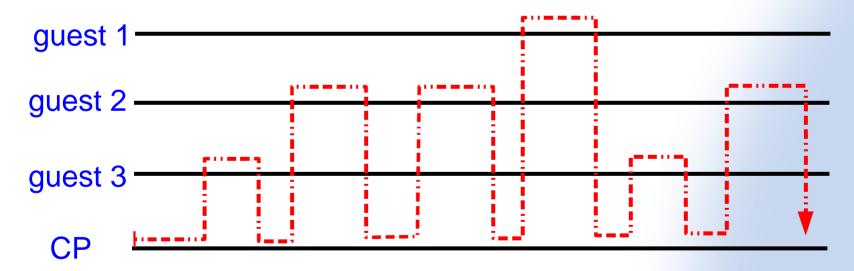
What your application needs

What your system provides

know your setup...

- 1.know your applications
- 2.know your environment (hardware, software, network)
- 3.know your resource limits (memory, cpu, IO, shares)
- 4.use tools to identify or ask your administrator
- 5.know your Linux

Linux and z/VM



Linux and z/VM: resource sharing

If your Linux is a VM guest have in mind:

- Linux tools do only see the share they got in VM
 - CPU might only be a part of a physical CPU
- use VM tools to monitor performance for your guests

sharing of one physical CPU

on-demand timer patch

- Linux image gets external timer interrupt (tick) every 10 ms
- several idle Linux images running in z/VM cause significant load
- solution : use larger timer intervals on idle Linux guests
- timer behaviour may be changed during run time by writing a '0' or a '1' to /proc/sys/kernel/hz_timer

but:

 older versions of the on-demand timer patch could lead to a misaccounting of Linux CPU load for certain workloads (high volume network traffic)

Linux and z/VM: VM monitor data

- In case you want to report a performance problem with z/Linux running as a VM guest, you may be asked to collect monitor data:
- data set with information about CPU load, storage, IO and guest activity
- prepare your VM system to collect monitor data. For a detailed description on how to do that, see
 - http://www.vm.ibm.com/perf/tips/collect.html
- be sure to enable collection for all domains
- collect the data
- send the compressed file to us (eMail or ftp)

Linux and z/VM: monitor data collection

logon to userid

```
cp monitor start
monwrite MONDCSS *monitor DISK mon dat a
monwstop
cp monitor stop
```

 send result file mon dat a to user FCONX for analysis

Tools

Performance tools Overview

A wide range of tools is available:

- System Tools (top, vmstat)
- rmfpms
- sysstat Package (collect a large set of Linux system data)
- VM Tools (FCON, Monitor...) discussed in later sessions
- OSA SNMP (capture OSA Express card data)
- Kernel Profiler (set of facilities for profiling the Linux kernel)
- Lockmeter (capture spin lock activity)

system tools: vmstat

- most important Linux system data at a glance
- low performance impact
- no setup necessary

• example :

[wolf@wolf wolf]\$ vmstat 3														
procs					memory	swap			io	system				
C	pu													
r	b	W	swpd	free	buff	cache	si	so	bi	bo	in	cs	us	sy
i	d													
0	0	0	0	663248	24204	196816	0	0	66	32	582	663	4	1
95														
0	0	0	0	663248	24220	196816	0	0	0	56	555	493	2	1
9	7													
0	0	0	0	663248	24220	196816	0	0	0	0	548	482	1	0
9	9													
0	0	0	0	663248	24228	196816	0	0	0	4	549	493	1	1
9	8													

system tools: top

- even more system data at a glance
- data on a per-process basis
- high performance impact
- no setup necessary

• example:

```
[wolf@wolf wolf]$ top
     1:40pm up 3:17, 11 users, load average: 0.00, 0.02, 0.03
     134 processes: 127 sleeping, 6 running, 1 zombie, 0 stopped
     CPU states: 1.9% user, 1.7% system, 0.0% nice, 96.2% idle
     Mem: 1030464K av, 675028K used, 355436K free, 0K shrd, 156256K buff
     Swap: 1663160K av, 0K used, 1663160K free
                                                                296068K
 cached
     PID USER
                PRI NI SIZE RSS SHARE STAT %CPU %MEM
                                                      TIME COMMAND
     1746 wolf
                                             1.1 1.4 0:00 kdeinit
                  15 0 54772 14M 11600 R
     6147 wolf
                  15 0 1080 1080 840 R
                                             0.9 0.1
                                                       0:00 top
```


rmfpms

- long term data gathering
- •xml over http interface
- •independent from z/os; with z/os, you can also have an Idap interface to linux performance data
- modular architecture
- •low performance impact
- •See http://www.ibm.com/servers/eserver/zseries/zos/rmf/rmfhtmls/pmweb/pmlin.htmformore info

sysstat Package

- collection of linux tools to collect system data
- available as open source package at http://perso.wanadoo.fr/sebastien.godard/
- on Linux for zSeries only recompile needed
- latest stable version is 5.0.1
- contains multiple components :

sadc Data gatherer

stores data in binary file

sar reporting tool

reads binary file and converts it to readable

output

mpstat Processor utilization

iostat IO utilization

Storage

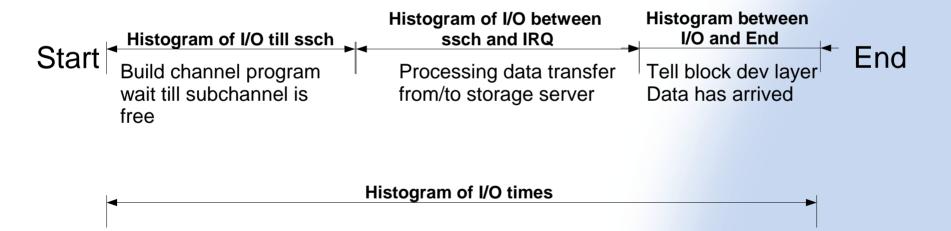
DASD statistics

- contained in kernel since SUSE SLES8
- statistics collected by dasd driver
- can be easily switched on/off in proc filesystem

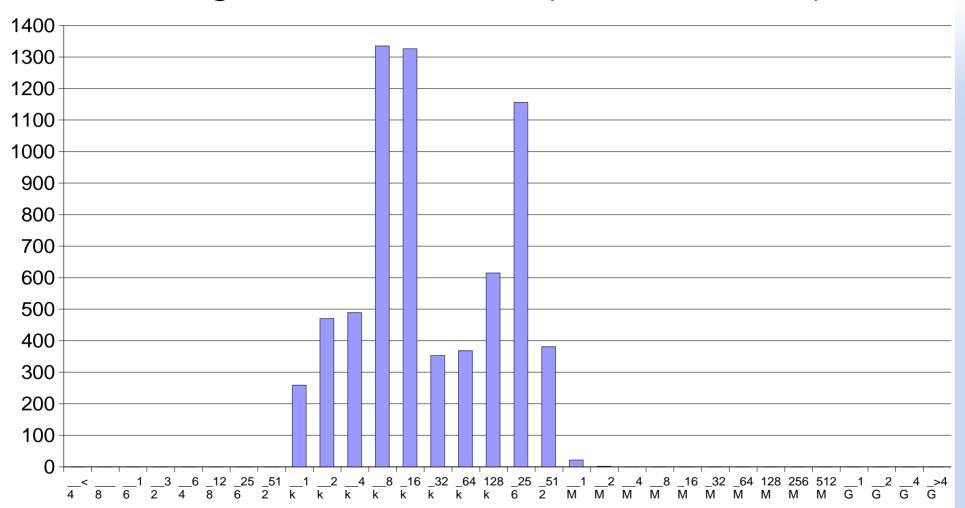
```
echo set on > /proc/dasd/statistics
echo set off > /proc/dasd/statistics
```

setting off and back on resets all counters

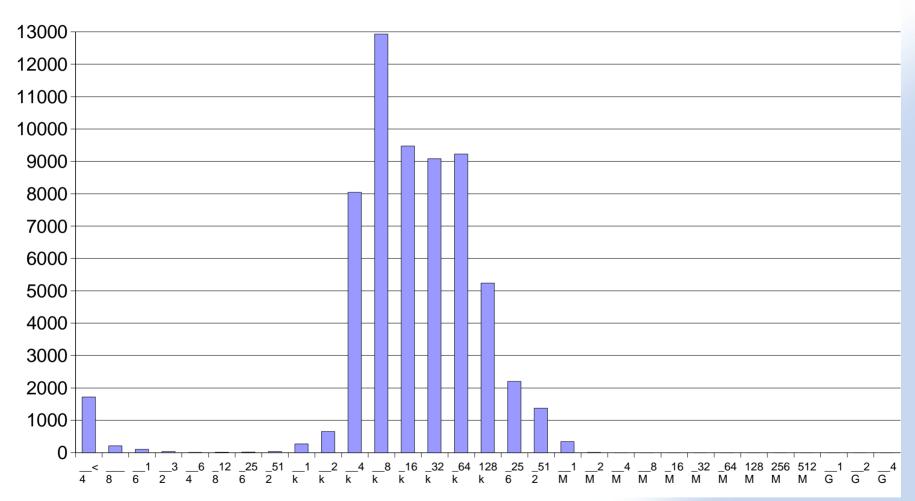
DASD statistics : example


/proc/dasd/statistics – Example

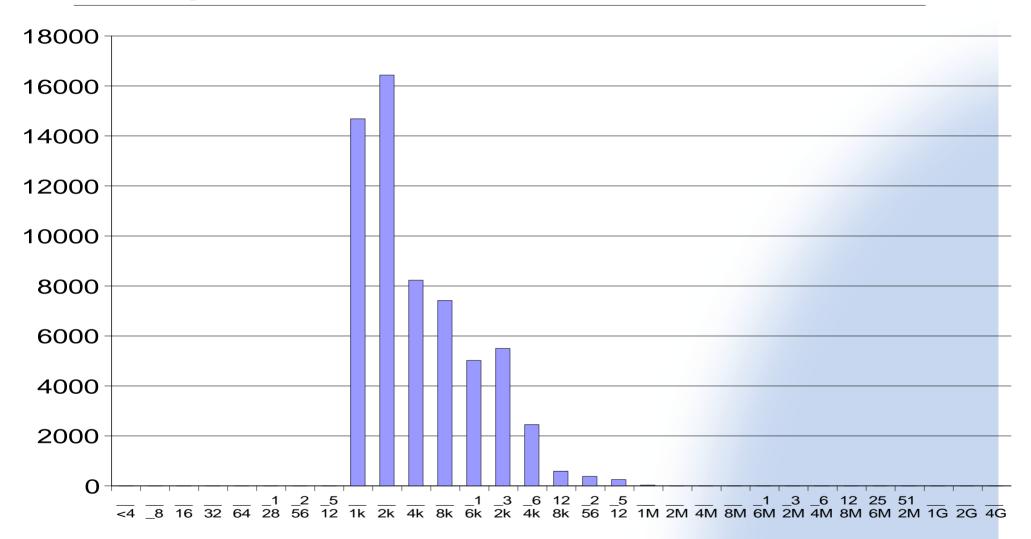
root@g73vm1:~# cat /proc/dasd/statistics 56881 dasd I/O requests															
with 5270816 sectors(512B each)															
<4	8	16	32	64	_128	_256	_512	1k	2k	4k	8k	_16k	_32k	_64k	128k
_256	_512	1M	2M	4M	8м	_16M	_32M	_64M	128M	256M	512M	1G	2G	4G	_>4G
Histogram of sizes (512B secs)															
0	0	1039	4799	8102	36557	4475	292	195	1422	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Histogram of I/O times (microseconds)															
0	0	0	0	0	0	0	0	2	8	109	3244	25570	17480	7666	1248
1390	153	11	0	0	0	0	0	0	0	0	0	0	0	0	0
Histogram of I/O times per sector															
0	0	0	0	176	4141	24084	15639	9506	2513	601	173	41	7	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Histogram	of I/O	time til	ll ssch												
5	1	2	0	0	0	0	0	2	4	301	11527	25339	12278	5156	1759
383	118	6	0	0	0	0	0	0	0	0	0	0	0	0	0
Histogram	of I/O	time bet	tween ssc	h and in	-										
0	0	0	0	0	0	0	0	2584	23896	18720	5307	2325	2725	1217	62
23	21	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Histogram of I/O time between ssch and irq per sector															
0	0	0	21722	26243	3939	2184	1798	774	159	47	12	3	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Histogram of I/O time between irq and end															
7	0	43393	11341	457	179	1494	3	3	1	2	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
# of req in chanq at enqueuing (132)															
8	3	4	5	56861	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


DASD statistics: the details

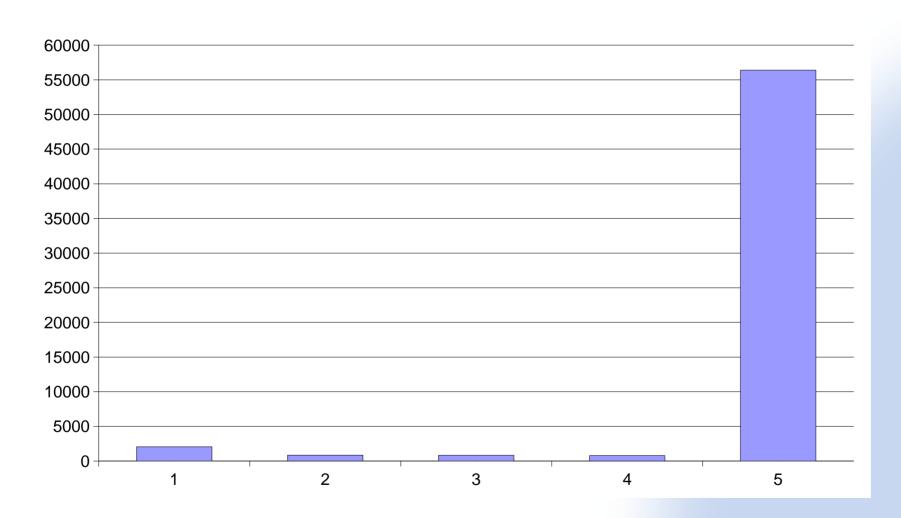
- collects statistics (mostly processing times) of IO operations
- each line represents a histogram of times for a certain operation
- operations split up into the following :



ext2, 8 Processes Histogram of I/O times (microseconds)

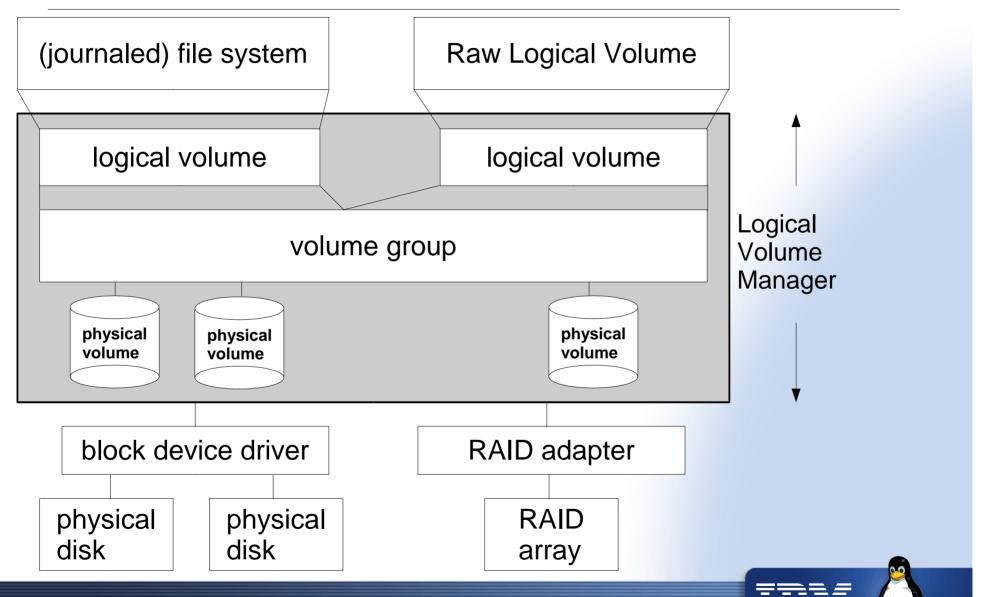


ext3, 16 Processes Histogram of I/O time before SSCH (IOSQ)



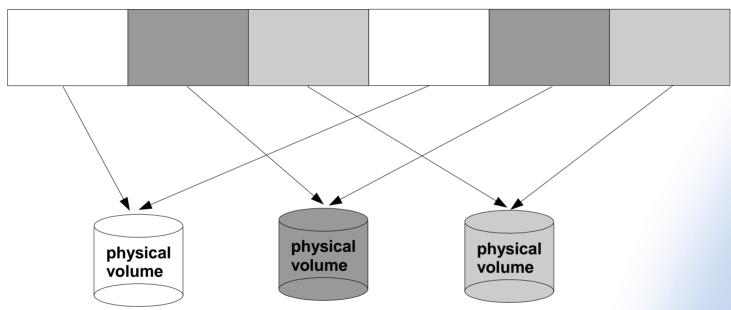
Ext3, 16 Processes Histogram of I/O time between SSCH and IRQ

Ext3, 16 Processes number of requests in subchannel-queue at enqueuing



SISTINA Logical Volume Manager (LVM)

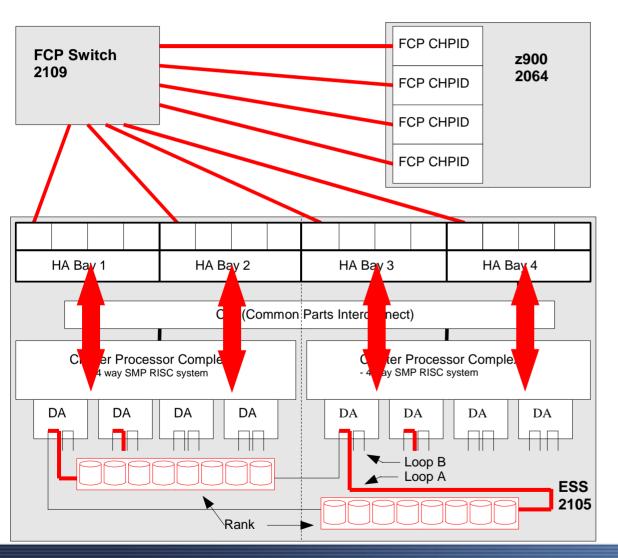
- Linux software raid with raid levels 0,1, 4 and 5
- excellent performance
- excellent flexibility (resizing, adding/removing disks)
- available in SLES7, SLES8, and RedHat RHEL 3
- on zSeries, support multipath and PAV (under z/VM)
- http://www.sistina.com/products_lvm.htm



LVM system structure

Improving disk performance with LVM

striped datastream



With LVM and striping parallelism is achieved

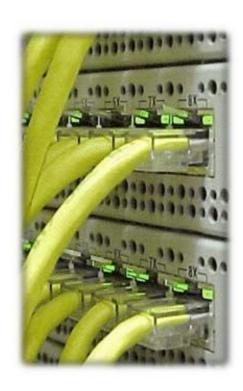
ESS Architecture

Scenario: four CHPIDs

> CHPIDs

- Host Adapter (HA) supporting FCP (FCP port)
 - -16 Host Adapters, organized in 4 bays, 4 ports each
- ▶ Device Adapter Pairs (DA)
 - each one supports two loops
- Disks are organized in ranks
 - each rank (8 physical disks) implements one RAID 5 array (with logical disks)

ESS setup rules


- spread your accesses over as much chpids as possible
- use as much host adapter bays as possible
- spread disks equally over as much ranks as possible

⇒ maximize parallel access to disks

Networking

OSA SNMP

- provides means to readout a lot of useful information from an OSA Express Card
- distributed as part of s390-tools
- grab the latest MIB from www.ibm.com/servers/resourcelink (needs resourcelink sign-in)
- open Library→Open Systems Adapter (OSA) Library→OSA-Express Direct SNMP MIB module

OSA SNMP : example

```
root@q73vm8:~# cat /proc/qeth
devnos (hex) CHPID device cardtype port chksum prio-q'ing rtr fsz C cnt
F118/F119/F11A x6A eth0 OSD_100 0 no always_q_2 no 64k
                                                                128
FA0C/FA0D/FA0E x7A
                    eth1 OSD 1000 0
                                           no always q 2 no 64k
                                                               128
                                           no always_q_2 no 64k
                eth2 OSD 1000 0
F006/F007/F008 x7C
                                                                128
8209/820A/820B xFD hsi5
                          HiperSockets 0
                                           no always q 2 no 40k
                                                                128
                    hsi12 GuestLAN Hiper 0
7000/7001/7002 x03
                                           no always_q_2 no 40k
                                                                128
                                           no always q 2 no 64k
9000/9001/9002 x05
                    eth16 GuestLAN QDIO 0
                                                                128
```

```
root@g73vm8:~# /usr/bin/snmpwalk -Os localhost private ibmOSAExpChannelNumber
```

ibmOSAExpChannelNumber.6 = Hex: 00 7C

ibmOSAExpChannelNumber.7 = Hex: 00 7A

ibmOSAExpChannelNumber.8 = Hex: 00 6A

OSA SNMP : example

```
root@g73vm8:~# /usr/bin/snmpwalk -Os localhost private ibmOSAExpChannelPCIBusUtil1Min
ibmOSAExpChannelPCIBusUtil1Min.6 = 7
ibmOSAExpChannelPCIBusUtil1Min.7 = 7
ibmOSAExpChannelPCIBusUtil1Min.8 = 12

root@g73vm8:~# /usr/bin/snmpwalk -Os localhost private ibmOSAExpChannelProcUtil1Min
ibmOSAExpChannelProcUtil1Min.6 = 2
ibmOSAExpChannelProcUtil1Min.7 = 1
ibmOSAExpChannelProcUtil1Min.8 = 2
```


OSA SNMP : example

```
root@g73vm8:~# /usr/bin/snmpwalk -Os localhost private ibmOSAExpChannelProcUtillMin
ibmOSAExpChannelProcUtillMin.6 = 2
ibmOSAExpChannelProcUtillMin.7 = 1
ibmOSAExpChannelProcUtillMin.8 = 20

root@g73vm8:~# /usr/bin/snmpwalk -Os localhost private ibmOSAExpChannelPCIBusUtillMin
ibmOSAExpChannelPCIBusUtillMin.6 = 7
ibmOSAExpChannelPCIBusUtillMin.7 = 7
ibmOSAExpChannelPCIBusUtillMin.8 = 21
```


Application performance

Adjust Java Performance

Check if Just In Timer Compiler is enabled
 JIT is not enabled if compat library is not available
 or Environment variable java_compiler is set to none

```
java -version
```

```
java version "1.4.0"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.0)
Classic VM (build 1.4.0, J2RE 1.4.0 IBM build cxia32140-20020917a (JIT enabled: jitc))
```

Check if garbage collector adjustments could improve your performance

```
java -Xgcpolicy:optthruput <java class>
java -Xgcpolicy:optavgpause <java class>
```

To monitor garbage collector (show statistics)

```
java -verbosegc <java class>
```


New features

- Channel measurement blocks
- z/VM monitor stream stage
 - Linux guest exports performance data into "APPLDATA monitor records"
 - performance data may be collected or display by z/VM performance monitoring tools
- virtual CPU timers

Linux on zSeries Performance website

http://www.ibm.com/developerworks/oss/linux390/perf_hints_tips.shtml

z/VM Performance website

http://www.vm.ibm.com/perf

Linux on zSeries Performance redbook

http://www.redbooks.ibm.com/redbooks/pdfs/sg246926.pdf

Questions?

