SHARE

What's new In Linux 2.6?

Dr. Ulrich Weigand

Linux for zSeries Development, IBM Lab Bdblingen
Ulrich.Wegand@de.ibm.com

Agenda

e Timeine

e New features overview

e Scalability enhancements

e Threading modd and futexes

e Device model and device configuration

Linux 2.6

e Timeline
e January 1999: Linux 2.2.0 released
e May 1999: Start of 2.3.x development (2.2.8)
e January 2001: Linux 2.4.0 released
e November 2001: Start of 2.5.x development (2.4.15)
e October 2002: Feature freeze for 2.6
e February 2003: Current version 2.5.61
e Estimated release of Linux 2.6.0: mid-2003

Linux 2.6: Overvie

Linux Kernel 2.5 Compounded Progress

110

100

90

80

70
60

501 P

Number of Features

\ ___&

e Source: Guillaume Boissere
http://www.kernelnewbies.org/status/

B Merged
[Pending
B Ready
[|Beta
[]Alpha
Bl Started

] Planning

r*‘_,

SHARE

Technadogy - Conngclians - Resodls

Linux 2.6: Overview

e New features
e Platform and device support
e Hle systems and volume managers
e Network protocols
e Eliminate system limits
e Performance and scalability enhancements
e Scheduler
e Memory management
e Block I/0 layer
e SMP scalability

e Backportsto 2.4 kernels

Platform and device support

e New architectures
e PowerPC 64-bit (ppc64)
e AMD 64-bit (x86_64)
e ucLinux (MMU-less processors. v850, m68knommu)
e User Mode Linux

e New devices
e New Input device/ frame buffer layers
e ALSA (Advanced Linux Sound Architecture)
e Video for Linux v2
e New |IDE layer, Serial ATA support

File systems

e Support for new file systems
e IBM JFS
e SGl XFS
e NFSVv4
e Andrew File System (AFS)
e ReiserFS v4 (planned)

e Other enhancements
e Device mapper infrastructure (LVM2, EVMYS)
e Extended Attribute/ Access Control List (ACL) support
e L arge directory support for ext2/ext3
e Zero-copy NFS

Networking

e Networking enhancements
e SCTP (Stream Control Transmission Protocol)
e TCP segmentation offload
e | Psec support and CryptoAP
e |mproved |Pv6 support
e Bluetooth support

Scalability

e Removal of hard limits
e Number of processes/threads: 64k -> 2G
e Block devicelimit: 2TB -> 16TB / 8EB
e Number of groups per process. 32 -> unlimited (planned)
e Major/minor numbers. 256 -> 4k/1M (planned)

o SMP scalahility
e Reduce use of Big Kernd Lock
e Eliminate global locks (/O reguest, IRQ, task list)
e Per-CPU data structures

O(1) scheduler

e Authors. Ingo Molnar et al.

e Design of old scheduler
e Global run-gueue holds all runnable processes
e Reschedule scans full run-gqueue to find next processto run
e Time-dice recalculation after all dices have been consumed

e Problems
e Reschedule dow when run-queue islong
e Recalculation loop dow, trashes cache
e SMP scalability issues

O(1) scheduler (cont.)

e Design goals for new scheduler
e O(1) algorithms: wakeup, schedule, timer interrupt
e Scaleto large number of processes/threads
e Perfect SMP scalability
Processor affinity (incl. NUMA/SMT support)
Keep good interactive performance
K eep good performance with few runnable processes
Keep features. priorities, RT scheduling, CPU binding
e |mplementation
e Active/expired per-CPU priority arrays as run-queue
e | oad balancing between CPUs done by migration threads

. —
Kernel preemption / low latency T
e Authors: Robert Love, Andrew Morton, et al.
e | atency problem
IRQ Wakeup Resched
Process A Process B
User User
SVC IRQ Wakeup SVC Exit Resched
Process A Process B
User User

Loy >

)

SHARE

e

Kernel preemption / low latency (cont.)

e Proposed solutions
e Kerndl codeyiedsvoluntarily ('low latency patches)
e Kernel code get preempted involuntarily
e Currently implemented: both

e Preemption blockers
e |nterrupts (hard and soft)
e Kernel SMP critical section (spinlock, per-CPU data etc.)
e Scheduler (and other core routines)
e Design Issues
e Avoid large-scale code changes
e Avoid throughput vs. latency trade-off

Memory management

e Authors. Rik van Rid, Andrew Morton, et al.

Reverse mapping problem

¥

VM A

v

Technadogy = C

VM B

VM C

Reverse Mapping

Memory management (cont.)

e Advantages of reverse mappings
e Easy to unmap page from all address spaces

Page replacement scans based on physical pages
|_ess CPU spent inside memory manager

_ess fragile behaviour under extreme load

e Challenges with reverse mappings
e Overhead to set up rmap structures
e Out of memory while alocating rmap?

/O scalability

e Authors. Jens Axboe, Andrew Morton, et al.

e Block I/O layer
e Manages all accessto block devices
e Queues/merges/remaps block read/write requests
e |mplements 'buffer cache’

e Problemsin 24
e Shortcomings of 'buffer head' data structure
e Largel/O, vectored I/O, raw 1/O, async |/O inefficient
e Global 1/0 reguest lock contention
e Bounce buffer bottleneck on high-memory systems

/O scalability (cont.)

e New BIO data structure
e Efficiently unifiesall types of 1/O requests

e Challenges

e Rewrite much of the block 1/0 layer
e Adapt all low-leve drivers and remappers (MD, LVM)
e Avoid deadlocks in out-of-memory situations

e Other enhancements
e Eliminate global I/O request lock
e |mproved I/O scheduler
e Merged buffer cache with page cache

Asynchronous 1/O

e Authors. Ben LaHaise et 4.

e Asynchronous 1/O
e |/O reguests executed while application continues to run
e Completion of I/O signalled to application
e Goal: higher throughput, esp. for data bases etc.

e |mplementation
e Kerndl providesasync. |/0O API (io_submit, io_getevents,...)
e Synchronous kerndl-interna interfaces switched to async.
e Godl: everything in-kernel should be asynchronous
e Usar space implements POSIX AlO on top

Networking scalability: epoll

e Authors; Davide Libenzi et dl.
e |dle connection problem
e Typica server load: many connections, few active
e Event notification APl (select, poll) performance degraded

e epoll: New notification mechanism
e API: epoll_create/ epoll_ctl / epoll_wait
e |dle connections do not affect performance
e Better performance, more robust than RT signals

Threading model

e Authors: Ulrich Drepper, Ingo Molnar

e Problems with LinuxThreads

e POSI X non-compliance

e One PID per process
e POSIX signal handling
e |nter-process synchronization primitives

e Limited number of threads
e Performance issues
e Manager thread / heavy-weight library

Threading model (cont.)

e Design of new threading model
e 1-on-1 mode
e No manager thread
e Light-weight user space wrapper library
e O(1) scheduler for large number of threads

K ernel/toolchain support for thread-local storage
Kernel awareness of 'thread groups
Kernel support for fast thread start-up/exit

n-kernel POSIX signal handling

e Synchronization primitives via 'futex’

Threading model (cont.)

e Thread-local storage support

e New compiler feature (C/C++ language extension)
e extern _ thread int errno;

e Compiler/Toolchain/Library support
e Thread pointer via access register(s)
e TLSrelocations in assembler/linker
e TL S support in dynamic linker and glibc
e TL S access models to optimize performance

e Kernd support
e CLONE TLSflag to clong()

)

SHARE

"

Fast user space synchronization (Futex)

e Authors. Rusty Russell et al.
e Design goals
e |ntra-process and inter-process synchronization
e |mplement all POSIX synchronization primitives
e Allow blocking and non-blocking wait
e Allow multiple strategies (wake-one vs. wake-all etc.)
e No administrative overhead (setup/cleanup etc.)
e No system calls in the uncontended case
e NO unnecessary context switches
e No limits (e.g. number of futexes)

Futex (cont.)

e |mplementation
e Usar space atomic operations on shared memory word
e 'futex' system call to handle contention cases

e Futex system call
e sys futex (addr_t addr, int op, int val, struct timespec
*timeout)
e FUTEX WAIT: If thelock word at 'addr’ still contains 'val’,
deep until afutex wakeup on ‘addr' is performed or timeout.

e FUTEX WAKE: Wake up to 'val' processes slegping on the
futex 'addr'. Return number of processes actually woken.

e FUTEX FD: Return file descriptor usable for asynchronous
wait on futex 'addr'. Optionally set up SIGIO signal 'val'.

Device model

e Authors: Patrick Mochel et al.
e Design goals
e Represent physical devicetree

e Enables power-save suspend/resume operations
e Simplifies device reference counting and locking

e Enable dynamic device attach/detach
e Automatically probe for devices, manual online/offline overrides
e |nterface with /sbin/hotplug user mode hel per
e Unified user interface
e New file system: sysfs
e Multiple subsystems provide 'views into device tree

Device model (cont.)

e Devices Subsystem
e Physical device interconnection tree

e Bus Subsystem
e Top-level view of al device drivers by bustype
e Linksto connected devices

e Block Subsystem
e Top-level view of al block devices and partitions
e Linksto underlying devices

e Net Subsystem
e Top-levd view of al network devices
e Linksto underlying devices

Device model (cont.)

e Bus and device types on zSeries

e Channd Subsystem Bus/ I/O Subchannel Devices
e |dentifier: Subchannel Number
e Attributes. Channel Paths, PIM/PAM/POM

e CCW DeviceBus/ CCW Devices

e |dentifier: Device Number
e Attributes. Control Unit Type, Device Type, Online Status

e CCW Device Group Buses
e Group device: Multiple CCW devices used as a unit
e Required for QETH, LCS, and CTC devices
e Obsoletes 2.4 Channel Device Configuration layer
e |dentifier: First device in group
e Attributes. Shared Online Status

Device model (cont.)

e User Interface via sysfs. devices

[Sys
[devi c
[sy

/| Ccs

/ qe

/ bus
/ bl ock
/ net

es
S
/ channel _pat hNN
sO
/ O: NNNN
/ O: NNNN
th
/ O: NNNN

Syst em Bus
Channel Path
Channel Subsystem Bus
Subchannel
CCW Devi ce
QETH Group Bus
CCW Devi ce G oup

Device model (cont.)

e User interface via sysfs. device drivers
[Sys
/ bus
[css/drivers
/1 0_subchannel Subchannel Driver
/ O: NNNN Li nks to /devices
/| css/ devi ces *Al'l * devi ces
/ O: NNNN
[ccw drivers
/ dasd- eckd DASD Dri ver
/ O: NNNN Li nks to /devices
[ccwgroup/ drivers
[geth QCETH Dri ver
/ group Group creation

/ O: NNNN Li nks to /devi ces

Device model (cont.)

e User interface via sysfs. block devices

[Sys
/ bl ock
/ dasda DASD bl ock devi ce

[devi ce Link to /devices

[dev Maj or/ m nor nunber

/ dasdal 1st partition
/ dev Maj or / m nor

| dasdaZ2 2nd partition

[dev Maj or / m nor

Device model (cont.) SHARE

e Example: Install new QETH device

Create (QETH CCW group devi ce
echo 0:5c00, 0: 5¢01, 0: 5¢c02 \
> [sys/ bus/ ccwgroup/ get h/ gr oup

Set up portnane paraneter
echo port nane: CSAPORT \
> [sys/ bus/ ccwgroup/ get h/ 0: 5c00/ par anet ers

Set device online

echo 1 \
> [sys/ bus/ccwgroup/ get h/ 0: 5¢c00/ onl i ne

Resources

Technadogy = C

e Linux for zSeries developerWorks page
http://www.software.ibm.com/
devel operworks/opensource/linux390/index.htmi

e |Linux for zSeries technical contact address
l1NUx390@de.Ibm.com

e Linux for zSeries mailing list at Marist College
http://www.marist.edu/ntbin/wivindex?LINUX-VM

