
Building Linux Packages
with RPM

S9239, Long Beach
Tuesday 1:30pm, February 24, 2004
Alex deVries <alex@onefishtwo.ca>

S9239: Building Linux Packages with RPM Slide 2

Outline

• Why?
• The goal of pristine sources
• Some unobvious suggestions
• How it all fits together
• Before you get started
• Steps to actually build packages
• A real life example: the wu-ftpd package
• More details: dependancies, subpackages, scripts,

architectures
• More information

S9239: Building Linux Packages with RPM Slide 3

Why build packages?

• It is a best practice to use a package manager
– Changes are easily tracked
– Package changes can be rolled back
– Dependancies are known and met

• Great way to share software development with
other people

• Reproducible builds, so you know how to apply
future changes

• You're no longer dependant on other people to build
your packages

S9239: Building Linux Packages with RPM Slide 4

Doing things the hard way

• One of the great but painful goals is to make sure
that builds are reproducible

• Pristine sources are a fundamental of rpm building,
unlike Debian packages

• rpmbuild will only write source and binary RPMs if
the build process was completed from beginning to
end*

* Yes, you can circumvent this. But you shouldn't.

S9239: Building Linux Packages with RPM Slide 5

Some notes on pristine sources

• Changes to the source tree should be reflected as
patch files, not simply a new tarball of modified
source

• This ensures that the source of all the code
changes can be identified

• To generate diff files:
cp -av wu-ftpd wu-ftpd.orig

• Make necessary changes
diff -ruN wu-ftpd.orig wu-ftpd

S9239: Building Linux Packages with RPM Slide 6

Unobvious suggestions when
building packages
• If a package building does a 'make install', it may

overwrite parts of your build environment.
• Two ways to preserve your build environment:

– Always always use a buildroot
– Never build as root

• Use ccache to accelerate your builds
• Expect an iterative software development process

S9239: Building Linux Packages with RPM Slide 7

Building packages as a non-root
user
• The default is to do building in /usr/src/redhat (or

/usr/src/suse)
• How to set this up:

– Create a file called ~/.rpmmacros
– Add: %_topdir /home/adevries/rpm
– cd ~/rpm ; mkdir -p RPMS/i386
RPMS/noarch SRPMS SOURCES BUILD
SPECS

S9239: Building Linux Packages with RPM Slide 8

Using ccache

• Having to rebuild a lot of C source from scratch
every time can be very time consuming, especially
on slow architectures

• How to use ccache:
– Install the ccache RPM
– Before building, run:

export CC='ccache gcc'
– All future compiling will first access the ccache

S9239: Building Linux Packages with RPM Slide 9

The relationship between source
and binary RPM packages

Patch Files

/etc/ftpusers
/usr/sbin/wu-ftpd
...

Source Files

Source RPM
.src.rpm

RPMS

BUILD

SOURCES

SPECS

SRPMS

S390
Noarch

Spec File

Build Files

Install (rpm -i)

Meta information

Binary RPM
.i386.rpm

Build (rpmbuild -ba)

Rebuild
(rpmbuild –rebuild)

S9239: Building Linux Packages with RPM Slide 10

Pieces of an RPM

• In a source RPM:
– Upstream sources
– The SPEC file
[adevries]$ rpm -qlp samba-3.0.2rc2-1.src.rpm
filter-requires-samba_rh8.sh
filter-requires-samba_rh9.sh
samba-3.0.2rc2.tar.bz2
samba3.spec

• In a binary RPM:
– Meta information
– Files to install, with signatures
– Scripts for pre- and post- installation, pre- and post-

installation

S9239: Building Linux Packages with RPM Slide 11

Rebuilding an existing source
RPM
• The simplest case, building a binary RPM from a

source RPM
• This will help you prove that you know what's in the

binaries you're running
• Just run:

rpmbuild –rebuild foo-3.2-1.src.rpm

S9239: Building Linux Packages with RPM Slide 12

What's involved in creating a new
RPM
• First, outside of RPM:

– Get the upstream source
– Read the installation instructions!
– Apply your own patches, if you need to
– Make sure it builds

• Then, using rpmbuild:
– Copy the sources and patches to the right

directories
– Setup a starting SPEC file

• Write the meta data
• Write the %prep section

S9239: Building Linux Packages with RPM Slide 13

Inside a SPEC file
• Everything starting with a % is an RPM macro
• Sections:

– Metadata: name, version, summary, packager,
etc

– %prep – unpacking sources, applying patches
– %build – instructions to build (possibly compile)

the software
– %install – copy the files and directories under a

buildroot directory the way they should appear in
the binary pakage

– %clean – clean up the build environment
– %files – listing of files that should be copied in
– Scripts – shell scripts that should be run when

the package is (un)installed
– %changelog – list of changes to the spec file

S9239: Building Linux Packages with RPM Slide 14

A real world example

• Our example: wu-ftpd, a simple FTP server
• There are actually RPMs out there for this version,

but we'll walk through the creation of this as if there
weren't

S9239: Building Linux Packages with RPM Slide 15

First, make sure the thing builds

• Do what you'd normally do to compile the software
– Unpack the source (tar -xzvf)
– Apply your patches(patch < ...)
– Compile (./configure ; make)

Now, let's create a SPEC file...

S9239: Building Linux Packages with RPM Slide 16

1. Setting up Metadata (½)
Summary: An FTP daemon provided by Washington

University.
Name: wu-ftpd

Version: 2.6.2
Release: 1

License: BSD
Group: System Environment/Daemons

URL: http://www.wu-ftpd.org/
Source: ftp://ftp.wu-ftpd.org/pub/wu-ftpd/wu-

ftpd-2.7.0-20020304.tar.bz2
Source1: ftpd.log
Source2: ftp.pamd

Source3: wu-ftpd-xinetd
Source4: ftpaccess

Patch0: wu-ftpd-2.6.0-redhat.patch
Patch1: wu-ftpd-2.6.0-owners.patch

Provides: ftpserver
Prereq: fileutils, openssl

Requires: xinetd, /etc/pam.d/system-auth
Buildroot: /tmp/%{name}-root

General info

Requirements

Where to do the build

S9239: Building Linux Packages with RPM Slide 17

Setting up Metadata (2/2)

%description

The wu-ftpd package contains the wu-ftpd FTP (File Transfer
Protocol)

server daemon. The FTP protocol is a method of transferring files
between machines on a network and/or over the Internet. Wu-ftpd's

features include logging of transfers, logging of commands, on the
fly

compression and archiving, classification of users' type and
location,

per class limits, per directory upload permissions, restricted
guest

accounts, system wide and per directory messages, directory alias,
cdpath, filename filter, and virtual host support.

S9239: Building Linux Packages with RPM Slide 18

2. A first try of a %prep section

%prep
%setup -q -n %{name}
%patch0 -b .redhat
%patch1 -b .owners
find . -type d -name CVS |xargs rm -rf

Header

Unpack

Quiet

Apply
patch n

Keep a copy
of the original

Into a dir called

Clean up CVS directories

S9239: Building Linux Packages with RPM Slide 19

Try a build...
[adevries@cubalibre redhat]$ rpmbuild -ba SPECS/wu-ftpd.spec1
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.40603
+ umask 022
+ cd /home/adevries/onefishtwo/redhat/BUILD
+ LANG=C
+ export LANG
+ cd /home/adevries/onefishtwo/redhat/BUILD
+ rm -rf wu-ftpd
+ /usr/bin/bzip2 -dc /home/adevries/onefishtwo/redhat/SOURCES/wu-
ftpd-2.7.0-20020304.tar.bz2
+ tar -xf -
...
+ /bin/chmod -Rf a+rX,g-w,o-w .
+ echo 'Patch #0 (wu-ftpd-2.6.0-redhat.patch):'
Patch #0 (wu-ftpd-2.6.0-redhat.patch):
+ patch -p0 -b --suffix .redhat -s
The text leading up to this was:

|--- wu-ftpd-2.6.0/src/pathnames.h.in.patch0 Sun Oct 3 09:13:09
1999
+++ wu-ftpd-2.6.0/src/pathnames.h.in Thu Oct 21 11:36:20 1999
File to patch:

S9239: Building Linux Packages with RPM Slide 20

Oops! Fixing the %prep section

• Patch was applied at the wrong level:
• In wu-ftpd-2.6.0-redhat.patch:
--- wu-ftpd-2.6.0/src/pathnames.h.in.patch0 Sun Oct 3 09:13:09

1999
+++ wu-ftpd-2.6.0/src/pathnames.h.in Thu Oct 21 11:36:20 1999

• On build system:
[adevries@cubalibre redhat]$ ls BUILD/
wu-ftpd

• The solution: apply the patches one directory level in, so
change it to:

%patch0 -p1 -b .redhat

%patch1 -p1 -b .owners

S9239: Building Linux Packages with RPM Slide 21

3. A first try of a %build section

%build
%configure –enable-quota –enable-pam --disable-rfc931 --enable-ratios
\
 --enable-passwd --disable-dnsretry --enable-ls --enable-ipv6
\
 --enable-tls

sed -e "s/\/* #undef SHADOW_PASSWORD *\//#define SHADOW_PASSWORD
1/g" src/config.h

Make the version what we want it to be
cat >src/newvers.sh <<EOF
echo 'char version[] = "Version wu-%{version}-%{release}";' >vers.c
EOF
chmod 0755 src/newvers.sh
make

Header Custom build script

Other custom build instructions

S9239: Building Linux Packages with RPM Slide 22

4. A first try of the install section

%install

rm -rf $RPM_BUILD_ROOT
mkdir -p $RPM_BUILD_ROOT/etc $RPM_BUILD_ROOT/usr/sbin

make install DESTDIR=$RPM_BUILD_ROOT
install -c -m755 util/xferstats $RPM_BUILD_ROOT/usr/sbin

cd rhsconfig
install -c -m 600 ftpusers ftphosts ftpgroups

ftpconversions $RPM_BUILD_ROOT/etc
strip -R .comments $RPM_BUILD_ROOT/usr/sbin/* || :
mkdir -p $RPM_BUILD_ROOT/etc/{pam,logrotate}.d

install -m 644 %{SOURCE1}
$RPM_BUILD_ROOT/etc/logrotate.d/ftpd

install -m 644 %{SOURCE2} $RPM_BUILD_ROOT/etc/pam.d/ftp
ln -sf in.ftpd $RPM_BUILD_ROOT/usr/sbin/wu.ftpd

ln -sf in.ftpd $RPM_BUILD_ROOT/usr/sbin/in.wuftpd
mkdir -p $RPM_BUILD_ROOT/etc/xinetd.d

install -m644 %{SOURCE3} $RPM_BUILD_ROOT/etc/xinetd.d/wu-
ftpd

install -c -m0600 %{SOURCE4} $RPM_BUILD_ROOT/etc

Remove the old build root and recreate it

Install into the build root

Header

S9239: Building Linux Packages with RPM Slide 23

The %file section
%files
%defattr(-,root,root)
%config(noreplace) /etc/xinetd.d/wu-ftpd
%doc README ERRATA CHANGES CONTRIBUTORS
%doc doc/HOWTO doc/TODO doc/examples
%/usr/man/*/*.*
%config /etc/ftp*
%config /etc/pam.d/ftp
%config /etc/logrotate.d/ftpd

%defattr(0755,bin,bin)
/usr/sbin/*
/bin/*

Header Default attributes of next files

Config file

Glob files together

S9239: Building Linux Packages with RPM Slide 24

Special notes about %files

• If a file isn't listed in %files, it won't make it into the
binary RPM

• Setting mode and owner can let you put setuid or
root owned files into a binary RPM that you could
never create on the build system as a non-root user

• Files marked %config are renamed on upgrading,
not replaced

• Files marked %doc are not installed when package
is added with –nodocs

S9239: Building Linux Packages with RPM Slide 25

Trying the build
• Rebuild quickly with:
Rpmbuild -bi –short-circuit

• We get more errors:

Processing files: wu-ftpd-2.6.2-1
error: File not found: /var/tmp/wu-ftpd-
root/etc/pam.d/ftp
...

RPM build errors:
 File not found: /var/tmp/wu-ftpd-
root/etc/pam.d/ftp

S9239: Building Linux Packages with RPM Slide 26

Fix the build, and rebuild from
scratch
• Add the missing file installation to the %install section,

and rebuild using:
rpmbuild -ba wu-ftpd.spec

• And the result is:
...
Wrote: redhat/SRPMS/wu-ftpd-2.6.2-1.src.rpm
Wrote: redhat/RPMS/i386/wu-ftpd-2.6.2-1.i386.rpm

• Yay!

S9239: Building Linux Packages with RPM Slide 27

Dependancies
• rpmbuild tries to identify dynamically linked files

automatically
• If it detects a file is a Linux binary, it will determine

shared libraries using ldd, eg.:
[adevries@cubalibre bin]$ ldd ftpd

 libcrypt.so.1 => /lib/libcrypt.so.1 (0x40025000)
 libnsl.so.1 => /lib/libnsl.so.1 (0x40053000)

 libresolv.so.2 => /lib/libresolv.so.2 (0x40069000)
 libssl.so.2 => /lib/libssl.so.2 (0x4007b000)

 libcrypto.so.2 => /lib/libcrypto.so.2 (0x400ab000)
 libpam.so.0 => /lib/libpam.so.0 (0x4017f000)

 libdl.so.2 => /lib/libdl.so.2 (0x40187000)
 libc.so.6 => /lib/i686/libc.so.6 (0x42000000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2
(0x40000000)

• You can add other dependancies too, or override
the default mechanism

S9239: Building Linux Packages with RPM Slide 28

Subpackages

• Sometimes, packages are large enough that not
everybody wants all the files associated with a
piece of software

• Making subpackages allows
• For example, vim:

– vim-common-6.1-18.8x.1: common files for all
vim packages

– vim-minimal-6.1-18.8x.1: just the minimal files to
get vim running, requires vim-common

– vim-enhanced-6.1-18.8x.1: the enhanced and
larger files, requires vim-common

S9239: Building Linux Packages with RPM Slide 29

Scripts

• Scripts available: %postinstall, %postuninstall,
%preinstall, %preuninstall

• These are generic bash scripts that are to be run on
the target system during package installations,
deletions or upgrades

• These can be queried with:
rpm -q –scripts packagename

S9239: Building Linux Packages with RPM Slide 30

Architectures
• By default, packages built are of the same

architecture and OS as your build environment

• The 'noarch' RPM is a special one, and will build a
binary package which can install anywhere

• You can set the target build architecture and OS of
a package or subpackage with:

Buildarch: vax
BuildOS: Linux

• You can, with some difficulty, build binary packages
for other architectures. This will probably rely on
using a cross compiling toolchain.

S9239: Building Linux Packages with RPM Slide 31

More RPM Information

• Sadly, RPM documentation is somewhat incomplete
• Maximum RPM is still a good enough, it is available

at http://www.rpm.org

S9239: Building Linux Packages with RPM Slide 32

Questions?

• Alex deVries <alex@onefishtwo.ca>
• Please fill out the evaluation cards! This is session

S9239.

