Volume

Architectural Spect

fic Data

[imx-S/390&
7/ Architecture

LINUX FOR S/390 AND Z/ARCHITECTURE

Architecture Specific Reference

Last updated: 2003-07-28

Table of Contents

Stack chaining in gdb by hand 48
Disassembling instructions without debug
DEBUGGING ON LINUX FOR 390 AND information 49
Z/ARCHITECTURE 3 For more information 49
S/390 and z/Architecture Register Set 3 Examining Core Dumps 49
Program Status Word (PSW) 4 1dd 51
Prefix Page 6 Debugging shared libraries 51
Address Spaces on Linux 7 Debugging modules 51
Address Spaces on Linux for S390 and The proc file system 52
z/Architecture 8 Some driver debugging techniques 54
Virtual Addresses on S/390 and z/Architecture 9 Miscellaneous Techniques 55
The Linux for S390 Kernel Task Structure 10 Starting points for debugging scripting languages
Register Usage and Stack-Frames on Linux for S390 etc. 55
11 SysRq 56
Overview 11 References 56
Glossary 11
S/390 and z/Architecture Register Usage 13
Stack Frame Layout 15 S/390 DEBUGGING FACILITY 57
A sample program with comments 16 Design 57
Comments on the function test 16 Example 58
Comments on the function main 17 Kernel Interfaces 58
New Compiler Changes 17 debug_register 58
64 bit z/Architecture code disassembly 17 debug_unregister 59
Compiling programs for debugging on Linux for debug_set level 59
S390 and z/Architecture 18 debug_event 59
Figuring out gcc compile errors 19 debug_int_event 59
Debugging Tools 21 debug_text event 59
objdump 21 debug_sprintf event 60
strace 22 debug_exception 60
Performance Debugging 25 debug_int/long_exception 60
Using top to find out where processes are sleeping debug_text exception 60
in the kernel 25 debug_sprintf exception 61
The time command 25 debug_register view 61
Debugging under VM 26 debug_unregister view 61
Useful VM debugger commands 27 Predefined views 61
Tracing particular processes 30 Examples 61
Stack tracing under VM 38 hex_ascii + raw-view 62
S/390 and z/Architecture I/O Overview 40 sprintf-view 62
General Concepts 42 sprintf-view 63
Common 390 Devices 43 ProcFS Interface 63
Debugging 10 on S390 under VM 43 Example — Viewing the Debug Log 63
Other Common VM Device Related Commands 44 Example - Changing the debug level 63
gdb on S390 45 Flushing Debug Areas 64
Invocation 45 Icrash Interface 64
Online help 45 Investigating raw memory 64
Assembly 45 Predefined Views 64
Viewing and modifying variables 46 Defining views 65
Modifying execution 46 Example 66
breakpoints 47
User defined functions/macros 47
Other hard to classify stuff 47 COMMON 1I/0 LAYER 68

Hints 48 Command line parameters 68

/proc entries
/proc/subchannels
/proc/deviceinfo/
/proc/cio_ignore
/proc/s390dbf/cio_*/ (S/390 debug feature)
/proc/irq_count
/proc/chpids

CHANNEL DEVICE LAYER
Chandev Arguments
Glossary
Commonly Used Options
Power User Options

COMMON DEVICE SUPPORT
General Information
Overview of CDS interface concepts
Miscellaneous Support Routines
Special Console Interface Routines

DASD DEVICE DRIVER
Usage
Low-level format
Make a filesystem
Bugs
TODO-List

TAPE SUPPORT
Tape driver features
Tape character device front-end
Tape block device front-end
Tape block device example
TODO List
BUGS

3270 DISPLAY SYSTEM SUPPORT
INTRODUCTION
OPERATION

XPRAM

Features

Limitations

Configuration option

Module name

Kernel parameter syntax
Example

Module parameter syntax
Example

Usage

CISCO CLAW SUPPORT

lucv
iucv_accept
Parameters
Returns
iucv_connect
Parameters

102
102
102
103
103
103

104
104
104
104
105
105
105

107
107
107

110
110
110
110
110
110
111
111
112
112

113

115
115
115
116
116
116

Returns
iucv_purge
Parameters
Returns
fucv_query _maxconn
Parameters
Returns
iucv_query_bufsize
Parameters
Returns
fucv_quiesce
Parameters
Returns
iucv_receive
Parameters
Returns
iucv_receive_array
Parameters
Returns
iucv_reject
iucv_reply
Parameters
Returns
iucv_reply array
Parameters
Returns
iucv_reply prmmsg
Parameters
Returns
iucv_resume
Parameters
Returns
iucv_send
Parameters
Returns
iucv_send2way
Parameters
Returns
iucv_send2way_array
Returns
Returns
iucv_send_array
Parameters
Returns
iucv_send2way prmmsg
Parameters
Returns
iucv_send2way prmmsg_array
Parameters
Returns
iucv_send_prmmsg
Parameters
Returns
iucv_setmask
Parameters
iucv_sever
Parameters
Returns
Tucv_register_program
Parameters
Returns
Notes
iucv_unregister program
Parameters
Returns

117
117
118
118
118
118
118
118
118
118
118
118
119
119
119
120
120
120
121
121
121
121
122
122
122
123
123
123
123
123
123
124
124
124
124
124
125
125
125
125
126
126
126
127
127
127
127
128
128
128
128
129
129
129
129
129
130
130
130
130
130
130
131
131
131

Debugging on Linux for 390 and
z/Architecture

by
Denis Joseph Barrow (dibarron(Qdedbyn.coms, barrow _di@yaboacorn)

Copyriaht © 2000 IBM Dentschland Entiidshng Grabt-, IBM Corporation

z/ Architecture. It isn’t intended as a complete reference and not a tutotial on the fundamentals
of C and assembly, it doesn’t go into 390 IO in any detail. It is intended to compliment the
following books.

T his document is intended to give an good overview of how to debug Linux for S390 and

* Enterprise Systems Architecture/390 Reference Summary SA22-7209-01 and the

* Enterprise Systems Architecture/390 Principles of Operation SA22-7201-05 and any other
worthwhile references you get.

It is intended like the Enterprise Systems Architecture/390 Reference Summary to be printed out and
used as a quick cheat sheet self help style reference when problems occur.

S/390 and z/Architecture Register Set

The current architectures have the following registers.

ESA/390 z/Architecture

16 32 bit General propose registers (t0-r15 or | 16 64 bit General propose registers (t0-r15 or
gpr0-gprl5) used for arithmetic and addressing gpr0-gprl5) used for arithmetic and addressing

16 32 bit Control registers (cr0-cr15 kernel usage | 16 64 bit Control registers (crO-crl5 kernel usage
only) used for memory management, interrupt | only) used for memory management, interrupt
control, debugging control etc. control, debugging control etc.

16 Access registers (ar0-ar15) not used by normal programs but potentially could be used as temporary
storage. Their main purpose is their 1 to 1 association with general-purpose registers and is used in the
kernel for copying data between kernel user address spaces. Note ar0 (and arl on z/Architecture) is
currently used by the pthread library as a pointer to the current running thread’s private area.

16 64 bit floating point registers (fp0-fp15) IEEE and HFP floating point format compliant on G5
upwards and a Floating point control register (FPC)

mailto:djbarrow@de.ibm.com
mailto:barrow_dj@yahoo.com

4 64 bit registers (fp0, fp2, fp4 and fp6) HFP | N/A
only on older machines.

Note: Linux (currently) always uses IEEE and emulates G5 IEEE format on older machines, (provided
the kernel is configured for this).

Program Status Word (PSW)

The PSW is the most important register on the machine it is 64 bits on S/390 and 128 bits on
z/ Architecture, and setves the roles of a program counter (PC), condition code register, memory space
designator.

In IBM standard notation I am counting bit 0 as the MSB. It has several advantages over a normal
program counter in that you can change address translation and program counter in a single instruction.
To change address translation, for example, switching address translation off requires that you have a
logical=physical mapping for the address at which you are currently running.

Bit
Value

S/390 |zArch

0 0 Reserved (must be 0 otherwise specification exception occuts.

1 1 Program Event Recording 1 PER enable. PER is used to facilitate debugging e.g.
single stepping.

2-4 2-4 Reserved (must be 0).

5 5 Dynamic address translation 1=DAT on.

6 6 Input/Output interrupt Mask

7 7 External interrupt Mask used primarily for inter-processor signaling and clock
interrupts.

811 |8-11 PSW Key used for complex memory protection mechanism not used under Linux

12 12 Architecture selection: 1 on S/390; 0 on z/ Architecture

13 13 Machine Check Mask 1=enable machine check interrupts
Wait State set this to 1 to stop the processor except for interrupts and give time to

14 14 other LPARS used in CPU idle in the kernel to increase overall usage of processor

resources.

15

15

Problem state (if set to 1 certain instructions are disabled) all Linux user programs run
with this bit 1 (useful info for debugging under VM).

16-17

16-17

Address Space Control 00 Primary Space Mode when DAT on. The Linux kernel
currently runs in this mode: CR1 is affiliated with this mode and points to the primary
segment table origin etc.

01 Access register mode this mode is used in functions to copy data between kernel
and userspace.

10 Secondary space mode not used in Linux however CR7 the register affiliated with
this mode is and this and normally CR13=CR7 to allow us to copy data between
kernel and user space. We do this as follows: We set ar2 to 0 to designate its affiliated
gpr (gpr2) to point to primary=kernelspace. We set ar4 to 1 to designate its affiliated
gpr (gpr4) to point to secondary=home=user space and then essentially do a
mencopy(gpr 2, gpr4, size) to copy data between the address spaces. The
reason we use home space for the kernel and don’t keep secondary space free is that
code will not run in secondary space.

11 Home Space Mode all user programs run in this mode. It is affiliated with CR13.

18-19

18-19

Condition codes (CC)

20

20

Fixed point overflow mask if 1=FPU exceptions for this event occur (normally 0)

21

21

Decimal overflow mask if 1=FPU exceptions for this event occur (normally0)

22

22

Exponent underflow mask if 1=FPU exceptions for this event occur (normally 0)

23

23

Significance Mask if 1=FPU exceptions for this event occur (normally 0)

24-31

24-30

Reserved Must be 0.

31-32

Extended Addressing Mode; Basic Addressing mode. Used to set addressing mode
00 — 24 bit
01 — 31 bit
11 — 64 bit

32

1=31 bit addressing mode 0=24 bit addressing mode (for backward compatibility).
Linux always runs with this bit set to 1

33-64

Instruction address.

33-63 Reserved. Must be 0.

Address:
In 24-bit mode bits 64-103=0; bits 104-127=Address
64-127 |In 31-bit mode bits 64-96=0; bits 97-127=Address

Note: unlike 31-bit mode on S/390, bit 96 must be zero when loading the address
with LPSWE otherwise a specification exception occurs. LPSW is fully backward
compatible.

Prefix Page

This per CPU memory area is too intimately tied to the processor not to mention. It exists between the
real addresses 0-4096 on S/390 and 0-8192 on z/Architecture, and is exchanged with a 1 page on S/390
ot 2 pages on z/Architecture, in absolute storage by the set prefix instruction in Linux’s startup. This
page is mapped to a different prefix for each processor in an SMP configuration. Bytes 0-512 (200 hex)
on S/390 and 0-512; 4096-4544; 4604-5119 cutrently on z/Architecture, are used by the processor itself
for holding such information as exception indications and entry points for exceptions.

Thete is a gap on z/Architecture between 0xc00-0x1000 that Linux uses for pet processor global
variables. The closest thing to this on traditional architectures is the interrupt vector table. This is a good
thing and does simplify some of the kernel coding however it means that we now cannot catch stray
NULL pointers in the kernel without hard coded checks.

OXFFFFFFFF 4GB Hi nen

User Space Hi nem (typically

0xC0000000 3GB)

0x00000000

Address Spaces on Linux

The traditional Intel Linux is approximately mapped as follows:

Kernel

User Stack

Next
Shared Libs

Run

User Program
Data BSS
Text
Sections

Now it is easy to see that on Intel it is quite easy to recognize a kernel address as being one greater than
user space high memory (in this case 0xC0000000). Addresses of less than this are the ones in the
current running program on this processor (if an SMP box). If using the virtual machine (VM) as a
debugger it is quite difficult to know which user process is running, as the address space you are looking
at could be from any process in the run-queue. Thankfully you normally get lucky as address spaces
don’t overlap that and you can recognize the code at by cross-referencing with a dump made by

obj dunp (more about that later).

The limitation of Intel’s addressing technique is that the Linux kernel uses a very simple real address to
virtual addressing technique of Real Address=Virtual Address-User Space Himem. This means that on
Intel the kernel Linux can typically only address Himem=0xFFFFFFFF-0xC0000000=1GB and this is
all the RAM these machines can typically use. They can lower User Himem to 2GB or lower and thus be
able to use 2GB of RAM however this shrinks the maximum size of User Space from 3GB to 2GB they
have a no win limit of 4GB unless they go to 64 Bit. On S/390 our limitations and strengths make us
slightly different. For backward compatibility (because of the PSW address hi bit which indicates
whether we are in 31 or 24 bit mode) we atre only allowed use 31 bits (2GB) of our 32 bit addresses.
However, we use entirely separate address spaces for the user and kernel. This means we can support
2GB of non-extended RAM, and more with the extended memory management swap device and 4TB
of physical memory currently on z/Architecture.

Address Spaces on Linux for S390 and z/Architecture

§/390 is, for historical reasons, a 31-bit system that means it can only address 2GB of storage. However,
thanks to the multiple address space facilities of the architecture we are able to use entirely different
address spaces for user and kernel. On S/390 our addressing scheme is as follows:

OX7FFFFFFF 2GB Hi nen
User Stack

Shared Libs

Kernel
User Program
Data BSS
Text
Sections
0x00000000
Under z/Architecture the structure is:
Ox3FFFFFFFFFF 4TB Hi men
User Stack
Shared Libs
Kernel

User Program
Data BSS
Text
Sections

0x00000000

This also means that we need to look at the PSW problem state bit or the addressing mode to decide
whether we are looking at user or kernel space.

Virtual Addresses on $/390 and z/Architecture
A virtual address on S/390 is made up of 3 parts.
1. The SX (segment index, roughly corresponding to the PGD and PMD in Linux
terminology): bits 1-11.
2. The PX (page index, corresponding to the page table entry (PTE)) bits 12-19.
3. 'The remaining bits BX (the byte index is the offset into a page) bits 20-31.

On z/ Architecture in Linux we currently make up an address from 4 patts:

1. The region index (RX) bits 0-32 of which we use bits 22-32.
2. The segment index (SX): bits 33-43.

3. 'The page index (PX): bits 44-51.

4. 'The byte index (BX): bits 52-63.

1. §/390 has no PMD so the PMD is really the PGD also. A lot of this stuff is defined in
pgt abl e. h.

2. Also seeing as S/390’s page indexes are only 1K in size (bits 12-19 x 4 bytes per PTE), we
use 1 page to make the best use of memory by updating 4 segment indices each time we
mess with a PMD and use offsets 0, 1024, 2048 and 3072 in this page as for our segment
indexes. On z/Atrchitecture our page indexes are now 2K in size (bits 12-19 by 8 bytes per
PTE). We do a similar trick but only mess with 2 segment indices each time we mess with a
PMD.

3. z/Architecture supports up to a massive 5-level page table lookup, however cutrently we can
only use 3 on Linux (as this is all the generic kernel currently supports). This may change in
the future. This 3-tier structure allows us to access 4IB of virtual storage per process. To do
this we use a region-third-table designation type in our address space control registers.

The Linux for S390 Kernel Task Structure

Each process/thread under Linux for S390 has its own kernel task_struct defined in
I'i nux/incl ude/ i nux/sched. h. The S390 on initialization and resuming of a process on a
cpu sets the _ LC KERNEL_STACK variable in the spate prefix area for this CPU (which we use for
per processor globals). The kernel stack pointer is intimately tied with the task structure for each
processor as follows.

1. S/390 -

1 page kernel stack (4KB)

1 page task_struct (4KB)

8KB al i gned

2. z/Architecture —

1 page kernel stack (8KB)

1 page task_struct (8KB)

16KB al i gned

What this means is that we don’t need to dedicate any register or global variable to point to the current

running process and can retrieve it with the following very simple construct for S/390 and one very
similar for z/Architecture:

static inline struct task_struct * get_current(void)
struct task_struct *current;
asm(“lhi 9%,-8192\n\t"
“nr 9%, 15"

© “=r” (current));

return current;

10

That is, just and’ing the current kernel stack pointer with the mask -8192. Thankfully because Linux
doesn’t have support for nested 10 interrupts and our devices have large buffers can survive interrupts
being shut for short amounts of time we don’t need a separate stack for interrupts.

Register Usage and Stack-Frames on Linux for S390

Overview

This is the code that gcc produces at the top and the bottom of each function. It usually is fairly
consistent and similar from function to function and if you know its layout you can probably make some
headway in finding the ultimate cause of a problem after a crash without a source level debugger.

Note: To follow stack-frames requires knowledge of C or Pascal and limited knowledge of one assembly
language.

Please note that there are some differences between the S/390 and z/Architecture stack layouts as the
latter didn’t have to maintain compatibility with older linkage formats.

Glossary

alloca This is a built in compiler function for runtime allocation of extra space on
the caller’s stack that is obviously freed up on function exit. For example,
the caller may choose to allocate nothing of a buffer of 4k if required for
temporary purposes. It generates very efficient code (a few cycles) when
compared to alternatives like nal | oc() .

automatics These are local variables on the stack, that is, they aren’t in registers and
they aren’t static.

back-chain This is a pointer to the stack pointer before entering a framed functions
(see frameless function) prologue got by de-referencing the address of the
current stack pointer, i.e. got by accessing the 32/64 bit value at the stack
pointers current location.

base-pointer This is a pointer to the back of the literal pool that is an area just behind
each procedure used to store constants in each function.

call-clobbered The caller probably needs to save these registers if there is something of
value in them, on the stack or elsewhere before making a call to another
procedure so that it can restore it later.

epilogue The code generated by the compiler to return to the caller.

frameless-function A frameless function in Tinux is one that does nOt need more than the

11

register save area (96 bytes for S/390; 160 on z/Architecture) given to it by
the caller. A frameless function never:

= Sets up a back chain.
= (Calls alloca.
= (Calls other normal functions

= Has automatics.

GOT-pointer This is a pointer to the global-offset-table in ELF (Executable Linkable
Format, Linux’s most common executable format). All globals and shared
library objects are found using this pointer.

lazy-binding ELF shared libraries are typically only loaded when routines in the shared
library are actually first called at runtime.

procedure-linkage-table This is a table found from the GOT which contains pointers to routines in
other shared libraries which can’t be called to by easier means.

prologue The code generated by the compiler to set up the stack frame.

outgoing-args

This is extra area allocated on the stack of the calling function if the
parameters for the callee’s cannot all be put in registers, the same area can
be reused by each function the caller calls.

routine-descriptor

A COFF executable format based concept of a procedure reference
actually being 8 bytes or more as opposed to a simple pointer to the
routine. This is typically defined as follows:

Routine Descriptor offset 0=Pointer to Function

Routine Descriptor offset 4=Pointer to Table of Contents. The table of
contents/TOC is roughly equivalent to a GOT pointer and it means that
shared libraries etc. can be shared between several environments each with
their own TOC.

static-chain

This is used in nested functions a concept adopted from pascal by gec not
used in ansi C or C++ (although quite useful), basically it is a pointer used
to reference local variables of enclosing functions. You might come across
this stuff once or twice in your lifetime. For example, the function below
should return 11 though gcc may get upset and toss warnings about unused
variables.

12

int FunctionA(int a)
int b;

FunctionC(int c)

{
}

Funct i onC(10) ;
return(b);

}

b=c+1;

S/390 and z/Architecture Register Usage

10 used by syscalls/assembly call-clobbered
rl used by syscalls/assembly call-clobbered
12 argument 0 / return value 0 call-clobbered
3 argument 1 / return value 1 (if long long on §/390) | call-clobbered
r4 argument 2 call-clobbered
15 argument 3 call-clobbered
16 argument 4 saved
17 pointer-to arguments 5 to ... saved
18 this and that saved

this and that saved
r10 static-chain (if nested function) saved
r11 frame-pointer (if function used alloca) saved
r12 got-pointer saved

13

r13 base-pointer saved

r14 return-address saved

r15 stack-pointer saved

0 9 call-clobbered
2 argument 1 call-clobbered
4 z/ Architecture argument 2 saved

f6 z/ Architecture argument 3 saved

The remaining floating points £1,£3,f5 £7-f15 are call-clobbered.

Notes:

L.

The only requirement is that registers that are used by the callee are saved. For example, the
compiler is perfectly capable of using r11 for purposes other than a frame a frame pointer if
a frame pointer is not needed.

In functions with variable arguments. For example, printf the calling procedure is identical
to one without variable arguments and the same number of parameters. However, the
prologue of this function is somewhat more hairy owing to it having to move these
parameters to the stack to getva_start,va_arg and va_end to work.

Access registers are currently unused by gec but are used in the kernel. Possibilities exist to
use them at the moment for temporary storage but it isn’t recommended.

Only 4 of the floating point registers are used for parameter passing as older machines such
as G3 only have only 4 and it keeps the stack frame compatible with other compilers.
However, with IEEE floating-point emulation under Linux on the older machines you are
free to use the other 12.

A'long |ong or doubl e parameter cannot be the first 4 bytes in a register and the second
four bytes in the outgoing args area. It must be purely in the outgoing args area if crossing
this boundary.

Floating-point parameters are mixed with outgoing args on the outgoing args area in the
order they are passed in as parameters.

14

7. Floating-point arguments 2 and 3 are saved in the outgoing atgs area for z/Architecture

Stack Frame Layout

S/390 z/Architecture | Description

0 0 back chain (a 0 here signifies end of back chain)

4 8 eos (end of stack, not used on Linux for S390 used in other linkage
formats)

8 16 glue used in other linkage formats for saved routine descriptors etc.

12 24 glue used in other linkage formats for saved routine descriptors etc.

16 32 scratch area

20 40 scratch area

24 48 saved 16 of caller function

28 56 saved 17 of caller function

32 64 saved 18 of caller function

36 72 saved 19 of caller function

40 80 saved r10 of caller function

44 88 saved r11 of caller function

48 96 saved r12 of caller function

52 104 saved 13 of caller function

56 112 saved r14 of caller function

60 120 saved r15 of caller function

15

64 128 saved 4 of caller function

72 136 saved f6 of caller function

80 undefined

96 160 outgoing args passed from caller to callee
96+x 160+x possible stack alighment (8 bytes desirable)

96+x+y 160+x+y

alloca space of caller (if used)

96+x+y+z | 160+x+y+z

automatics of caller (if used)

back-chain

A sample program with comments

Comments on the function test

1.

It didn’t need to set up a pointer to the constant pool gpr13 as it isn’t used (:-().

2. 'This is a frameless function and no stack is bought.

3.

4.

0040037c int test(int b)

The compiler was clever enough to recognize that it could return the value in r2 as well as
use it for the passed in parameter (:-)).

The basr (branch and save) trick works as follows the instruction has a special case with 10
(r0 with some instruction operands is understood as the literal value 0, some RISC
architectures also do this). So now we are branching to the next address and the address new
program counter is in r13, so now we subtract the size of the function prologue we have
executed + the size of the literal pool to get to the top of the literal pool

{ # Function prol ogue bel ow

40037c:
400380:
400382:

Huge

400386:
Function epil ogue bel ow

90 de fO 34
0d do

a7 da ff fa
return(5+b);
mai n program
a7 2a 00 05

40038a: 98 de fO 34

40038e

. 07 fe br

stm
basr
ahi

ahi

I'm
% 14

% 13, % 14, 52(% 15)
% 13, % 0

% 13, -6

% 2,5

% 13, % 14, 52(% 15)

H* H

Save registers r13 & rl4
Set up pointer to constant pool
basr trick

add 5tor2

restore registers ri13 & 14
return

usi ng

16

Comments on the function main

The compiler did this function optimally (8-))

Literal
400390:

400394:
400398:
40039a:
40039e:
4003a0:
4003a4:

pool
ff ff ff ec
mai n(int argc, char *argv[])
{ # Function prol ogue bel ow

90
18
ar
0d
ar
50

for nai

bf fO 2c

n.

.long Oxffffffec

return(test(5));
4003a8: 58 e0 dO 00
literal

4003ac:

a7

pool

28 00 05

4003b0: 4d ee dO 00

Function Epil ogue bel ow

4003b4: 98 bf fO 8¢
4003b8: 07 fe

}

New Compiler Changes

mai n(int argc, char *argv[])

{
4004f c: 90 7f
400500: a7 d5
400504: 00 40

conpil er now puts
400508: 18 of
40050a: a7 fa
40050€e: 50 00

return(test(5));
400512: 58 10
400516: a7 28
40051a: 0d el

fo 1c
00 04
04 4

const ant pool

ff a0
f0 00

do 00
00 05

stm
Ir
ahi
basr
ahi
st

| hi
bas

br

% 11, % 15, 44(% 15)
%0, % 15

% 15, - 96

% 13, % 0

% 13, - 16

% 0, 0(% 15)

% 14, 0(% 13)
%2, 5
% 14, 0(% 14, % 13)

% 11, 9% 15, 140(% 15)
% 14

HHHHHHHH

H* H

#

Save necessary registers

copy stack pointer to r0

Make area for callee saving

Set up r13 to point to

literal pool

Save backchai n

Mai n Program Bel ow

load rel ative address of test from

Set first paraneter to 5
junp to test setting rl4 as return
address using branch & save instruction.

Rest ore necessary registers.
return to do program exit

to so it saves an instruction

stm % 7, % 15, 28(% 15)
bras % 13, 400508 <nai n+0xc>
.l ong 0x004004f 4
in code
Ir % 0, % 15
ahi % 15, - 96
st % 0, 0(% 15)
I % 1, 0(% 13)
| hi % 2,5
basr % 14, % 1

conpiler adds 1 extra instruction to epilogue this is done to

avoid processor pipeline stalls owing to data dependencies on g5 &

above as register 14 in the old code was needed directly after being | oaded
by the | m% 11, % 15, 140(% 15) for the br 9%4.

40051c:
400520:
400524:

}

58 40
98 7f
07 f4

fO 98
fo 7c

| % 4, 152(% 15)
% 7, % 15, 124(% 15)

I'm
br % 4

Hartmut (our compiler developer) also has been threatening to take out the stack backchain in optimized
code as this also causes pipeline stalls: you have been warned.

64 bit z/Architecture code disassembly

If you understand the stuff above you’ll understand the stuff below too so I'll avoid repeating myself and
just say that some of the instructions have g’s on the end of them to indicate they are 64 bit and the stack
offsets are a bigger. The only other difference you’ll find between 32 and 64 bit is that we now use 4 and
f6 for floating point arguments on 64 bit.

00000000800005b0 <t est >:

17

int test(int b)

return(5+b);

800005b0: a7 2a 00 05 ahi % 2,5
800005b4: b9 14 00 22 lofr % 2, % 2 # downcast to integer
800005h8: 07 fe br % 14
800005ba: 07 07 ber 0,%7

}

00000000800005bc <mai n>:
mai n(int argc, char *argv[])

800005bc: eb bf f0O 58 00 24 st ng

800005c2: b9 04 00 1f I gr

800005c6: a7 fb ff 60 aghi

800005ca: e3 10 fO 00 00 24 stg
return(test(5));

% 11, % 15, 88(% 15)
%1, % 15

% 15, - 160

% 1, 0(% 15)

800005d0: a7 29 00 05 | ghi % 2,5

brasl allows junps > 64k & is overkill here bras would do fine
800005d4: c0 e5 ff ff ff ee brasl 9% 14, 800005b0 <t est >
800005da: €3 40 f1 10 00 04 lg % 4, 272(% 15)
800005e0: eb bf fO f8 00 04 I ng % 11, % 15, 248(% 15)
800005e6: 07 f4 br % 4

}

Compiling programs for debugging on Linux for S390 and z/Architecture

-gdwarf-2 now works it should be considered the default debugging format for s/390 and
z/ Architecture as it is more reliable for debugging shared libraries, normal -g debugging works much
better now Thanks to the IBM java compiler developers bug reports.

Make sure that the gcc is compiling and linking with the - g flag on this generates plain old gnu stabs, do
not use - ggdb, - gxcof f + or any other silly option these other options mote than likely don't work (we
haven't tested them), - gst abs is supposed to add extra extensions to the debugging info for debugging
c++ we haven't got round to testing this yet.

This is typically done adding/appending the flags -g or - gdwarf-2 to the CFLAGS and LDFLAGS
variables Makef i | e of the program concerned.

If using gdb and you would like accurate displays of registers and stack traces compile without
optimization: That is, make sure that there is no - @ or similar on the CFLAGS line of the Makef i | e and
the emitted gcc commands, obviously this will produce worse code (not advisable for shipment) but it is
an aid to the debugging process.

This aids debugging because the compiler will copy parameters passed in registers onto the stack so
backtracking and looking at passed in parameters will work, however some larger programs that use
inline functions will not compile without optimization.

Debugging with optimization has since much improved after fixing some bugs, please make sure you are
using gdb-5.0 or later developed after November 2000.

18

Figuring out gcc compile errors

If you are getting a lot of syntax errors compiling a program and the problem isn’t blatantly obvious
from the source. It often helps to just preprocess the file; this is done with the - E option in gcc. What
this does is that it runs through the very first phase of compilation (compilation in gcc is done in several
stages and gcc calls many programs to achieve its end result) with the - E option gcc just calls the
preprocessor (cpp). The ¢ preprocessor does the following, it joins all the files included together
recursively (#i ncl ude files can #i ncl ude other files) and also the c file you wish to compile. It puts a fully
qualified path of the included files in a comment and it does macro expansion. This is useful for

debugging because:

1. You can double check whether the files you expect to be included are the ones that are
being included (for example, double check that you aren’t going to the 1386 asmdirectory).

2. Check that macro definitions are not clashing with t ypedef s,
3. Check that definitions are not being used before they are being included.
4. Helps put the line emitting the error under the microscope if it contains macros.

For convenience the Linux kernel’s makefile will do preprocessing automatically for you by suffixing the
file you want built with . i (instead of . 0). For example, from the Linux directory type:

nmake arch/s390/ ker nel / si gnal . i

This will build:

s390-gcc -D_KERNEL___ -1/ homel/barrow |i nux/include -Vall -Wtrict-prototypes - -fomt-
f rane- poi nt er

-fno-strict-aliasing -D_SMP__ -pipe -fno-strength-reduce -E arch/s390/kernel/signal.c
arch/ s390/ ker nel / si gnal . i

Now look at si gnal . i you should see something like:

1 “/honel/barrow | inux/include/asnmtypes.h” 1
t ypedef unsigned short unode_t;

typedef _ signed__ char __s8;

t ypedef unsigned char __ u8;

typedef _ signed__ short _ s16;

typedef unsigned short _ ul6;

If instead you are getting errors further down. For example, unknown i nstruction: 2515 “nove.|”
or better still unknown i nstruction: 2515 “Fi xne not inplenented yet, call Martin” you
are probably are attempting to compile some code meant for another architecture or code that is simply
not implemented, with a fixme statement stuck into the inline assembly code so that the author of the
file now knows he has work to do. To look at the assembly emitted by gcc just before it is about to call
gas (the gnu assembler) use the - S option. Again for your convenience the Linux kernel’s Makefile will
hold your hand and do all this donkey work for you also by building the file with the . s suffix. For
example, from the Linux directory type:

make arch/s390/ kernel /signal . s

s390-gcc -D_KERNEL__ -1/ homel/barrow |i nux/include -VWall -Vétrict-prototypes -Q@ -fomt-
f r ame- poi nt er

19

-fno-strict-aliasing -D_SMP__ -pipe -fno-strength-reduce -S arch/s390/kernel/signal.c
-0 arch/s390/ kernel /signal .s

This will output something like, (please note the constant pool and the useful comments in the prologue
to give you a hand at interpreting it).
. LC54:
.string “msaligned (__ul6 *) in _ xchg\n”
. LGB7:
.string “msaligned (__u32 *) in _ xchg\n”
.L$PGL: # Pool sys_si gsuspend

. LC192:
.long -262401
. LC193:
.long -1
. LC194:
.l ong schedul e-. L$PGL
. LC195:

.l ong do_signal -.L$PGL
.align 4
.globl sys_sigsuspend
.type sys_sigsuspend, @unction
sys_si gsuspend:
| eaf function O
automatics 16
outgoing args O
need frane pointer 0O
call alloca O
has varargs 0O
incomng args (stack) 0
function |l ength 168
STM 8, 15, 32(15)
LR 0,15
AH 15,-112
BASR 13,0
.L$COL: AH 13,.L$PGL-. L$COL
ST 0,0(15)
LR 8,2
N 5,.LC192-. L$PGL(13)

HH O H O H R

Adding - g to the above output makes the output even more useful. For example, typing:
make CC ="s390-gcc -g” kernel/sched.s

Which compiles:
s390-gcc -g -D_KERNEL__ -1/ home/ barrow | i nux-2. 3/include -Wall -Wtrict-prototypes -Q -
fomt-frane-pointer -fno-strict-aliasing -pipe -fno-strength-reduce -S kernel/sched.c -

o kernel/sched. s

This also outputs stabs (debugger) information, from which you can find out the offsets and sizes of
various elements in structures. For example, the stab for the structure
struct rlimt {

unsigned long rlimcur;
unsi gned | ong rlimmax;

20

is
.stabs “rlimt:T(151,2)=s8rlimcur:(0,5),0,32;rlimnax:(0,5),32,32;;",128,0,0,0

From this stab you can see that:

= rlimit cur starts at bit offset O and is 32 bits in size

= rlimit max starts at bit offset 32 and is 32 bits in size.
Debugging Tools

This section examines the tools available to debug your Linux system.
objdump
This is a tool with many options the most useful being (if compiled with - g).

obj dunp—source <victimprogramor object file <victins debug listing

The whole kernel can be compiled like this (doing this will make a 17MB kernel and a 200 MB listing)
however you have to strip it before building the image using the strip command to make it a more
reasonable size to boot it.

A source/assembly mixed dump of the kernel can be done with the line:

obj dump—source vm i nux vm i nux. | st

Also if the file isn’t compiled - g this will output as much debugging information as it can (for example,
function names). However, this is very slow as it spends lots of time searching for debugging info, the
following self-explanatory line should be used instead if the code isn’t compiled - g.

obj dunp—di sassenbl e-al | —syns vm i nux vnii nux. | st

as it is much faster.
As hard drive space is valuable most of us use the following approach.
1. Look at the emitted PSW on the console to find the crash address in the kernel.

2. Look at the file Syst em map (in the linux directory) produced when building the kernel to
find the closest address less than the current PSW to find the offending function.

3. Use grep or similar to search the source tree looking for the source file with this function if
you don’t know where it is.

4. Rebuild this object file with -g on, as an example suppose the file was
[arch/ s390/ kernel / si gnal . 0

5. Assuming the file with the erroneous function is si gnal . ¢. Move to the base of the Linux
source tree

6. Erase the existing object file: r m / ar ch/ s390/ ker nel / si gnal . o

21

7. Build the object file: make / ar ch/ s390/ ker nel / si gnal . o

8. Watch the gcc command line emitted

9. Type it in again or alternatively cut and paste it on the console adding the - g option.
10. obj dunp—source arch/s390/ kernel /signal.o signal.lst

11. This will output the source and the assembly intermixed, as the snippet below shows. This
will unfortunately output addresses which aren’t the same as the kernel ones you should be
able to get around the mental arithmetic by playing with the—adj ust - vim parameter to

obj dunp.

extern inline void spin_|lock(spinlock_t *Ip)

{

a0: 18 34 Ir % 3, % 4

a2: a7 3a 03 bc ahi % 3, 956

_asm__ _ volatile(* I'hi 1,-1\n"

a6: a7 18 ff ff | hi % 1,-1

aa: 1f 00 slr %0, %0

ac: ba 01 30 00 cs %0, % 1, 0(% 3)

b0: a7 44 ff fd jm aa <sys_si gsuspend+0x2e
saveset = current-bl ocked;

b4: d2 07 f0O 68 nvc 104(8, % 15), 972(% 4)
b8: 43 cc

return (set-sig[0] and mask) != 0;

}

* If debugging under VM go down to that section in the document for more info.

I now have a tool that takes the pain out of - - adj ust - vima, and you are able to do something like:

make /arch/s390/ kernel /traps. | st

And it automatically generates the correctly relocated entries for the text segment in traps. | st. This
tool is now standard in Linux distributions in scri pt s/ makel st .

strace
Q. WHAT IS IT?
A. It is a tool for intercepting calls to the kernel and logging them to a file and on the screen.
Q. What use is it?
A. You can use it to find out what files a particular program opens.

EXAMPLE 1

If you wanted to know does ping work but didn’t have the source:
strace ping -¢ 1 127.0.0.1

22

Then look at the man pages for each of the syscalls below, (In fact this is sometimes easier than looking
at some spaghetti source which conditionally compiles for several architectures). Not everything that it
throws out needs to make sense immediately.

Just looking quickly you can see that it is making up a RAW socket for the ICMP protocol. Doing an
al arn(10) for a 10 second timeout and doing a get ti meof day() call before and after each read to
see how long the replies took, and writing some text to stdout so the user has an idea what is going on.

socket (PF_I NET, SOCK_RAW | PPROTO | OW) = 3

getuid() =0

setuid(0) =0

stat (“/usr/share/locale/Clibc.cat”, Oxbffffl134) = -1 ENCENT (No such file or directory)
stat(“/usr/share/locale/libc/C, Oxbffffl134) = -1 ENCENT (No such file or directory)
stat(“/usr/local/share/locale/Clibc.cat”, Oxbffffl1l34) = -1 ENCENT (No such file or
di rectory)

getpid() = 353

set sockopt (3, SOL_SOCKET, SO BROADCAST, [1], 4) =0

set sockopt (3, SOL_SOCKET, SO RCVBUF, [49152], 4) =0

fstat(1, {st_node=S_ | FCHR 0620, st_rdev=nakedev(3, 1), ...}) =0

map(0, 4096, PROT_READ| PROT_WR TE, NMAP_PRI VATE| MAP_ANONYMOUS, -1, 0) = 0x40008000
ioctl (1, TCGETS, {B9600 opost isig icanon echo ...}) =0

wite(l, “PING 127.0.0.1 (127.0.0.1): 56 d"..., 42PING 127.0.0.1 (127.0.0.1): 56 data
byt es

) = 42

si gaction(SI G NT, {0x8049ba0, [], SA RESTART}, {SIGDFL}) =0

si gacti on(SI GALRM {0x8049600, [], SA RESTART}, {SIGDFL}) =0

get ti nmeof day({948904719, 138951}, NULL) = 0

sendto(3, “\10\0D\ 201a\ 1\ 0\ 0\ 17#\ 2178\ 307\36"..., 64, 0, {sin_fam | y=AF_| NET,

si n_port=htons(0), sin_addr=inet_addr(“127.0.0.1")}, 16) = 64

si gacti on(SI GALRM {0x8049600, [], SA RESTART}, {0x8049600, [], SA RESTART}) =0

si gacti on(SI GALRM {0x8049ba0, [], SA RESTART}, {0x8049600, [], SA RESTART}) =0
alarn(10) = 0

recvfron(3, “E\O\0T\0005\0\0@1| r\177\0\0\ 1\ 177"..., 192, O,

{sin_fam | y=AF_| NET, sin_port=htons(50882), sin_addr=inet_addr(“127.0.0.1")}, [16]) = 84
get ti meof day({948904719, 160224}, NULL) = 0

recvfron(3, “E\ 0\0T\0006\0\0\377\1\275p\ 177\0"..., 192, O,

{sin_fam | y=AF_| NET, sin_port=htons(50882), sin_addr=inet_addr(“127.0.0.1")}, [16]) = 84

getti meof day({948904719, 166952}, NULL) =0
wite(l, “64 bytes from127.0.0.1: icnp_se”...,
5764 bytes from 127.0.0.1: icnp_seq=0 ttl =255 tinme=28.0 ns

EXAMPLE 2

strace passwd 2>&l | grep open

Produces the following output:

open(“/etc/ld.so.cache”, O RDONLY) = 3

open(“/opt/kde/lib/libc.so.5", ORDONLY) = -1 ENCENT (No such file or directory)
open(“/lib/libc.so.5", ORDONLY) = 3

open(“/dev”’, O RDONLY) = 3

open(“/var/run/utnp”, O RDONLY) = 3

open(“/etc/passwd”, O RDONLY) = 3

open(“/etc/shadow', O RDONLY) = 3

open(“/etc/login.defs”, ORDOWLY) = 4

open(“/dev/tty”, O RDONLY) = 4

23

The 2>&1 is done to redirect stderr to stdout and grep is then filtering this input through the pipe for
each line containing the string open.

EXAMPLE 3

NOW WE ARE GETTING SOPHISTICATED: TELNETD CRASHES ON AND I DON’T KNOW WHY

1. Replace the following line in /etc/inetd.conf: telnet stream tcp nowait root
Jusr/sbin/in.telnetd -hwithtelnet streamtcp nowait root /blah

2. Create the file / bl ah with the following contents to start tracing t el netd

3. #!/bin/bash
/usr/bin/strace -o/tl1 -f /usr/shin/in.telnetd -h

4. chnod 700 /bl ah to make it executable only to root

5. killall -HUWP inetd or ps aux | grep inetd.getinetd’s processidandkill -HUP inetd
to restart it.

IMPORTANT OPTIONS

= -oisused to tell strace to output to a file: in our case t 1 in the root directory

* -f is to follow children: For example, in our case above t el net d will start the login process
and subsequently a shell like bash. You will be able to tell which is which from the process
ID’s listed on the left hand side of the st r ace output.

= - p<pi d> will tell strace to attach to a running process, yup this can be done provided it isn’t
being traced or debugged already and you have enough privileges, the reason 2 processes
cannot trace or debug the same program is that strace becomes the parent process of the
one being debugged and processes (unlike people) can have only one parent.

However the file /t1 will get big quite quickly to test it t el net 127.0. 0. 1. Now look at what files
in telnetd execve'd

413 execve(“/usr/sbin/in.telnetd”, ["/usr/sbin/in.telnetd”, “-h"], [/* 17 vars /]) =0
414 execve(“/bin/login”, ["/bin/login”, “-h", “local host”, “-p"], [/ 2 vars */]) =0
Whey it worked!

OTHER HINTS

If the program is not very interactive (that is, not much keyboard input) and is crashing in one
architecture but not in another you can do an st race of both programs under as identical a scenario as
you can on both architectures outputting to a file then. Do a diff of the two traces using the diff
program. That is:

di ff outputl output2

24

Now maybe you’ll be able to see where the call paths differed, this is possibly near the cause of the crash.

MORE INFORMATION

Look at man pages for strace and the various syscal | s. For example, nan strace, man al arm and nan
socket .

Performance Debugging

gec is capable of compiling in profiling code just add the - p option to the CFLAGS, this obviously affects
program size and performance. This can be used by the gprof gnu profiling tool or the gcov the gnu
code coverage tool (code coverage is a means of testing code quality by checking if all the code in an
executable in exercised by a tester).

Using top to find out where processes are sleeping in the kernel

To do this:

= Copy the System map from the root directory where the Linux kernel was built to the / boot
directory on your Linux machine.

= Starttop
= Now type f U<r et ur n>

* You should see a new field called WHAN, which tells you where each process is sleeping here
is a typical output.

6:59pm up 41 min, 1 user, |oad average: 0.00, 0.00, 0.00

28 processes: 27 sleeping, 1 running, O zonbie, 0 stopped

CPU states: 0.0%user, 0.1%system 0.0%nice, 99.8%idl e

Mem 254900K av, 45976K used, 208924K free, OK shrd, 28636K buf f
Swap: OK av, OK used, OK free 8620K cached

PI D USER PRI N SIZE RSS SHARE WCHAN STAT LIB %€PU %WEM Tl ME COMVAND

750 r oot 12 0 848 848 700 do_select S 0 0.1 0.3 0:00 in.telnetd
767 root 16 0 1140 1140 964 R 0 0.1 0.4 0:00 top

1 root 8 0 212 212 180 do_select S 0 0.0 0.0 0:00init

2 root 9 0 0 0 0 down_inte SW 0 0.0 0.0 0:00 kncheck

The time command

Another related command is the time command that gives you an indication of where a process is
spending the majority of its time: For example,

time ping -c 5 nc
out put s

real Onmt. 054s
user OnD. 010s
sys 0On0. 010s

25

Debugging under VM

Addresses and values in the VM debugger are always hex never decimal. Address ranges are of the
format <HexVal uel- <HexVal ue2 or <HexVal uel. <HexVal ue2. For example, the address range 0x2000 to
0x3000 can be desctibed as 2000-3000 or 2000.1000.

The VM Debugger is case insensitive.

VM’s strengths are usually other debuggers weaknesses you can get at any resource no matter how
sensitive (for example, memory management resources, change address translation in the PSW. For
kernel hacking you will reap dividends if you get good at it.

The VM Debugger displays operators but not operands, probably because some of it was written when
memory was expensive and the programmer was probably proud that it fitted into 2k of memory and
the programmers didn’t want to shock hardcore VM’ers by changing the interface :-). Also, the debugger
displays useful information on the same line and the author of the code probably felt that it was a good
idea not to go over the 80 columns on the screen.

As some of you are probably in a panic now this isn’t as unintuitive as it may seem as the 390
instructions are easy to decode mentally and you can make a good guess at a lot of them as all the
operands are nibble (half byte aligned). If you have an obj dunp listing also it is quite easy to follow. If
you don’t have an obj dunp listing keep a copy of the ESA Reference Summary and look at between
pages 2 and 7 or alternatively the ESA principles of operation. For example, even I can guess that:

0001AFF8’ LR 180F CC O
is a (load register) I r r0, r15

Also it is very easy to tell the length of a 390 instruction from the 2 most significant bits in the
instruction (not that this info is really useful except if you are trying to make sense of a hexdump of
code):

Bits | Instruction Length
00 | 2 Bytes
01 4 Bytes
10 4 Bytes
11 6 Bytes

The debugger also displays other useful info on the same line such as the addresses being operated on
destination addresses of branches and condition codes. For example:

26

00019736 AH A7DAFFOE cC
000198BA" BRC A7840004 -> 0001982 CC
000198CE STM 900EF068 OFAQ5E78 cC

N OB

Useful VM debugger commands

I suppose I’d better mention this before I start to list the current active traces do
QTR

There can be a maximum of 255 of these per set (more about trace sets later). To stop traces issue:
TR END

To delete a particular breakpoint issue
TR DEL <breakpoi nt nunber >

The PA1 key drops to CP mode so you can issue debugger commands. Doing al t-¢ (on my 3270
console at least) clears the screen. Hitting b <ent er > comes back to the running operating system from
CP mode (in our case Linux).

It is typically useful to add shortcuts to your PROFILE EXEC file if you have one (this is roughly
equivalent to aut oexec. bat in DOS or . profi | e in Linux). Here are a few from mine:
/* this gives me comrand history on issuing f12 */

set pfl2 retrieve

/* this continues */

set pf8 immb

/* goes to trace set a */

set pfl1 immtr goto a

/* goes to trace set b */

set pf2 inmtr goto b

/* goes to trace set ¢ */

set pf3 immtr goto c

INSTRUCTION TRACING

Setting a simple breakpoint:
TR | PSWA <addr ess>

To debug a particular function try:
" TR R <function address range>
* TR | onits own will single step.

®* TR | DATA <NACH NE- CODE> <CPTI ONAL RANGE> will trace for particular mnemonics. For
example, TR | DATA 4D R 0197BC. 4000 will trace for BAS’es (opcode 4D) in the range
0197BC.4000. If you were inclined you could add traces for all branch instructions and
suffix them with the run prefix so you would have a backtrace on screen when a program
crashes.

27

* TR BR <INTO R FROW> will trace branches into or out of an address. For example, TR BR
I NTO 0 is often quite useful if a program is getting awkward and deciding to branch to 0 and
crashing as this will stop at the address before in jumps to 0.

" TR | R <address range> RUN cnd d g single steps a range of addresses but stays
running and displays the general-purpose registers on each step.

DISPLAYING AND MODIFYING REGISTERS

* D Gwill display 32-bits of all the gprs. Use D GGto display the full 64-bits.

= D Xwill display all the control registers

* D ARwill display all the access registers

* D AR4- 7 will display access registers 4 to 7

* CPU ALL D Gwill display the GRPS of all CPUS in the configuration

* D PSWuwill display the current PSW

= ST PSW 2000 will put the value 2000 into the PSW and probably crash your machine.
* D PREFI Xwill display the prefix register

DISPLAYING MEMORY

To display memory that was mapped using the current PSW’s mapping try:

D <range>

To make VM display a message each time it hits a particular address and continue try:

* D I <range> will disassemble/display a range of instructions.

ST addr <32 bit word>will store a 32 bit aligned address
* D T<range> will display the EBCDIC in an address (if you are that way inclined)
* D R<range> will display real addresses, without DAT, but with prefixing.
There are other complex options to display if you need to get at say home space but are in primary space

the easiest thing to do is to temporarily modify the PSW to the other addressing mode, display the stuff
and then restore it.

28

HINTS

If you want to issue a debugger command without halting your virtual machine with the PA1 key, then
try prefixing the command with #CP:

#cp tr i pswa 2000
Also suffixing most debugger commands with RUN will cause them not to stop just display the
mnemonic at the current instruction on the console. If you have several breakpoints you want to put

into your program and you get fed up of cross referencing with Syst em map you can do the following
trick for several symbols.:

grep do_signal System nap
This emits the following among other things:
0001f4e0 T do_si gnal

Now you can do:

TR | PSWA 0001f4e0 cnmd nsg * do_signal

This sends a message to your console each time do_si gnal is entered. (As an aside I wrote a petl script
once that automatically generated a REXX script with breakpoints on every kernel procedure. This isn’t
a good idea because there are thousands of these routines and VM can only set 255 breakpoints at a

time, you nearly had to spend as long pruning the file down as you would enter the messages by hand).
However, the trick might be useful for a single object file.

On Linux’s 3270 emulator x3270 there is a very useful option under the file menu: Save Screens In File
this is very good of keeping a copy of traces.

From CMS help <command name> will give you online help on a particular command: e.g.
HELP DI SPLAY
Also CMS has a file called PROFILE EXEC which automatically gets called on startup of CMS (like

autoexec.bat). Keeping on a DOS analogy session, CP has a feature similar to doskey, it may be useful
for you to use PROFILE EXEC to define some keystrokes: e.g.

SET PF9 | W B

This does a single step in VM on pressing F8.
SET PF10 ~

This sets up the ™ key, which can be used for ~c (ctrl-c), z (ctrl-z) which cannot be typed directly into
some 3270 consoles.

SET PF11 ~-

This types the starting keystrokes for a sysrq see SysRq below.
SET PF12 RETRI EVE

This retrieves command history on pressing F12.

29

Sometimes in VM the display is set up to scroll automatically this can be very annoying if there are
messages you wish to look at. To stop do this:

TERM MORE 255 255

This will nearly stop automatic screen updates, however it will cause a denial of service if lots of
messages go to the 3270 console, so it would be foolish to use this as the default on a production
machine.

Tracing particular processes

The kernels text segment is intentionally at an address in memory that it will very seldom collide with
text segments of user programs (thanks Martin), this simplifies debugging the kernel. However it is quite
common for user processes to have addresses that collide. This can make debugging a particular process
under VM painful under normal circumstances as the process may change when doing a

TR | R <address range>.

Thankfully after reading VM’s online help I figured out how to debug I particular process.

Your first problem is to find the STD (segment table designation) of the program you wish to debug.
There are several ways you can do this. Here are a few:

1. Locating value of CR13 when main is invoked:
" obj dunp—synms <programto be debugged> | grep main
(This will get the address of main in the program)
" tr i pswa <address of nmain>

= Start the program, if VM drops to CP on what looks like the entry point of the main
function this is most likely the process you wish to debug.

* NowdoaDb X13 (on S/390) or D XGL3 (on z/VM). For 31 bit the STD is bits 1-19 (the
STO segment table origin) and 25-31 (the STL segment table length) of CR13.

* Now type:
TR 1 R STD <CR13’'s value> 0. 7fffffff
For example:
TR | R STD 8F32E1FF 0. 7fffffff

2. Intercepting the setting of the STD:

= TR STORE I NTO STD <CR13' s val ue> <address range>

3. Navigating / pr oc. This method is more complex but could be quite convenient if you aren’t
updating the kernel much and so your kernel structures will stay constant for a reasonable
petiod of time).

30

= grep task /proc/<pid>/status. From this you should see something like:
task: Of 160000 ksp: Of 161de8 pt_regs: Of 161f68

* This now gives you a pointer to the task structure. Now make OC ="s390-gcc -g”
kernel /sched.s to get the task_struct stabinfo. (task_struct is defined in
i ncl ude/ | i nux/ sched. h).

= Now we want to look at task->active_nm >pgd. On my machine the acti ve_nmmin
the task structute stab is:

active_mm (4, 12),672, 32

Its offset is 672/8=84=0x54, the pgd member in the mm_struct stab is
ped:(4,6)=*(29,5),96,32. So its offset is 96/8=12=0xc

= So we'll: hexdunp -s Oxf 160054 /dev/ mem | nore

(That is, t ask_st ruct +act i ve_mmoffset) to look at the acti ve_mmmember:
f 160054 Of ee cc60 0019 e334 0000 0000 0000 0011

® hexdunp -s 0xOf eecc6c /dev/mem | nore (Thatis, active_mmtpgd offset):
feecc6c Of 2c 0000 0000 0001 0000 0001 0000 0010
= Now do:

TR | R STD <pgd| 0x7f> 0. 7fffffff (thatis, the Ox7f is added because the pgd only gives
the page table origin and we need to set the low bits to the maximum possible segment table

length.)

TR | R STD 0f2c007f 0.7fffffff (§/390) or

TR | R STD <pgd| Ox7> 0. ffffffffffffffff (z/Architecture)

TRACING PROGRAM EXCEPTIONS

If you get a crash which says something like illegal operation or specification exception followed by a
register dump You can restart Linux and trace these using thetr prog <range | val ue> option.

The most common ones you will normally be tracing for is:

1 | Operation exception

2 | Privileged operation exception

4 | Protection exception

31

5 | Addressing exception

6 | Specification exception

10 | Segment translation exception

11 | Page translation exception

The full list of these is in the ESA Reference Summary. For example:
= tr prog 10 will trace segment translation exceptions.

® tr prog on its own will trace all program interruption codes.

TRACE SETS

On starting VM you are initially in the I NI TI AL trace set. You can do a Q TR to verify this. If you have a
complex tracing situation where you wish to wait for instance till a driver is open before you start tracing
1/0O, but know in your heart that you are going to have to make several runs through the code till you
have a clue what’s going on.

What you can do is:
TR | PSWA <Driver open address>

Enter b to continue until the breakpoint is reached. Now do your:

TR GOTO B
TR 1O 7¢c08-7c09 (or whatever and trace tour 10

To got back to the initial trace set do:
TR GOTO | NI TI AL

Now the TR I PSWA <Driver open address> will be the only active breakpoint again.

TRACING LINUX SYSCALLS UNDER VM

Syscalls are implemented on Linux for S390 by the Supervisor call instruction (SVC). There are 256
possibilities of these as the instruction is made up of a Ox0a operation code and the second byte being
the syscall number. They are traced using the simple command:

TR SVC <Optional val ue or range>

The syscalls are defined in | i nux/ i ncl ude/ asm s390/ uni st d. h. For example, to trace all file opens
just do:

TR SVC 5 (as this is the syscall nunber of open)

32

SMP SPECIFIC COMMANDS

* To find out how many CPUs you have use the Q CPUS command.

* To find the CPU that the current VM debugger commands are being directed at use Q CPU.

* To change the current CPU at which the commands are being directed then issue the CPU <cpui d>
command.

e Toissue a command to all CPUs prefix the command with CPU ALL.

* If you are running on a guest with several CPUs and you have an I/O related problem but cannot
follow the flow of code, then (if you know the problem is not SMP-related) do the following:

Issue shut down —h nowto terminate Linux
Q CPUS to find out how many CPUs you have.

Detach all CPUs except CPU 0 by issuing DETACH CPU 01- nn and boot linux again

o O O O

DEFI NE CPU 01- <nn> will make your guest’s CPUs available again.

* TR SI &GP will trace inter-processor signaling instructions.

PRODUCING TRACE OF SYSTEM FLOW

VM’s ability to trace branch operations allows the production of system flow data. The output can (and
is) quite voluminous but can be made human-friendly by the following process.

1.

FTP the Syst em map to the VM user who will process the flow data or allow the EXEC to
FTP it for you each time.

Create the trace set that will produce a printout of all branch operations. You can start the
trace prior to booting Linux or prior to running your daemon or application:

#CP TR BR PRI NT

Redirect the output of the command to a user who will process the data:
#CP SP P <user>

When you are ready to process the data, end the trace and close the print file:

#CP TR END
#CP CLCSE P

Run the following EXEC to process the trace:

[* *]/

parse upper arg Option .
si gnal on SYNTAX
MaxSym = 0

33

Cache. = *
if Qption <> “ then
Stage =*“

el se

Stage = ‘| nlocate /nenset/’,
‘| nlocate /mencpy/’,
‘]l nlocate /mencnp/’,
‘| nlocate /update_wall _time/’,
‘]l nlocate /printk/’,
‘]l nlocate /strcpy/’,
‘|l nlocate /strncpy/’,
‘]l nlocate /strcnp/’,
‘|l nlocate /strncnp/’,
‘|l nlocate /strchr/’,
‘|l nlocate /strlen/’,
‘| nlocate /External Exception/’,
‘|l nlocate /External +/’,
‘]l nlocate /do_tiner/’,
‘| nlocate /vsprintf/’,
‘] nlocate /set_bit/’,
‘| nlocate /free_pages/’,
‘| nlocate /meminit/’

‘PI PE (name READ_NAP)’,

‘| ftp ftp://<user>: <passwor d>@host . domai n>/|inux/ System map bi nary’,
| xlate from437 to 1047,
| debl ock c’,
| drop 1',

‘] strip’,
|
|
I

‘| locate 1',

nfind U ||,

spec wl x2c 1 wi-* nw,

stem Map.’

‘Pl PE (name READ TRACE end ?)’,
‘| reader’,

nct oasa’

spec 2-* 1’,

a: locate /BASR ',

b: faninany’,

spec W2-4 1 w6 nw ,

stem Trace.’,

‘
‘
‘
.

‘

I
I
I
I
I
I
I
t?
I
I
?
I

a.’,
‘| c: locate /LPSW',
‘1 b,
t?c’,
‘|l locate / O7FE /',
(l b:!

do | _Trace = 1 to Trace.O
if ((I_Trace // 5000) = 0) then
say ‘... | _Trace
parse var Trace.|_Trace From Branch Br Type To
if (Cache. From= “) then

do
FronBym = GET_ADDR(From ' F')
Cache. From = FronBSym

end

el se

FronBym = Cache. From
if (Cache.To = “) then
do

ToSym = GET_ADDR(To,'T')

34

Cache. To = ToSym

end
el se
ToSym = Cache. To
sel ect
when Br Type = ‘ ODLE then
Branch = ‘<---°
when Br Type = ‘ ODEF' then
Branch = ‘--->'
when Br Type = ‘ O7FE then
Branch = ‘<---¢
ot herwi se
Branch = ‘--->'
end

Fl ow. | _Trace = FronBym LEFT(Branch, 8) ToSym
end
Flow. 0 = Trace. 0
‘PIPE (nane WRI TE_FLOWend ?)’,

‘| stemFlow ',
‘] spec wl 1.’ MaxSym ‘w2-* nw ,
St age,
‘| spec 1-* 5,
‘| > LINUX FLOWA
exit
CGET_ADDR
parse arg VAddr, Type
parse var VAddr Addr”'”
XAddr = X2Q(Addr)
Tar get = Map. 0
NewTarget =1
D sp = Map.0 %2
LastLow = Target
do forever
parse var Map.Target 1 XSym5 . . Synbol
if XAddr = XSymthen
do
Last Low = Tar get
| eave
end
if XAddr < XSymthen
do
NewTarget = Target - D sp
if (LastLow = NewTarget) then
| eave
LastLow = NewrTar get
end
el se
NewTarget = Target + D sp
Dsp =Dsp %2
if (Dsp < 1) then
Dsp =1
Target = NewTar get
end
parse var Map.LastLow 1 XSym5 . . Synbol
D sp = X2D(Addr) - QD(XSym
if Dsp <> 0 then
Synmbol = Synbol * + D2X(D sp)
if ((LENGTH(Synbol) > MaxSynm) & (Type = ‘F)) then
MaxSym = LENGTH(Synbol)
return Synbol

35

SYNTAX:
say ‘Error:’ ERRORTEXT(Rc) ‘at line Sigl
say SOURCELI NE(Si gl)
trace ?r; nop

exit -1

SMP SPECIFIC COMMANDS

* To find out how many CPUs you have:
Q CPUS

* To find the cpu that the current cpu VM debugger commands are being directed at do:
Q CPU

* To change the current CPU VM debugger commands are being directed at do:

CPU <desired cpu no>
* Onan SMP guest issue a command to all CPUs try prefixing the command with CPU ALL.

* To issue a command to a particular CPU, try CPU <cpu nunber >. For example:
CPU 01 TR I R 2000. 3000

* If you are running on a guest with several cpus and you have an I/O related problem and cannot
follow the flow of code but you know it isn’t SMP related. Then from the bash prompt issue:

shut down -h now or halt.

Do a Q crus to find out how many CPUs you have; detach each one of them from your virtual

machine except CPU 0 by issuing:
DETACH CPU 01-<nunber of CPUs in configuration>

and re-boot Linux.

* TR Sl GPwill trace inter processor signal processor instructions.

HELP FOR DISPLAYING ASCII TEXT

If you ate running z/VM or VM/ESA 2.4.0 with the latest service the DISPLAY and STORE
commands have been enhanced to support the display and storing of ASCII text. For example:

#CP D TX0. 100
This will display 256 bytes of storage in hex and ASCII format.

For other version of VM, text cannot be displayed in ASCII under the VM debugger (I love EBDIC
too), I have written this little program which will convert a command line of hex digits to ASCII text
which can be compiled under Linux and you can copy the hex digits from your x3270 terminal to your
xterm if you are debugging from a Linux box.

36

This is quite useful when looking at a parameter passed in as a text string under VM (unless you are good
at decoding ASCII in your head). For example, consider tracing an open syscall:

TR SVC 5

We have stopped at a breakpoint
000151B0° SVC 0A05 - 0001909A° CC O

Use D P SVC to check the SVC old PSW in the prefix area and see was it from user-space (for the
layout of the prefix area consult pagel8 of the ESA 390 Reference Summary if you have it available).

SVC 0005 20 OLD 070C2000 800151B2 60 NEW 04080000 8001909A

The problem state bit wasn’t set and it’s also too eatly in the boot sequence for it to be a user-space SVC
if it was we would have to temporarily switch the PSW to user space addressing so we could get at the
first parameter of the open in gpr2. To display the parameter:

D 0. 20; BASE2

V00014CB4 2F646576 2F636F6E 736F6C65 00001BF5
V00014CC4 FC00014C B4001001 EO001000 B8070707

Alternatively you can do the more elegant
D 0. 20; BASE2

BASE2 tells VM to use GPR2 as the base register.

Now copy the text till the first 00 hex (which is the end of the string) to an xterm and do hex2ascii on it:
hex2ascii 2F646576 2F636F6E 736F6065 00

The resulting output is:
Decoded Hex:=/ dev/ cons ol e 0x00

We were opening the console device. You can compile the code below yourself for practice :-),

/*

* hex2ascii.c

* a useful little tool for converting a hexadeci mal conmand line to ascii
*

* Aut hor(s): Denis Joseph Barrow (djbarrow@le.ibm com barrow dj @ahoo. com
* © 2000 | BM Deut schl and Entwi ckl ung GhbH, | BM Cor porati on.

*/

#i nclude <stdio.h
int main(int argc,char *argv[])

int cntl,cnt2,Ien,toggl e=0;
int startcnt=1;
unsi gned char c, hex;

if(argcl&&(strenp(argv[1],”-a")==0))
startcnt =2;

printf(“Decoded Hex:=");

for(cntl=startcnt;cntl<argc;cnt 1++)

{

37

I en=strlen(argvicntl]);
for (cnt 2=0; cnt 2<I en; cnt 2++)

c=argv[cnt1l][cnt2];
if(c=0 &8c<=9")

c=c-'0";

if(c=" A &&c<="F)
c=c-' A +10;
if(c="a &&c<="F)
c=c-'a’ +10;

swi tch(toggl e)
{

case O:
hex=c<<4;
t oggl e=1;
br eak;

case 1:
hex+=c;
i f (hex<32| | hex127)

i f(startcnt==1)
printf(“0x%®2X “, (int)hex);
el se
printf(“.”);
}

el se

printf(“%”, hex);
i f(startcnt==1)
printf(“ “);

}
t oggl e=0;
br eak;

}
}

}
printf(“\n”);

Alternatively, the following CMS PIPELINE will achieve the same thing:

[* *]
parse arg XString
‘Pl PE (nane E2A)’',

‘| var Xstring',

‘| change / /1, /* Renove any bl anks within string */

‘| spec 1-* x2c 1, /* Convert graphic hex to binary */

‘| xlate from437 to 1047, /* Choose the code-page you prefer */
‘| cons’

Stack tracing under VM

Here are the tricks I use 9 out of 10 times it works pretty well.

38

WHEN YOUR BACKCHAIN REACHES A DEAD END

This can happen when an exception happens in the kernel and the kernel is entered twice if you reach
the NULL pointer at the end of the back chain you should be able to sniff further back if you follow the
following tricks.

1. A kernel address should be easy to recognize since it is in primary space and the problem
state bit isn’t set and also The Hi bit of the address is set.

2. Another backchain should also be easy to recognize since it is an address pointing to another
address approximately 100 bytes or 0x70 hex behind the current stackpointer.

Here is some practice.
= Boot the kernel and hit PA1 at some random time

® d g to display the gprs, this should display something like

GPR 0 = 00000001 00156018 0014359C 00000000
GPR 4 = 00000001 001B8888 000003EO0 00000000
GPR 8 = 00100080 00100084 00000000 OOOFEOOO
GPR 12 = 00010400 8001B2DC 8001B36A 00OFFED8

* Note that GPR14 is a return address but as we are real men we are going to trace the stack.
Display 0x40 bytes after the stack pointer:
D 0. 40; BASEF
VOOOFFED8 O0OFFF38 8001B838 80014C8E OOOFFF38
VOOOFFEE8 00000000 00000000 0O00003EO 00000000

VOOOFFEF8 00100080 00100084 00000000 OOOFEO00
VOOOFFFO8 00010400 8001B2DC 8001B36A 000FFED8

® Ah now look at what is in sp+56 (sp+0x38) this is 8001B36A our saved r14 if you look above at
our stackframe and also agrees with GPR14. Now backchain:

d OOOFFF38. 40

* We now are taking the contents of SP to get our first backchain.

VOOOFFF38 000FFFAO0 00000000 00014995 00147094
VOOOFFF48 00147090 001470A0 O0O0003EO 00000000
VOOOFFF58 00100080 00100084 00000000 001BF1D0
VOOOFFF68 00010400 800149BA 80014CA6 OOOFFF38

This displays a 2™ return address of 80014CAG6

» Nowdod 000FFFAQ. 40 for our 3™ backchain

VOOOFFFAO 04B52002 0001107F 00000000 00000000
VOOOFFFBO 00000000 00000000 FFOO0000 0001107F
VOOOFFFCO 00000000 00000000 00000000 00000000
VOOOFFFDO 00010400 80010802 8001085A O00FFFAQ

Our 3" return address is 8001085A. As the 04B52002 looks suspiciously like rubbish it is fair to
assume that the kernel entry routines for the sake of optimization do not set up a backchain.

39

= Now look at Syst em map to see if the addresses make any sense:

grep -i 0001b3 System nap

Outputs among other things:
0001b304 T cpu_idle

So 8001B36A is cpu_i dI e+0x66 (quict the CPU is asleep, don’t wake it!)

= Next:

grep -i 00014 System map

Produces among other things
00014a78 T start_kernel

So 0014CA6 is st art _ker nel +0x22e

®* Then:

grep -i 00108 System nmap

This produces:
00010800 T _stext

So 8001085Ais _st ext +0x5a

Congratulations you’ve performed your first backchain!

S$/390 and z/Architecture 1/0 Overview

I am not going to give a course in 390 I/O architecture as this would take me quite a while and I'm no
expert. Instead I’ll give a 390 1O architecture summary for Dummies if you have the ESA principles of
operation available read this instead. If nothing else you may find a few useful keywords in here and be
able to use them on a web search engine like Altavista to find more useful information.

Unlike other bus architectures modern 390 systems do their I/O using mostly fiber optics and devices
such as tapes and disks can be shared between several mainframes, also S390 can support up to 65536
devices while a high end PC based system might be choking with around 64. Here is some of the
common I/O terminology.

Subchannel

This is the logical number most I/O commands use to talk to an I/O device there can
be up to 0x10000 (655306) of these in a configuration typically there is a few hundred.
Under VM for simplicity they are allocated contiguously, however on the native
hardware they are not they typically stay consistent between boots provided no new
hardware is inserted or removed. Under Linux for 390 we use these as IRQ’s and also
when issuing an I/O command (CLEAR SUBCHANNEL, HALT SUBCHANNEL,
MODIFY SUBCHANNEL, RESUME SUBCHANNEL, START SUBCHANNEL,
STORE SUBCHANNEL and TEST SUBCHANNEL) we use this as the ID of the

J [N (O (5 F IR | B [1) R SR SR P B mti e il . OTADT

40

SUBCHANNEL (to start 10), TEST SUBCHANNEL (to check whether the 10
completed successfully), and HALT SUBCHANNEL (to kill 10). A subchannel can
have up to 8 channel paths to a device this offers redundancy if one is not available.

Device
Number

This number remains static and Is closely tied to the hardware, there are 65536 of these
also they are made up of a CHPID (Channel Path ID, the most significant 8 bits) and
another I.SB 8 bits. These remain static even if more devices are inserted ot removed
from the hardware, there is a 1 to 1 mapping between Subchannels and Device Numbers
provided devices are not inserted or removed.

Channel
Control
Words

CCWS are linked lists of instructions initially pointed to by an operation request block
(ORB), which is initially given to Start Subchannel (SSCH) command along with the
subchannel number for the I/O subsystem to process while the CPU continues
executing normal code. These come in two flavors, Format 0 (24 bit for backward)
compatibility and Format 1 (31 bit). These are typically used to issue read and write (and
many other instructions) they consist of a length field and an absolute address field. For
each IO typically get 1 or 2 interrupts one for channel end (primary status) when the
channel is idle and the second for device end (secondary status). Sometimes you get both
concuttently; you check how the I/O went on by issuing a TEST SUBCHANNEL at
each interrupt, from which you receive an Interruption response block (IRB). If you get
channel and device end status in the IRB without channel checks etc. your 1/O probably
went okay. If you did not, you probably need to examine the IRB and extended status
word etc. If an error occurs, then more sophisticated control units have a facility known
as concurrent sense. This means that if an error occurs Extended sense information will
be presented in the Extended status word in the IRB if not you have to issue a
subsequent SENSE CCW command after the test subchannel.

TPI

Test pending interrupt can also be used for polled IO but in multitasking multiprocessor
systems it isn’t recommended except for checking special cases (i.e. non-looping checks
for pending I/O etc.).

STSCH and
MSCH

Store Subchannel and Modify Subchannel can be used to examine and modify operating
characteristics of a subchannel (e.g. channel paths).

Sysplex

S390’s Clustering Technology

QDIO

S390’s new high speed 1O architecture to support devices such as gigabit Ethernet, this
architecture is also designed to be forward compatible with up and coming 64 bit
machines.

a1

General Concepts

Input Output Processors (IOP’s) are responsible for communicating between the mainframe CPU’s and
the channel and relieve the mainframe CPU’s from the burden of communicating with IO devices
directly, this allows the CPU’s to concentrate on data processing.

IOP’s can use one or more links (known as channel paths) to talk to each IO device. It first checks for
path availability and chooses an available one, then starts (and sometimes terminates 10). There are two

types of channel path ESCON and the Parallel 1O interface.

I/O devices are attached to control units. Control units provide the logic to interface the channel paths
and channel path 1/O protocols to the I/O devices. They can be integrated with the devices or housed
separately and often talk to several similar devices (typical examples would be RAID controllers or a
control unit which connects to 1000 3270 terminals).

CPU CPU CPU

CPU

Memory

Storage

J0P [OR

10

107

CICI6C|C|C |G| 0

G| G|C

Bus and Tag Channel Path

cU Gl

1/0 Device 1/0 Device

—T

1/0 Device

Central Processing Unit

C = Channel
|OP = 1/0O Processor
CU = Control Unit

ESCON/FICON
Channel Path

e

1/0 Device

1/0 Device

42

The 390 I/O systems come in 2 flavors the current 390 machines support both the older 360 and 370
interface, sometimes called the parallel I/O interface, sometimes called Bus-and Tag and sometimes
Original Equipment Manufacturers Interface (OEMI).

This byte wide parallel channel path/bus has patity and data on the “Bus” cable and control lines on the
“Tag” cable. These can operate in byte multiplex mode for sharing between several slow devices or burst
mode and monopolize the channel for the whole burst. Up to 256 devices can be addressed on one of
these cables. These cables are about one inch in diameter. The maximum un-extended length supported
by these cables is 125 Meters but this can be extended up to 2km with a fiber optic channel extended
such as a 3044. The maximum burst speed supported is 4.5 megabytes per second however some really
old processors support only transfer rates of 3.0, 2.0 and 1.0 MB/sec. One of these paths can be daisy
chained to up to 8 control units.

IBM introduced ESCON, which is fiber optic based, in 1990. It uses 2 fiber optic cables and uses either
LEDs or lasers for communication at a signaling rate of up to 200 megabits/sec. As 10 bits are
transferred for every 8 bits of information this drops to 160 megabits/sec and to 18.6 Megabytes/sec
once control information and CRC are added. ESCON only operates in burst mode.

ESCON s typical maximum cable length is 3km for the LED version and 20km for the laser version
known as XDF (extended distance facility). Using an ESCON director, which triples the above-
mentioned ranges, can further extend this. Unlike Bus and Tag as ESCON is serial. It uses packet
switching architecture. The standard Bus and Tag control protocol is however present within the
packets. Up to 256 devices can be attached to each control unit that uses one of these interfaces.

A new fiber architecture has been released by IBM called FICON which improves on the performance
of ESCON.

Common 390 Devices

® Network adapters typically OSA2, 3172’s, 2116’s and OSA-E gigabit Ethernet adapters
= Consoles 3270 and 3215 (a TTY emulated under Linux for a line mode console)

* DASD’s direct access storage devices (otherwise known as hard disks)

= Tape Drives.

* CTC (Channel to Channel Adapters), ESCON or Parallel Cables used as a very high-speed serial
link between 2 machines. We use 2 cables under Linux to do a bi-ditectional serial link.

Debugging 10 on $390 under VM

Now we are ready to go on with I/O tracing commands under VM. First, a few self-explanatory queties:

Q CsA

Q CTC

Q DASD

If I have sufficient privileges Q OSA may return the state of all OSAs on the processor. Using Q V OSA
will return the status of those on my machine:

CBA 7008 ON CSA 7C08 SUBCHANNEL = 0000
CSA 7009 ON CSA 7009 SUBCHANNEL = 0001

43

OBA 7C14 ON CSA 7C14 SUBCHANNEL
CSA 7C15 ON OSA 7C15 SUBCHANNEL

Now using the device numbers returned by this command we will trace the Io starting up on the first

0002
0003

devices 7c08 and 7c09. In our simplest case we can trace the start subchannels:
TR SSCH 7C08- 7009

Or the halt subchannels
TR HSCH 7Q08- 7C09
You can also trace MSCH’s, STSCH’s, but I think you can guess the rest.

Ingo’s favorite trick is tracing all the I/O’s and CCWS and spooling them into the reader of another VM
guest so he can ftp the logfile back to his own machine. I'll do a small bit of this and give you a look at

the output.

1.

Spool stdout to VM reader
SP PRT TO [<anot her user> | *]

Fill reader with the trace
TR 1O 7¢c08-7c09 I NST | NT CCW PRT RUN

Start up Linux

Finish the trace
TR END

Close the reader
C PRT

List reader contents

RDRLI ST

Copy it to minidisk

RECEI VE / LOG TXT Al (repl ace

FILELIST and press F11 to look at it. You should see something like:

00020942' SSCH B2334000 0048813C CC 0 SCH 0000 DEV 7C08
CPA OOOFFDFO PARM O0E2COCA4 KEY O FPI QO LPM 80

CCW O00FFDFO E4200100 00487FE8 0000 E4240100

| DAL 43DBAFE8

| DAL OFB76000

00020BOA" /O DEV 7Q08 - 000197BC SCH 0000 PARM O0E2COCA
00021628 TSCH B2354000 00488164 CC 0 SCH 0000 DEV 7C08
COMWA OOOFFDF8 DEV STS 0C SCH STS 00 ONT OOEC

KEY 0 FPI G0 CC 0 CITLS 4007

00022238 STSCH B2344000 00488108 CC 0 SCH 0000 DEV 7Q08

Other Common VM Device Related Commands

These commands are listed only because they have been of use to me in the past and may be of use to
you too. For more complete information on each of the commands use HELP <command> from CMS.

44

Command

Description

DET <devno range> [<guest >]

Detach devices from a guest

ATT <defno range> [<guest >]

Attach devices to a guest

READY <devno>

Fake a device-end interrupt from a device

VARY ON PATH <pat h> TO <devno range>

Vary on the path to devices (VM administrator
command)

VARY COFF PATH <pat h> FROM <devno range>

to devices

Vary the path offline
Administrator command)

(VM

Q CHPI D <pat h>

Display state us of devices using this channel path

D SCH B <subchannel >

Display the subchannel information block for the
virtual device

DEFI NE CTC <devno>

Define a virtual Channel-to-Channel connection (a
pair of devices is required for use by Linux)

COUPLE <devno> <useri d> <renote devno>

Join a virtual device to a virtual device owned by
<userid>

DEF VFB- <bl ocksi ze> <subchannel > <bl ocks> Define a virtual disk (VM ramdisk)
LINK <userid> <devnol> <devno2> <node> | Share a disk between multiple guests
<passwor d>

gdb on S390

Note, compiling for debugging with gdb works better without optimization (see “Compiling programs
for debugging on Linux for S390 and z/Architecture” on page 18).

Invocation
gdb <vi cti m program <opti onal
Online help

help: gives help on commands. For example:

hel p
hel p di spl ay

corefil e>

Note gdb’s online help is very good and we advise you to use it.

Assembly

i nfo regi sters: displays registers other than floating point.

45

info all-registers:displays floating points as well.

di sassenbl e: disassembles. For example,

di sassenbl e (specifying no paraneters will disassenble the current function)
di sassenbl e $pc $pc+10

Viewing and modifying variables

print or p: displays variable or register. For example:
p/ x $sp will display the stack pointer
di spl ay: prints variable or register each time program stops. For example:

di splay/ x $pc will display the program counter
di splay argc

undi spl ay: undo’s display’s
i nf o breakpoi nt s: shows all current breakpoints

i nfo stack: shows stack back trace (if this doesn’t work too well, I'll show you the stacktrace
by hand below).

i nfo | ocal s: displays local variables.

i nfo args: display current procedure arguments.

set args: will set argc and argv each time the victim program is invoked.
set <vari abl e=val ue>

set argc=100
set $pc=0

Modifying execution

st ep: steps 7 lines of source code st ep with no value steps 1 line.

next : like step except this will not step into subroutines

st epi : steps a single machine code instruction.

nexti : steps a single machine code instruction but will not step into subroutines.
fi ni sh: will run until exit of the current routine

run: (re)starts a program

cont : continues a program

qui t : exits gdb.

46

breakpoints

br eak: sets a breakpoint. For example:

break main
break *$pc
break *0x400618

rbr: Set a breakpoint for all functions matching REGEXP. This is really useful for large
programs. For example:

rbr 390

Wil set a breakpoint with all functions with 390 in their name.
i nfo breakpoi nt s: lists all breakpoints

del et e: delete breakpoint by number or delete them all. For example:

del ete 1 will delete the first breakpoint
del et e will delete them all

wat ch: This will set a watchpoint (usually hardware assisted). This will watch a variable till it
changes. For example:

wat ch cnt, will watch the variable cnt till it changes. As an aside unfortunately gdb’s, architecture
independent watchpoint code is inconsistent and not very good. Watchpoints usually work but not
always.

i nf o wat chpoi nt s: Display currently active watchpoints
condi ti on: Specify breakpoint number N to break only if COND is true. Usage is condi ti on

N OOND, where Nis an integer and CONDis an expression to be evaluated whenever breakpoint N
is reached. This is a particularly another useful command.

User defined functions/macros

defi ne: Define a macro/function. This is very useful, simple and powerful. Usage: defi ne
<name> <list of commands> end. Examples which you should consider putting into
.gdbinit in your home directory:

define d

st epi

di sassenbl e $pc $pc+10
end

define e

nexti

di sassenbl e $pc $pc+10
end

Other hard to classify stuff

si gnal n:sends the victim program a signal. For example, si gnal 3 will send a SI GQUI T.

i nfo signal s: what gdb does when the victim receives certain signals.

47

* |ist:Examples:

l'ist lists current function source

list 1,10 list first 10 lines of current file
list test.c: 1,10

= directory: Adds directories to be searched for source if gdb cannot find the source. Note it is a
bit sensitive about slashes. For example, to add the root of the filesystem to the searchpath do:
directory //

= call <function>: This calls a function in the victim program, this is pretty powerful. For
example:

(gdb) call printf(“hello world")
Outputs:
$1 =11
You might now be thinking that the line above didn’t work, something extra had to be done.

(gdb) call fflush(stdout)
hello world$2 = 0

As an aside the debugger also calls mal | oc and free under the hood to make space for the “hel | o
wor | d” string.
Hints

1. Command completion works just like bash (if you are a bad typist like me this really helps).
For example, type br <TAB>

2. If you have a debugging problem that takes a few steps to recreate put the steps into a file
called . gdbi ni t in your current working directory if you have defined a few extra useful
user defined commands put these in your home directory and they will be read each time
gdb is launched. A typical .gdbinit file might be:

break main

run

break runtinme_exception
cont

Stack chaining in gdb by hand
= This is done using the same trick described for VM.

= 31-bit
p/ x (*($sp+56)) &Ox7fffffff get the first backchain.

= G64-bit
p/x (*(long *)(***long ***)$sp+112))get the first backchain.

This outputs:
$5 = 0x528f 18

48

(On my 31-bit machine that is.)

®= Now you can use:
info synbol (*($sp+56))&Ox7fffffff

You might see something like:
rl_getc + 36 in section .text telling you what is located at address 0x528f18

= Now do:
pIx (*(*$sp+56)) 8OXTFf FFfff

This outputs:
$6 = 0x528ed0

= Now do:

info synbol (*(*$sp+56)) &Ox7fffffff
rl _read_key + 180 in section .text

= Now do:
pIx (*(**$sp+56)) ROXTFfFfff
and so on. Another good trick to look at addresses on the stack if you've somehow lost the
backchain is.
x/ 500xa $sp
This displays anything the name of any known functions above the stack pointer for 500 bytes.
Disassembling instructions without debug information
gdb typically complains if there is a lack of debugging symbols in the disassemble command with “No

function contains specified address.” To get around this do:

x/ <nunber of lines to di sassenbl e>xi <address>

For example:

x/ 20xi 0x400730
For more information

From your Linux box do:
man gdb ot info gdb

Examining Core Dumps

A core dump is a file generated by the kernel (if allowed) which contains the registers, and all active
pages of the program which has crashed. From this file gdb will allow you to look at the registers and
stack trace and memory of the program as if it just crashed on your system. It is usually called core and
created in the current working directory. This is very useful in that a customer can mail a core dump to a
technical support department and the technical support department can reconstruct what happened.
Provided the have an identical copy of this program with debugging symbols compiled in and the source
base of this build is available.

49

In short it is far more useful than something like a crash log could ever hope to be.

In theory all that is missing to restart a core dumped program is a kernel patch that will do the following.
1. Make a new kernel task structure
2. Reload all the dumped pages back into the kernels memory management structures.
3. Do the required clock fixups

4. Get all files and network connections for the process back into an identical state (really
difficult).

5. A few more difficult things I have not thought of.

WHY HAVE I NEVER SEEN ONE?

Probably because you haven’t used the command to allow core dumps:
ulimt -c unlimted
Now do the following to verify that the limit was accepted:
ulimt -a
A SAMPLE CORE DUMP

® To create this I'm going to do:
ulimt -c unlinited
gdb

To launch gdb (my victim application).

* Now be bad and do the following from another telnet/xterm session to the same machine:

ps -aux | grep gdb
kill -SIGSEGV <gdb’'s pid >

Alternatively, if you have the ki | | al | command, use:
killall -SlIGSEGVY gdb

* Now look at the core dump.
./gdb ./gdb core

The following will be displayed:

G\U gdb 4.18

Copyright 1998 Free Software Foundation, Inc.

@B is free software, covered by the G\U General Public License, and you are
wel cone to change it and/or distribute copies of it under certain conditions.
Type “show copyi ng” to see the conditions.

There is absolutely no warranty for GDB. Type “show warranty” for details.
This GB was configured as “s390-i bm|inux”...

Core was generated by ‘./gdb’.

Programterm nated with signal 11, Segmentation fault.

Readi ng synbols from/usr/lib/libncurses.so.4...done.

Readi ng synbols from/lib/libmso.6...done.

Readi ng synbols from/lib/libc.so.6...done.

Readi ng synbols from/lib/ld-1inux.so.2...done.

#0 0x40126dla in read () from/lib/libc.so.6

Setting up the environnent for debuggi ng gdb.

Breakpoint 1 at Ox4dc6f8: file utils.c, line 471.

Breakpoi nt 2 at 0x4d87a4: file top.c, |ine 2609.

(top-gdb) info stack

#0 0x40126dla in read () from/lib/libc.so.6

#1 0x528f26 in rl_getc (streanmrOx7ffffde8) at input.c:402

#2 0x528ed0 in rl_read_key () at input.c:381

#3 0x5167e6 in readline_internal _char () at readline.c: 454

#4 0x5168ee in readline_internal _charloop () at readline.c: 507
#5 0x51692c in readline_internal () at readline.c:521

#6 0x5164fe in readline (pronpt=0x7ffff810 \ 177~Aj~Aax\ 177~Aj~A+~AB 177~Ay~Aax~AA")
at readline.c:349

#7 0x4d7a8a in command_l i ne_i nput (pronpt=0x564420 “(gdb) “, repeat=1,
annot at i on_suf fi x=0x4d6b44 “pronpt”) at top.c: 2091

#8 0x4d6c¢f0 in command_|l oop () at top.c:1345

#9 0x4e25bc in main (argc=1, argv=0x7ffffdf4) at main.c:635

Idd

This is a program that lists the shared libraries that a library needs. Note you also get the relocations of
the shared library text segments that help when using obj dunp - - sour ce. For example:

ldd ./gdb

Outputs:

libncurses.so.4 = /usr/lib/libncurses.so.4 (0x40018000)
libmso.6 = /lib/libmso.6 (0x4005e000)

libc.so.6 = /lib/libc.so.6 (0x40084000)
/lib/ld-l1inux.so.2 = /lib/ld-1inux.so.2 (0x40000000)

Debugging shared libraries
Most programs use shared libraries, however it can be very painful when you single step instruction into
a function like pri ntf for the first ime and you end up in functions like _dl _runti ne_r esol ve. This

is the | d. so doing lazy binding; lazy binding is a concept in ELF where shared library functions are not
loaded into memory unless they are actually used. This is great for saving memory but a pain to debug,.

To get around this either re-link the program - st ati ¢ or exit gdb; type export LD_BlI ND_NOWt r ue
(this will stop lazy binding), and restart the gdb'ing the program in question.

Debugging modules

As modules are dynamically loaded into the kernel their address can be anywhere to get around this use
the -m option with i nsnod to emit a load-map that can be piped into a file if required.

51

The proc file system

This is a file system created by the kernel with files which are created on demand by the kernel if read, or
can be used to modify kernel parameters. It is a powerful concept. For example:

cat /proc/sys/net/ipv4/ip_forward

On my machine this outputs:
0

This tells me that i p_f or war di ng is not on. To switch it on I can do:

echo 1 /proc/sys/net/ipva/ip_forward
cat it again:

cat /proc/sys/net/ipva/ip_forward

1

That is, IP forwarding is now on.

There is a lot of useful info in here best found by going in and having a look around, so I'll take you
through some entries I consider important.

= All the processes running on the machine have there own entry defined by / pr oc/ <pi d>.

= Letus havealook at thei nit process:

cd /proc/1
cat cmdline
init [2]

= Now look at the file descriptor entries:
cd /proc/1/fd

This contains numerical entries of all the open files.

® The storage map for the process may be examined:

cat /proc/ 29/ maps

00400000- 00478000 r-xp 00000000 5f:00 4103 /bi n/bash
00478000- 0047e000 rwp 00077000 5f: 00 4103 /bi n/bash
0047e000- 00492000 rwxp 00000000 00:00 O
40000000- 40015000 r-xp 00000000 5f: 00 14382 /Ilib,
40015000- 40016000 rw p 00014000 5f: 00 14382 /lib.
40016000- 40017000 rwxp 00000000 00: 00 O
40017000- 40018000 rw p 00000000 00:00 O
40018000- 4001b000 r-xp 00000000 5f: 00 14435 /lib/libterntap.so.2.0.8
4001b000- 4001c000 rw p 00002000 5f:00 14435 /lib/libterntap.so.2.0.8
4001c000- 4010d000 r-xp 00000000 5f:00 14387 /lib/libc-2.1.2.s0
4010d000- 40111000 rw p 000f 0000 5f: 00 14387 /lib/libc-2.1.2.s0
40111000- 40114000 rw p 00000000 00:00 O

40114000- 4011e000 r-xp 00000000 5f:00 14408 /lib/libnss_files-2.1.2.s0
4011e000- 4011f 000 rw p 00009000 5f:00 14408 /lib/libnss_files-2.1.2.s0
7f f £ dO0OO- 80000000 rwxp ffffe000 00: 00 O

/1d-2.1.2.s0
/1d-2 2.s0

Showing us the shared libraries init uses where they are in memory and memory access permissions for
each virtual memory area.

= /proc/ 1/ cwd is a soft link to the current working directory.

= /proc/ 1/ root is the root of the file system for this process.

= /proc/ 1/ memis the current running process’ memory, which you can read and write to
like a file. strace uses this sometimes as it is a bit faster than the rather inefficient

pt r ace interface for peeking at DATA.

= Usecat /proc/1/status to display the status of the process:

Name: init

State: S (sl eeping)
Pid: 1

PPid: O

ud: 0000

Gd: 0000

QG oups:

Vn&i ze: 408 kB
Vnlck: 0 kB

VnRSS: 208 kB

VnDat a: 24 kB

Vngtk: 8 kB

VnExe: 368 kB

VnLib: 0 kB

Si gPnd: 0000000000000000

Si gBl k: 0000000000000000

Siglgn: 7fffffffd7f0d8fc

Si gCgt: 00000000280b2603

Capl nh: 00000000f ffffeff

CapPrm 00000000f fffffff

CapEff: 00000000fffffeff

User PSW 070de000 80414146

task: 004b6000 tss: 004b62d8 ksp: 004b7ca8 pt_regs: 004b7f 68
User GPRS:

00000400 00000000 0000000b 7ffffa90
00000000 00000000 00000000 0045d9of 4
0045cafc 7ffffa90 7fffff18 0045cb08
00010400 804039e8 80403af8 7ffff8b0
User ACRS:

00000000 00000000 00000000 00000000
00000001 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
Kernel BackChain Call Chain BackChain Call Chain
004b7ca8 8002bd0Oc 004b7d18 8002b92c
004b7db8 8005cd50 004b7e38 8005d12a
004b7f 08 80019114

Showing among other things memory usage and status of some signals and the processes’ registers from
the kernel t ask_st ruct ur e as well as a backchain that may be useful if a process crashes in the kernel for
some unknown reason.

53

Some driver debugging techniques
DEBUG FEATURE

Some of the dtivers now support a “debug feature” in / pr oc/ s390dbf . See “S/390 Debugging Facility”
on page 57 for more information. For example, to switch on the Ics “debug feature™:

echo 5 >/ proc/s390dbf/ | cs/| evel

After an error occuts issue:

cat /proc/s390dbf/lcs/sprintf >l ogfile

The file “I ogf i | €” now contains some information that may help technical support resolve a problem in
the field.

HIGH LEVEL DEBUGGING NETWORK DRIVERS

The i f confi g command is a quite useful. It gives the current state of network drivers. If you suspect
your network device driver is dead one way to check is type i f confi g <network devi ce>. For example,
ifconfig trO
tro0 Li nk encap: 16/ 4 Mps Token R ng (New) HWaddr 00: 04: AC. 20: 8E: 48

i net addr:9.164.185. 132 Bcast:9.164.191.255 Mask: 255.255.224.0

UP BROADCAST RUNNI NG MULTI CAST MU 2000 Metric:1

RX packets: 246134 errors: 0 dropped: 0 overruns: 0 franme: 0

TX packets:5 errors: 0 dropped: 0 overruns:0 carrier:0

col lisions: 0 txqueuel en: 100

If the device doesn’t say “UP” then try:

/etc/rc.d/init.d/ network start

This starts the network stack and (hopefully) invokes “i fconfig tr0 up”.ifconfig looks at the
output of / proc/ net/dev and presents it in a more presentable form. Now ping the device from a
machine in the same subnet. If the RX packets count and TX packets counts don’t increment you
probably have problems. Next,

cat /proc/net/arp

Do you see any hardware addresses in the cache? If not you may have problems.

Next try:

ping -c 5 <broadcast_addr> [Thatis, the Bcast field above in the output of i f confi g.]

Do you see any replies from machines other than the local machine? If not you may have problems.
Also if the TX packets count in i f conf i g hasn’t incremented either you have serious problems in your

driver (for example, the txbusy field of the network device being stuck on) or you may have multiple
network devices connected.

54

CHANDEYV

There is a new device layer for channel devices; some drivers (for example I.CS) are registered with this
layer. If the device uses the channel device layer you’ll be able to find what interrupts it uses and the
current state of the device. See the manpage chandev. 8 and type cat / proc/ chandev for more info.

DEBUGGING DRIVERS

Some of the drivers now support a debug logging feature in / pr oc/ s390dbf . See “Prock'S Interface” on
page 63 for more information. For example, to switch on LCS debugging:

echo 5 > /proc/s390dbf/Ics/I evel

Then after the error occurred.

cat /proc/s390dbf/Ics/sprintf >/1ogfile

I ogf i | e now contains some information that may help tech support resolve a problem in the field.
If you have VM look also look at the chapter Debugging IO on S390 under VM.
Miscellaneous Techniques

The next sections describe various other debugging techniques.
Starting points for debugging scripting languages etc.

There are several different techniques depending on the environment.

BASH/SH

Use the -x option to trace the script: bash -x <scri pt nane>. For example:

bash -x /usr/bi n/ bashbug
+ MACH NE=i 586
+ O&=l i nux-gnu

+ CC=gcc

+ CFLAGS= - DPROGRAME' bash’ -DHOSTTYPE='i 586" -DOSTYPE='I|i nux-gnu’ - DMACHTYPE=' i 586- pc-
linux-gnu -DSHELL -DHAVE CONFIGH -1. -I. -I./lib -Q -pipe

+ RELEASE=2. 01

+ PATCHLEVEL=1

+ RELSTATUS=r el ease

+ MACHTYPE=i 586- pc- | i nux-gnu

PERL

Use the - d option of per| to invoke the interactive debugger: perl -d <scri pt nane>

JAVA

Use:jdb <filename> to invoke another fully interactive gdb style debugger. Type “?” for help when the
debugger is invoked.

SysRq

Linux now suppotts this feature for s/390 and z/Architecture. To enable it do: “compile the kernel
Wlt 2

Kernel Hacking -> Magi c SysRq Key Enabl ed

echo “1” > /proc/sys/kernel/sysrq.

On 390 all commands are prefixed with “/- ““. For example,

A-t will show tasks.

~-? or some unknown command will display help.

The sysr q key reading is very picky (I have to type the keys in an xterm session and paste them into the
x3270 console) and it may be wise to predefine the keys as described in the VM hints above This is
particulatly useful for syncing disks unmounting and rebooting if the machine gets partially hung. Read
Docunent at i on/ sysrg. t xt for more information.

References

Enterprise Systems Architecture Reference Summary

Enterprise Systems Architecture Principles of Operation

Hartmut Penner’s 390 stack frame sheet.

IBM Mainframe Channel Attachment a technology brief from a CISCO webpage
Various bits of man and info pages of Linux.

Linux and GDB source.

Various info and man pages.

CMS Help on tracing commands.

Linux for s/390 Elf Application Binary Interface

Linux for z/Seties EIf Application Binaty Interface (Both Highly Recommended)
z/ Architecture Principles of Operation SA22-7832-00

Enterprise Systems Architecture/390 Reference Summary SA22-7209-01

Enterprise Systems Architecture/390 Principles of Operation SA22-7201-0

S/390 Debugging Facility

b
Dertis Joseph Barrow (dfibarron(@dedbmz.coms, barrow_df@yaboacon)

Capyright © 2000 IBM Deutschland Entwicklng GrebH, IBM Corporation

The goal of this feature is to provide a kernel debug logging API where log records can be stored
efficiently in memory, where each component (for example, device drivers) can have one separate debug
log.

One purpose of this is to inspect the debug logs after a production system crash in order to analyze the
reason for the crash.

If the system still runs but only a subcomponent which uses dbf fails, it is possible to look at the debug
logs on a live system via the Linux / pr oc file system.

The debug feature may also very useful for kernel and driver development.
Design

Kernel components (for example, device drivers) can register themselves at the debug feature with the
function call debug_regi ster (). This function initializes a debug log for the caller. For each debug log
exists a number of debug areas where exactly one is active at one time. FEach debug area consists of
contiguous pages in memory. In the debug areas there are stored debug entries (log records) that are
written by event- and exception-calls.

An event-call writes the specified debug entry to the active debug area and updates the log pointer for
the active area. If the end of the active debug area is reached, a wrap around is done (ring buffer) and the
next debug entry will be written at the beginning of the active debug area.

An exception-call writes the specified debug entry to the log and switches to the next debug area. This is
done in order to be sure that the records that describe the origin of the exception are not overwritten
when a wrap around for the current area occurs.

The debug areas itself is also ordered in form of a ring buffer. When an exception is thrown in the last
debug area, the following debug entries are then written again in the very first area.

57

mailto:djbarrow@de.ibm.com
mailto:barrow_dj@yahoo.com

There are three versions for the event- and exception-calls: One for logging raw data, one for text and
one for numbers.

Each debug entry contains the following data:

= Timestamp

* CPU-Number of calling task
* Level of debug entry (0...0)

= Return Address to caller

* Flag, if entry is an exception or not

The debug logs can be inspected in a live system through entries in the / proc file system. Under the path
/proc/ s390dbf there is a directory for each registered component, which is named like the
corresponding component.

The content of the directories are files which represent different views to the debug log. Each
component can decide which views should be used through registering them with the function
debug_register_view(). Predefined views for hex/ascii, sprintf and raw binaty data are provided. It is also
possible to define other views. Simply by reading the corresponding proc file you can inspect the content

of a view.

All debug logs have an actual debug level (range from 0 to 6). The default level is 3. Event and
Exception functions have a “level” parameter. Only debug entries with a level that is lower or equal than
the actual level are written to the log. This means that high priority log entries should have a low level
value whereas low priority entries should have a high one. The actual debug level can be changed with
the help of the / proc file system through writing a number string “x” to the evel ” proc file which is
provided for every debug log. Debugging can be switched off completely by using "-" on the 1 evel’
proc file.

Example
> echo "-" > /proc/s390dbf/dasd/| evel

Kernel Interfaces
debug_register

Allocates memory for a debug log. Must not be called within an interrupt handler

debug_i nfo_t *debug_regi ster(char *nane, int pages_index, int nr_areas, int buf_size);

nare Name of debug log (e.g. used for proc entry)
pages_i ndex 2" pages_index pages will be allocated per area
nr_ar eas Number of debug areas

buf _si ze Size of data area in each debug entry

Return Value: Handle for generated debug area, NULL if register failed

debug_unregister

Frees memory for a debug log. Must not be called within an interrupt handler

voi d debug_unregi ster (debug_info_t * id);

id Handle for debug log

Return Value: none
debug_set_level

Sets new actual debug level if new_level is valid.

voi d debug_set | evel (debug_info_ t * id, int new.level);

id Handle for debug log

new | evel New debug level

Return Value: none
debug_event

Writes debug entry to active debug area (if level <= actual entry debug level).

debug_entry_t* debug_event (debug_info_t* id, int level, void* data, int |ength);

id Handle for debug log

I evel Debug level

dat a Pointer to data for debug entry
I engt h Length of data in bytes

Return Value: Address of written debug entry
debug_int_event

Writes debug entry to active debug area (if level <= actual debug level).

debug_entry_t* debug_int_event (debug_info_t * id, int level, unsigned int data);
debug _entry_t* debug | ong event(debug_info t * id, int level, unsigned |long data);

id Handle for debug log
I evel Debug level
dat a Integer/Long value for debug entry

Return Value: Address of written debug entry
debug_text_event

Writes debug entry in ASCII format to active debug area (if level <= actual debug level).

debug_entry_t* debug_text _event (debug_info_t * id, int |level, const char* data);

id Handle for debug log

| evel Debug level

dat a String for debug entry

Return Value: Address of written debug entry
debug_sprintf_event

Writes debug entry with format string and varargs (longs) to active debug area (if level $<=$ actual
debug level). floats and long long datatypes cannot be used as varargs.

debug_entry_t* debug_sprintf_event (debug_info_t * id, int |level, char* string,...);
id Handle for debug log
Level Debug level
String Format string for debug entry
varargs used asin sprintf()

Return Value: Address of written debug entry
debug_exception

Writes debug entry to active debug area (if level <= actual debug level) and switches to next debug area.

debug _entry_t* debug exception (debug_info t* id, int level, void* data, int length);

id Handle for debug log

I evel Debug level

data Pointer to data for debug entry
l'ength Length of data in bytes

Return Value: Address of written debug entry
debug_int/long_exception

Writes debug entry to active debug area (if level <= actual debug level) and switches to next debug area.

debug_entry_t* debug_i nt _exception (debug_info_t * id, int level, unsigned int data);
debug_entry_t* debug_| ong_exception(debug_info_ t * id, int level, unsigned | ong data);

id Handle for debug log
| evel Debug level
dat a Integer/Long value for debug entry

Return Value: Address of written debug entry
debug_text_exception

Writes debug entry in ascii format to active debug area (level <= actual debug level) and switches to next
debug area.

debug_entry_t* debug_text _exception (debug_info_t * id, int level, const char* data);

id Handle for debug log

| evel Debug level

dat a String for debug entry

Return Value: Address of written debug entry
debug_sprintf_exception

Writes debug entry with format string and varargs (longs) to active debug area (if level $<=$ actual
debug level) and switches to next debug area. floats and long long datatypes cannot be used as varargs.

debug_entry_t* debug_sprintf_exception (debug_info_ t * id, int level, char* string,...);
id Handle for debug log
Level Debug level
String Format string for debug entry
var ar gs used as in sprintf ()

Return Value: Address of written debug entry
debug_register_view

Registers new debug view and creates proc dir entry

int debug_register_view (debug_info_t * id, struct debug_view *view);

id Handle for debug log

vi ew Pointer to debug_vi ew structure

Return Value: 0: ok; < 0: Error
debug_unregister_view

Unregisters debug view and removes proc dir entry

int debug_unregister_view (debug_info_t * id, struct debug_view *view);

id Handle for debug log

vi ew Pointer to debug_vi ew structure

Return Value: 0: ok; < 0: Etror

Predefined views

extern struct debug_view debug_hex_ascii _view,
extern struct debug_vi ew debug_raw view,
extern struct debug_vi ew debug_sprintf_view,

Examples

61

hex_ascii + raw-view

/* hex_ascii- + raw view Exanple */

#i ncl ude <l i nux/ nodul e. h>
#i ncl ude <asni debug. h>

static debug_info_t* debug_info;

int init_nodul e(void)

{
/* register 4 debug areas with one page each and 4 byte data field */
debug_i nfo = debug_register ("test", 0, 4, 4);
debug_regi ster_vi ew(debug_i nf o, &debug_hex_asci i _vi ew);
debug_regi ster_vi ew(debug_i nf o, &ebug_raw vi ew) ;
debug_t ext _event (debug_info, 4 , "one ");
debug_i nt _exception(debug_i nfo, 4, 4711);
debug_event (debug_i nfo, 3, &debug_info, 4);
return O;
}

voi d cl eanup_nodul e(voi d)

debug_unregi ster (debug_info);

62

sprintf-view

/* sprintf-view Exanple */

#i ncl ude <l i nux/ nodul e. h>
#i ncl ude <asni debug. h>

static debug_info_t* debug_ info;

int init_nodul e(void)

{
/* register 4 debug areas with one page each and data field for */
/* format string pointer + 2 varargs (= 3 * sizeof (long)) */
debug_i nfo = debug_register ("test", 0, 4, sizeof(long) * 3);
debug_regi ster_vi ew(debug_i nf o, &lebug_sprintf_vi ew);
debug_sprintf_event (debug_info, 2, "first event in %:%\n", _FILE , LINE);
debug_sprintf_exception(debug_info, 1, "pointer to debug info: %\n", &ebug_i nfo);
return O;
}

voi d cl eanup_nodul e(voi d)

debug_unregi ster (debug_info);
}

ProcFS Interface

Views to the debug logs can be investigated through reading the corresponding proc-files:

Example - Viewing the Debug Log
> | s /proc/s390dbf/ dasd

hex_ascii |evel raw

> cat /proc/s390dbf/dasd/ hex_ascii | sort +1

00 00974733272: 680099 2 - 02 0006ad7e 07 ea 4a 90 | ...
00 00974733272: 682210 2 - 02 0006ade6 46 52 45 45 | FREE
00 00974733272: 682213 2 - 02 0006adf6 07 ea 4a 90 | ...
00 00974733272:682281 1 * 02 0006ab08 41 4c 4c 43 | EXCP
01 00974733272: 682284 2 - 02 0006abl6 45 43 4b 44 | ECKD
01 00974733272: 682287 2 - 02 0006ab28 00 00 00 04

01 00974733272: 682289 2 - 02 0006ab3e 00 00 00 20

01 00974733272: 682297 2 - 02 0006ad7e 07 ea 4a 90 | ...
01 00974733272: 684384 2 - 00 0006ade6 46 52 45 45 | FREE
01 00974733272: 684388 2 - 00 0006adf 6 07 ea 4a 90

See section about predefined views for explanation of the above output!

Example - Changing the debug level

> cat /proc/s390dbf/dasd/ | evel

3

> echo "5" > /proc/s390dbf/dasd/ | evel
> cat /proc/s390dbf/dasd/ | evel

5

63

Flushing Debug Areas

Debug areas can be flushed by piping the number of the desired area (0...n) to the / proc file “f | ush”.
When using “-” all debug areas are flushed.

Examples:

1. Flush debug area 0:
echo “0” > /proc/s390dbf/dasd/fl ush

2. Flush all debug areas:
echo “-" > [proc/s390dbf/dasd/fl ush

Icrash Interface

It is planned that the dump analysis tool | crash gets an additional command ‘s390dbf’ to display all the
debug logs. With this tool it will be possible to investigate the debug logs on a live system and with a
memory dump after a system crash.

Investigating raw memory

One last possibility to investigate the debug logs at a live system and after a system crash is to look at the
raw memory under VM or at the Service Element. It is possible to find the anchor of the debug-logs
through the 'debug_ar ea_first' symbol in the Syst em map. Then one has to follow the correct pointers
of the data-structures defined in debug. h and find the debug-areas in memory. Normally modules which
use the debug feature will also have a global variable with the pointer to the debug-logs. Following this
pointer it will also be possible to find the debug logs in memory.

For this method it is recommended to use 16 * x + 4' byte (x = 0..n)’ for the length of the data
field in debug_regi ster () in order to see the debug entries well formatted.

Predefined Views

There are three predefined views: hex_ascii, raw and sprintf. The hex_ascii view shows the data field in
hex and ascii representation (e.g. ‘45 43 4b 44 | ECKD). The raw view returns a byte stream as the
debug areas are stored in memory.

The sprintf view formats the debug entries in the same way as the sprintf function would do. The
sprintf event/exception functions write to the debug entry a pointer to the format string (size =
si zeof (1 ong)) and for each varar g a long value. So, for example, for a debug entry with a format string
plus two varargs one would need to allocate a (3 * sizeof(long)) byte data area in the
debug_regi ster() function.

NOTE: If using the sprintf view do NOT use other event/exception functions than the sprintf-event
and -exception functions.

The format of the hex_ascii and sprintf view is as follows:

64

= Number of area

* Timestamp (formatted as seconds and microseconds since 00:00:00 Coordinated Universal
Time (UTC), January 1, 1970)

® Level of debug entry

= Exception flag (* = Exception)
= CPU-Number of calling task

* Return Address to caller

= Data field
The format of the raw view is:

= Header as described in debug. h
= Dartafield

A typical line of the hex_ascii view will look like the following (first line is only for explanation and will
not be displayed when ‘cat ing’ the view):

area tine | evel exception cpu caller data (hex + ascii)

00 00964419409: 440690 1 - 00 88023fe
Defining views

Views are specified with the ‘debug_vi ew structure. There are defined callback functions that are used
for reading and writing the proc files:

struct debug_view {
char name[DEBUG VAX_PROCF_LEN ;
debug_prol og_proc_t* prol og_proc;
debug_header _proc_t* header _proc;
debug_format_proc_t* format_proc;
debug_i nput_proc_t* input_proc;
voi d* private_dat a;

}
Where:

typedef int (debug_header_proc_t) (debug_info_t* id,
struct debug_vi ew* view,
int area,
debug_entry t* entry,
char* out_buf);
typedef int (debug_format_proc_t) (debug_info_t* id,
struct debug_view* view, char* out_buf,
const char* in_buf);
typedef int (debug_prolog proc_t) (debug_info_t* id,
struct debug_vi ew* view,
char* out_buf);
typedef int (debug_input_proc_t) (debug_info_t* id,
struct debug_vi ew* view,
struct file* file, const char* user_buf,
size t in_buf_size, loff_t* offset);

The “pri vat e_dat a” member can be used as pointer to view specific data. The debug feature itself does
not use it.

The output when reading a debug-proc file is structured like this:

“prol og_proc output”

“header _proc output 1" “format_proc output 1"
“header _proc output 2" “format_proc output 2"
“header _proc output 3" “format_proc output 3"

When a view is read from the proc file system, the Debug Feature calls the ‘prolog_proc’ once for
writing the prolog. Then ‘header _proc’ and f or mat _proc’ are called for each existing debug entry.

The i nput _proc can be used to implement functionality when it is written to the view (for example, like
with echo "0" > /proc/s390dbf / dasd/ | evel).

For header proc there can be used the default function debug_df It _header fn() which is defined in
debug. h and which produces the same header output as the predefined views. For example,

00 00964419409: 440761 2 - 00 88023ec
In order to see how to use the callback functions check the implementation of the default views!

Example
#i ncl ude <asni debug. h>

#def i ne UNKNOMNSTR "dat a: %0©8x"

const char* nessages[] =

{"This error........... \n",
"That error........... \n",
"Problem............. \n",
" Somet hi ng went w ong.\n",
"Everything ok........ \n",
NULL

}

static int debug_test_format_fn(
debug_info_t * id, struct debug_view *view,
char *out_buf, const char *in_buf

)

{
int i, rc = 0;
i f(id->buf_size >= 4) {
int nsg_nr = *((int*)in_buf);
i f(meg_nr < sizeof (nessages)/sizeof (char*) - 1)
rc += sprintf(out_buf, "9%", nessages[nsg_nr]);
el se
rc += sprintf(out_buf, UNKNOMSTR nsg_nr);
}
out:
return rc;
}
struct debug_vi ew debug_test_view = {
"nmyvi ew', /* nanme of view */

NULL, /* no prolog */

&lebug_df It _header fn, /* default header for each entry */
&Jebug_test _format_fn, /* our own format function */
NULL, /* no input function */
NULL /* no private data */
|
RESULTS

debug_i nfo_t *debug_i nfo;

débug_info = debug_register ("test", 0, 4, 4));
debug_regi ster_vi ew(debug_i nfo, &debug_test_view;
for(i =0; i < 10; i ++) debug_int_event(debug_info, 1, i);

> cat /proc/s390dbf/test/ nyvi ew

00 00964419734:611402 1 - 00 88042ca This error...........
00 00964419734: 611405 - 00 88042ca That error...........
00 00964419734:611408 1 - 00 88042ca Problem.............
00 00964419734:611411 1 - 00 88042ca Somet hi ng went w ong.
00 00964419734: 611414 1 - 00 88042ca Everything ok........
00 00964419734:611417 1 - 00 88042ca data: 00000005

00 00964419734:611419 1 - 00 88042ca data: 00000006

00 00964419734:611422 1 - 00 88042ca data: 00000007

00 00964419734:611425 1 - 00 88042ca data: 00000008

00 00964419734:611428 1 - 00 88042ca data: 00000009

RPRRRRRRRRERE

67

Common 1/O Layer

This section has been copied from the Documentation/s390 subdirectory of the kernel source tree.

Command line parameters

cio_msg = yes | no

Determines whether information on found devices and sensed device characteristics should be
shown during startup, that is, messages of the types “Detected device 4711 on subchannel
42” and “‘Sensel D: devi ce 4711 reports:...”.

Default is off.

ci 0_notoper_mnsg = yes | no

Determines whether messages of the type “Devi ce 4711 becane 'not operational’” should
be shown during startup; after startup, they will always be shown.

Default is on.

cio_ignore = <range of device nunbers>, <range of device nunbers>,

The given device numbers will be ignored by the common 1/O-layer; no detection and device
sensing will be done on any of those devices. The subchannel to which the device in question is
attached will be treated as if no device was attached.

An ignored device can be un-ignored later; see ““/proc entries” on page 69 for details.

The device numbers must be given hexadecimal. For example:
ci o_i gnor e=0x23- 0x42, 0x4711

This will ignore all devices with device numbers ranging from 23 to 42 and the device with
device number 4711, if detected.

By default, no devices are ignored.

cio_proc_devinfo = yes | no

Determines whether the entries under / proc/ devi cei nf o/ (see next section) should be created.

Since there are problems with systems with many devices attached, it was made configurable.

Until the problems are dealt with, default is off.

Iproc entries

The following sections described various interesting entries.
Iproc/subchannels

Shows for each subchannel:

* Device number
= Subchannel number
* Device type/model (if applicable; if not, this is empty) and control unit type/model

® Whether the device is in use (that is, a device driver has requested ownership and registered an
interrupt handler)

= Path installed mask (PIM), as reflected by last store subchannel (STSCH)

® Path available mask (PAM), as reflected by last store subchannel (STSCH)

* Path operational mask (POM) , as reflected by last store subchannel (STSCH)
* The channel path IDs (chpids)

All fields are separated by spaces. The chpids are in blocks of four.
Iproc/deviceinfo/

Shows in subditrectories for each device some characteristics:

= /proc/ devi cei nf o/ <devno>/ chpi ds: the channel path IDs
® /proc/ devi cei nf o/ <devno>/ i n_use: whether the device is in use

® /proc/ devi cei nf o/ <devno>/ sensedat a: the device type/model and if applicable control unit
type/model of the device

NOTE: Since the number of inodes, which can be dynamically allocated by procfs, is limited: device
entries will only be created up to a magic number of devices. The kernel will utter a warning that not all
entries can be created. In this case, you shouldn't use “ci o_pr oc_devi nf o=yes” (see previous section).

Iproci/cio_ignore

Lists the ranges of device numbers that are ignored by common 1/O.

You can un-ignore certain or all devices by piping to / proc/ ci o_i gnore. “free all” will un-ignore all
gnored devices, “free <devnorange> <devnorange>, ...” will un-ignore the specified devices.

For example, if devices 23 to 42 and 4711 are ignored,

" echo free 0x30-0x32 > /proc/cio_ignore will un-ignore devices 30 to 32 and will leave
devices 23 to 2F, 33 to 42 and 4711 ignored;

= echo free 0x41 > /proc/cio_i gnore will furthermore un-ignore device 41;

® echo free all > /proc/cio_ignore will un-ignore all remaining ignored devices.

When a device is un-ignored, device recognition and sensing is performed and the device driver will be
notified if possible, so the device will become available to the system.

You can also add ranges of devices to be ignored by piping to / proc/ ci o_i gnor e; “add <devnor ange>,
<devnorange>, ..." will ignore the specified devices.

Note: Already known devices cannot be ignored; this also applies to devices that are gone after a
machine check.

For example, if device abcd is already known and all other devices a000-af ff are not known, “echo
add 0xa000- Oxaccc, Oxaf00-Oxafff > /proc/cio_ignore” will add af 00-afff to the list of ignored
devices and skip a000- accc.

Iproc/s390dbficio_*/ (S/390 debug feature)
Some views generated by the debug feature to hold various debug outputs.

® /proc/s390dbf/cio_crw sprintf: Messages from the processing of pending channel report
words (machine check handling), which will also show when CONFI G DEBUG_CRWis defined.

" /proc/s390dbf/cio_nmsg/sprintf: Various debug messages from the common I/O-layer;
generally, messages which will also show when CONFI G_DEBUG | Ois defined.

= /proc/s390dbf/cio_trace/ hex_ascii: Logs the calling of functions in the common I/O-layer
and, if applicable, which subchannel they were called for.

The level of logging can be changed to be more or less verbose by piping to
/ proc/ s390dbf / ci o_*/ 1 evel a number between 0 and 6. See “Debugging 10 on S390 under VM” on
page 43 for more information.

Iproclirq_count

This entry counts how many times s390_process_| RQ has been called for each CPU. This info is in
/ proc/interrupts on other architectures.

Iproc/chpids
This entry will only show up if you specified OONFI G_CHSC=y during kernel configuration.

This entry serves a dual purpose:
1. Show which chpids are currently known to Linux and their status (online, logically offline)
2. Toggling known chpids logically online and offline

To toggle a known chpid logically offline:
echo of f <chpi d> > /proc/chpi ds

70

<chpi d> is interpreted as hex, even if you omit the “Ox”. The chpid will be treated by Linux as if it were
not online, which can mean some devices will become unavailable.

You can toggle a logically offline chpid online again by:

echo on <chpi d> > /proc/ chpids

Of devices had become unavailable by toggling the chpid logically offline, they will become available
again after you toggle the chpid online again.

4

Device Layer

Channel Device Layer

b
Dertis Joseph Barrow (dfibarron(@dedbmz.coms, barrow_df@yaboacon)

Capyright © 2000 IBM Deutschland Entwicklng GrebH, IBM Corporation

The channel device layer is a layer to provide a consistent interface for configuration and default machine
check (devices appearing and disappearing) handling Linux for zSeries channel devices.

These include among others:
= LCS - The most common Ethernet/token ting/fddi standard on zSeries)
= CTC/ESCON - High speed like setial link standard on zSeties.
= CLAW - Used to talk to CISCO routers.
* QETH - Gigabit Ethernet.

* OSAD — Used by OSA/SF to configure OSA devices, for example, to share an OSA card
between two or more VM guests. OSAD is just added to the channel device layer for
completeness. There are no plans, at the current time, to write a driver to exploit this under
Linux.

These devices use two channels one read and one write for configuration and or communication. The
motivation behind producing this layer was that there is a lot of duplicate code among the drivers for
configuration so the LCS and CTC drivers tended to fight over 3088/08's and 3088/1F's which could be
either 2216/3172 LCS compatible devices or ESCONs/CTC's and to tesolve this fight both device
drivers had to be reconfigured rather than doing the configuration in a single place (the channel device
layer).

This layer is not invasive and it is quite okay to use channel drivers that do not use the channel device
layer in conjunction with drivers that do.

The current setup can be read from / pr oc/ chandev. Arguments can be entered by:

* Piping to /proc/chandev. For example, echo reprobe >/ proc/chandev will cause unitialized
channel devices to be probed.

* Entering them into / et ¢/ chandev. conf comments are prefixed #.

72

mailto:djbarrow@de.ibm.com
mailto:barrow_dj@yahoo.com

* Or from the boot command line using the ‘chandev="keyword For example,
chandev=noaut o, 0x0, 0x480d; noaut o, 0x4810, Oxf f f f

This will allow only device numbers 0x480e and 0x480f to bee autodetected.

Multiple options can be passed separated by semicolons, but no spaces are allowed between parameters
on the kernel parameter line as it complicates parsing. Spaces are allowed in /proc/ chandev and
chandev. conf . New-line characters are only allowed in chandev. conf .

To be consistent with other hot-pluggable architectures, the script pointed to
/ proc/ sys/ kernel / hot pl ug (normally /sbin/hot pl ug) will be called automatically on startup or a
machine check of a device, as follows:

/ sbi n/ hot pl ug chandev <start starting_devnanmes> <machi ne_check (devnane
| ast/pre_recovery_status) (current/post_recovery_status>

The chandev layer doe not open st di n, st dout, ot stderr, so it is advisable that you add the following
lines to the start of your script. Here is a sample script that starts devices as they become available:

The chandev layer does not open st di n, stdout, or stderr so it is advisable that you add the following
lines to the start of your script.
#!/ bi n/ bash

exec >/ dev/consol e 2>81 0>&1
Uncomment |ine bel ow for debuggi ng

echo $*
if [“$1” = “chandev”] && [“$2" = “start”]
t hen
shift 2
while [“$1” 1= "] && [“$1" != “machi ne_check”]
isup="ifconfig $1 2>/dev/null | grep UP
if [“$isup” = “"]
then
ifup $1
f
shift
done

f

For example, if (neatly simultaneously) tt0 and ctcO were starting up, ethO and eth1 devices disappears,
and eth2 got a revalidate machine check (which is normally fully recoverable), the parameters would be:

/ sbi n/ hot pug chandev start tr0 ctcO nachi ne_check ethO gone gone eth gone gone eth2
reval i dat e good

This can be used, for example, to call /etc/rc.d/init.d/ network start when a device appears and make
the i pl del ay kernel boot parameter obsolete on native machines or recover from bad machine checks
where the default machine check handling isn't adequate. The machine checks that can be presented as
parameters are: good, not _operational , no_pat h, reval i date, and devi ce_gone. Norma]ly you would
not want to do anything like stop networking when a device disappears, as this is (hopefully) temporary.
I just added it to be complete. The chandev layer waits a few seconds for machine checks to settle before
running / shi n/ hot pl ug because several machine checks usually happen at once and the forked scripts
would possibly race against each other to shutdown and start resources at the same time.

73

Chandev Arguments

Valid chandev arguments are (<> indicate optional parameters, |indicates a choice):
Glossary

devno: is a 16 bit unsigned number used to uniquely identify a subchannel to a device.

force list:isa term specific to channel device layer describing a range of devno's to be forced to
configure in a particular manner as opposed to autodetect

Commonly Used Options

(ctc | escon | lcs | osad | qgeth) <devif_nunp, read_devno,wite_devno, <data_devno, nem
ory_usage_i n_k, port _no/ prot ocol _no, check-sum recei ved_i p_pkt s, use_hw st at s>

devi f_num of -1 indicates you don't care what device interface number is chosen, omitting it indicates
this is a range of devices for which you want to force to be detected as a particular type, qeth
devices can't be forced as a range as it makes no sense for them. The data_devno field is only valid
for geth devices, all parameters including and after menory_usage_i n_k can be set optionally, if not set
they go to default values. menory_usage in_k (0 the default) means let the driver choose,
checksum r ecei ved_i p_pkts and use_hw stat s are set to false. For example,

ct c0, 0x7c00, 0x7c01

Tells the channel layer to force ctc0 if detected to use cuu's 7c00 and 7c01 port, port_no is the relative
adapter number on Ics, on ctc/escon this field is the ctc/escon protocol number (default 0), do not do
checksumming on received ip packets as ctc doesn't have hardware statistics so it ignores this parameter.
This can be used for instance to force a device if it presents bad sense data to the IO layer and
autodetection will fail.

In the following example:
| ¢s, 0x7¢c00, 0x7d00, 4096, - 1
All devices between 0x7¢00 and0x7d00 should be detected as Ics; let the driver use 4096k for each

instance, don't care what port relative adapter number is chosen; do not checksum received ip packets;
and use hardware statistics.

For the next example,
get hl, 0x7c00, 0x7c01, 0x7c02

Interface 1 will use 0x7c00 as the read device, 0x7c01 for write and 0x7c02 for control; do not
checksum received ip packets; and use hardware statistics.

claw devi f_num read_devno, wite_devno <, nenory_usage_in_k, checksumreceived ip_pkts,
use_hw stats, > host _nane, adapater_nanme, api_type

Currently, CLAW is not autodetected as the host _nane, adapt er _nane and api _t ype need to be set up.
Perhaps some convention for automatically setting these may be contrived in the future and auto-
detection may be done. The names host _name, adapt er _name, and api _t ype may be up to 8 characters
in length. host _nane is the name of this host, adapter _nanme is the name of the adjacent host, and
api _type is typically set to “API” or “TCPIP” .

74

A typical setup may be

cl aw0, 0xe00, 0xe01, | i nuxa, rs6k, TCPI P
add_par nms , chan_t ype, <l o_devno, hi _devno, >stri ng

For this option chan_t ype is bitfield that has one of the following values:
= cte=0x1,

= escon=0x2,

" Jes=0x4,

= 0sad=0x8,
" geth=0x10,
= claw=0x20.

The string parameter is for device driver specific options passed as a string to the driver not dealt with
by the channel device layer. It cannot contain spaces.

The | ow_devno and hi _devno parameters are optional used to specify a range. The channel device layer
does not concatenate strings if device ranges overlap, before passing to a device driver.

del _parms <, chan_type, exact _natch, | o_devno>

This option is used to delete some or all device driver specific options. Not specifying chan_t ype causes
it to delete all the strings. Specify exact _match=1 to remove driver parameters where chan_t ype is
exactly equal. Specify exact_match=0 to remove parameters where any bit matches chan_type.

| o_devno is an optional parameter the delete to only happen if | o_devno matches a | o_devno in one of
the ranges.

noaut o <, | o_devno, hi _devno>

Do not probe a range of device numbers for channel devices.
use_devno_nanes
Tells the channel layer to assign device names based on the read channel cuu number. For example, a

token ring read channel 0x7c00 would have an interface called t r 0x7c00 this avoids name collisions on
devices.

Power User Options
del noaut o , <devno>

Delete a range or all noauto ranges when devno is within a range.
del _force ,read_devno

Delete a forced channel device from force list.

dont _use_devno_nanes

Opposite to use_devno_nanes described above.

add_nodel , chan_type, cu_type, cu_nodel , dev_type, dev_nodel, nmax_port_no,
aut omat i c_machi ne_check_handl i ng

75

Tells the channel layer to probe for the device described. The value -1 for any of the parameters other
than chan_t ype and aut omat i c_machi ne_check_handl i ng is a wildcard. Set max_port _no to O for non Ics
devices. The parameter aut o_nachi ne_check_handl i ng is a bit-field that may take the following values:

® not_operational=0x1,

* no_path=0x2,
= revalidate=0x4,
= gone=0x8

The chan_t ype parameter is a bit-field that may take the following values:

= cte=0x1,
= escon=0x2,

" Jes=0x4,

= 0sad=0x8,
* geth=0x10,
= claw=0x20

del _nmodel , cu_type, cu_nodel , dev_t ype, dev_nodel

Note, -1 for any parameter is a wildcard.

del _all _nodel s

Delete all modesl.

non_cauti ous_aut o_det ect

Tells the channel device layer to attempt to auto detect devices even if their type/model pairs don't
unambigously identify the device. For example, 3088/1F's can either be escon CTC's or channel
attached 3172 lcs compatible devices. If the wrong device driver attempts to probe these channels there
may be big delays on startup or even a kernel lockup, use this option with caution.

cauti ous_aut o_det ect

See non_caut i ous_aut o_det ect this is the default.

auto_msck <, | o_devno>, <hi _devno>, aut o_nsck_r ecovery

This is used to specify the kind of machine check recovery that occurs over a device range.
del _auto_nsck <, devno>

Delete a range or all machine check recovery ranges when devno is within a range.
reset _cl ean

Resets all model info, forced devices and noauto lists to null.

reset _conf

Resets all model info, forced devices and noauto lists back to default settings.
reset _conf_cl ean

Resets all model info, forced devices and noauto lists to empty.

shut down <devi ce nare|read devno>

76

Shuts down a particular device by device name or read device number, deregisters it, and releases its
interrupts or shuts down all devices if no parameter is used.

r epr obe

Calls probe method for channels whose interrupts are not owned.

unr egi st er _probe <probefunc_addr>

Unregisters a single probe function or all of them.

unr egi st er _probe_by_chan_t ype

Unregisters all probe functions which match the chan_type bitfield exactly, useful if you want a
configuration to service a kernel upgrade.

read_conf

Read instructions from / et ¢/ chandev. conf .

dont _read_conf

Do not automatically read / et ¢/ chandev. conf on boot.
persi st ,chan_type
Force drivers modules to stay loaded even if no device is found, this is useful for debugging and one

wishes to examine debug entries in /proc/s390dbf/ to find out why a module failed to load. For
example,

= persist, -1 forces all devices to persist.

" persist, 0 forces all channel devices to be non persistent.

The following sequence of commands should be roughly equivalent to rebooting for channel devices:

shut down
reset _conf
read_conf
r epr obe

77

Common Device Support

The following section was copied from the Docunrent at i on/ 390 directory of the Linux distribution. It
was written by Aldo Lung and is copyright IBM 1999-2002, under the GNU Public License.

This chapter describes the common device support routines for Linux/390. Different than other
hardwate architectures, ESA/390 has defined a unified I/O access method. This gives relief to the
device drivers as they don’t have to deal with different bus types, polling versus interrupt processing,
shared versus non-shared interrupt processing, DMA versus port I/O (PIO), and other hardware
features more. However, this implies that either every single device driver needs to implement the
hardwate 1/O attachment functionality itself, or the operating system provides for a unified method to
access the hardware, providing all the functionality that every single device driver would have to provide
itself.

The document does not intend to explain the ESA/390 hardware architecture in every detail. This
information can be obtained from the ESA/390 Principles of Operation manual (IBM Form. No. SA22-
7201).

In order to build common device support for ESA/390 1/O interfaces, a functional layer was
introduced that provides genetic I/O access methods to the hardware. The following figure shows the
usage of the common device support of Linux/390 using a TCP/IP driven device access an example.
Similar figures could be drawn for other access methods (for example, file system access to disk devices).

The common device support layer shown above comprises the 1/O support routines defined below.
Some of them implement common Linux device driver interfaces, while some of them are ESA/390
platform specific.

Function Description

get_dev_info_by_IRQ()/ Allow a device driver to determine the devices attached (visible) to
get_dev_info_by_devno() the system and their current status.

get_ IRQ_by_devno()/ Get IRQ (subchannel) from device number and vice versa.
get_devno_by_IRQ()

read_dev_chars() Read device characteristics

request_IRQ() Obtain ownership for a specific device.

free_IRQ() Release ownership for a specific device.

disable_IRQ() Disable a device from presenting interrupts.

enable_IRQ() Enable a device, allowing for I/O interrupts.

78

do_IO() Initiate an I/O request.

resume_IO() Resume channel program execution.
halt_IO() Terminate the current I/O request processed on the device.
do_IRQ() Generic interrupt routine. This function is called by the interrupt

entry routine whenever an I/O interrupt is presented to the
system. The do_IRQ)() routine determines the interrupt status and
calls the device specific interrupt handler according to the rules
(flags) defined during I/O trequest initiation with do_IO().

The next sections describe the functions, other than do_| RQY() in more details. The do_| RQ) interface
is not described, as it is called from the Linux/390 first level interrupt handler only and does not
comprise a device driver callable interface. Instead, the functional description of do_I () also describes
the input to the device specific interrupt handler.

Note: All explanations also apply to the 64-bit architecture (s390x).
General Information

The following sections describe the I/O related interface routines the Linux/390 common device
suppott (CDS) provides to allow for device specific driver implementations on the IBM ESA/390
hardware platform. Those interfaces intend to provide the functionality required by every device driver
implementation to allow driving a specific hardware device on the ESA/390 platform. Some of the
interface routines are specific to Linux/390 and some of them can be found on other Linux platforms’
implementations too.

Miscellaneous function prototypes, data declarations, and macro definitions can be found in the
architecture specific “C header file” | i nux/ ar ch/ s390/ ker nel / | RQ h.

Overview of CDS interface concepts

Diffetent to other hardwate platforms, the ESA/390 architecture does not define interrupt lines
managed by a specific interrupt controller and bus systems that may or may not allow for shared
interrupts, DMA processing, etceteras. Instead, the ESA/390 architecture has implemented a so-called
channel subsystem, which provides a unified view of the devices physically attached to the systems.
Though the ESA/390 hardwate platform knows about a huge variety of different peripheral attachments
like disk devices (also known as DASD), tapes, communication controllers, they can all by accessed by a
well defined access method and they are presenting I/O completion a unified way: 1/O interruptions.
Every single device is uniquely identified to the system by a so-called subchannel, where the ESA/390
architecture allows for 64k devices to be attached.

Linux, however was first built on the Intel PC architecture, with its two cascaded 8259 programmable
interrupt controllers (PICs), that allow for a maximum of 15 different interrupt lines. All devices attached
to such a system share those 15 interrupt levels. Devices attached to the ISA bus system must not share
interrupt levels (also known as IRQ)s), as the ISA bus bases on edge triggered interrupts. MCA, EISA,
PCI and other bus systems base on level triggered interrupts, and thus allow for shared IRQs. However,

79

if multiple devices present their hardware status by the same (shared) IRQ), the operating system has to
call every single device driver registered on this IRQ in order to determine the device driver owning the
device that raised the interrupt.

In order not to introduce a new I/O concept to the common Linux code, Linux/390 preserves the IRQ
concept and semantically maps the ESA/390 subchannels to Linux as IRQs. This allows Linux/390 to
support up to 64k different IRQs, uniquely representig a single device each.

During its startup the Linux/390 system checks for petipheral devices. A so-called “subchannel”
uniquely defines each of those devices by the ESA/390 channel subsystem. While the subchannel
numbers are system generated, each subchannel also takes a user-defined attribute, the so-called “device
number”’. Both, subchannel number and device number cannot exceed 65535. Thei nit _| RQ) routine
gathers the information about control unit type and device types that imply specific I/O commands
(channel command words or CCWs) in order to operate the device. Device drivers can retrieve this set
of hardware information during their initialization step to recognize the devices they support using
get _dev_info_by_ | RQY) orget_dev_info_by_devno() respectively.

These methods imply that Linux/390 does not requite to probe for free (not armed) intetrupt request
lines (IRQs) to drive its devices with. Where applicable, the device drivers can use the
read_dev_chars() to retrieve device characteristics. This can be done without having to request device
ownership previously.

When a device driver has recognized a device it wants to claim ownership for, it calls r equest _I RQY)
with the device’s subchannel id serving as pseudo IRQ) line. One of the required parameters it has to
specify is dev_id, defining a device status block, the CDS layer will use to notify the device driver’s
interrupt handler about interrupt information observed. It depends on the device driver to propetly
handle those interrupts.

In otder to allow for easy I/O initiation the CDS layer provides a do_| Q() interface that takes a device
specific channel program (one or more CCWs) as input sets up the required architecture specific control
blocks and initiates an I/O request on behalf of the device driver. The do_I () routine allows for
different I/O methods, synchronous and asynchronous, and allows to specify whether it expects the
CDS layer to notify the device driver for every interrupt it observes, or with final status only. It also
provides a scheme to allow for ovetlapped I/O processing. See “do_IO() - Initiate I/O Request” on
page 92 for more details. A device driver must never issue ESA/390 I/O commands itself, but must use
the Linux/390 CDS interfaces instead.

For long running I/O request to be canceled, the CDS layer provides the hal t _| () function. Some
devices require to initially issue a HALT SUBCHANNEL (HSCH) command without having pending
I/O requests. This function is also covered by hal t _I () .

When done with a device, the device driver calls free_| RQ() to release its ownership for the device.
During free_| RQ) processing the CDS layer also disables the device from presenting further
interrupts: the device driver does not need to assure it. The device will be re-enabled for interrupts with
the next call to request | RY).

GET_IRQ_FIRST()/GET_IRQ_NEXT() - RETRIEVE INFORMATION ABOUT AVAILABLE IRQS

A device driver can use those interface routines to retrieve information for those IRQs only that have
valid device information available. As Linux for S/390 supports a maximum of 65535 subchannels
(devices), it might be a waste of CPU to scan for the maximum number of devices while a fraction is
available/usable only. get _irq_first() will retrieve the first usable IRQ. Using this as input,
get _i rg_next () will retrieve the next IRQ) available.

int get_irqg_first(void);
int get_irqg_next(int irq);

I RQ Defines the subchannel to start scanning with. This must be a valid subchannel or an
error is returned.

Theget irq first() /get_irqg_next() functions return:

0 Sucessful completion

-ENODEV IRQ or devno don’t specify a known subchannel or device number.

For example,

irqg =get_irqg_first();
while (irq !'= - ENCDEV)
{

get _dev_info_by irqg(irqg, &dinfo);

if (di nfo. devno == devno_t o_I| ook_f or
|| dinfo.sid _data.cu_type == cu_type_to_|l ook _for)
{
do_sone_action(irqg, &info);
} /* endif */

irqg =get_irg_next(irq);
}

GET_DEV_INFO_BY_() - RETRIEVE DEVICE INFORMATION

During system startup - i ni t _| RQ) processing - the generic I/O device support checks for the devices
available. For all devices found it collects the Sense-ID information. For those devices supporting the
command it also obtains extended Sense-1D information.

int get dev_info by IRQ int I1RQ s390 dev_info_t *devinfo);
int get_dev_info_by_devno(_ ul6é devno, s390_dev_info_t *devinfo);

I RQ Defines the subchannel, status information is to be returned for.
devno device number.
devinfo Pointer to a user buffer of tvne s390 dev info t that should be filled with device

81

specific information.

typedef struct {
int irg;
__ule devno;
unsi gned int status;
sensei d_t sid_data;

/* irq, aka subchannel */
/* devi ce nunber */
/* device status */
/* sensel D data */

} s390_dev_info_t;

devno Device number as configured in the IOCDS
stat us Device status
sid_data Data obtained by a SenselD call

Possible status values are:

DEVSTAT_NOT_OPER - Device was found not operational. In this case the caller should disregard
the sid_data buffer content.

DEVSTAT_UNFRIENDLY_DEV — Device is locked by someone else. The sid_data buffer does not
contain valid data.

DEVSTAT_UNKNOWN_DEYV — The device is unknown, and the sid_data buffer does not contain
valid data.

DEVSTAT_DEVICE_OWNED — An interrupt handler is registered.

Il
/1 Sensel D response buffer |ayout
I/
typedef struct {
/* common part */

__u8 reserved; /* always Ox’' FF */
__ul6 cu_type; /* control unit type */
__u8 cu_nodel ; /* control unit nodel */
__ul6 dev_type; /* device type */

__u8 dev_nodel ; /* devi ce nodel */

__u8 unused; /* paddi ng byte */

/* extended part */
ciwt ciw MAX AW ; /* variable # of AW */
} __attribute__ ((packed(4))) s390_senseid_t;

MAX_CIWS is currently defined as 8.

The ESA/390 I/O atchitecture defines certain device specific I/O functions. The device returns the
device specific command code together with the Sense-ID data in so called Command Information
Words (CIW):

typedef struct _ciw{

_u32 et 2, /] entry type

_u32 reserved : 2; // reserved

_u32 ct . 4; [/ comrand type
_u32 cmd : 8 // command
_u32 count . 16; // count

} __attribute _ ((packed)) ciw.t;

Possible CIW entry types are:

#define A WTYPE RDC 0x0; // read configuration data
#define AWTYPE SII Ox1; // set interface identifier
#define AWTYPE RNl 0x2; // read node identifier

The device driver may use these commands as appropriate.

The get _dev_info_by IRY) / get_dev_info_by devno() functions return:

0 Sucessful completion

-ENODEV IRQ or devno don’t specify a known subchannel or device number.

-EINVAL Inwvalid devinfo value.

-EUSERS Device is locked by someone else.

Usage Notes In order to scan for known devices a device driver should scan all IRQs by calling

get _dev_i nfo() untl it returns -ENODEYV as there are not any more available devices.

If a device driver wants to request ownership for a specific device it must call r equest _I RQ() prior to
be able to issue any I/O request for it, including above mentioned device dependent commands.

Please see the “ESA/390 Common 1/O-Commands and Self Desctiption” manual, with IBM form
number SA22-7204 for more details on how to read the Sense-ID output, CIWSs and device independent
commands.

GET_IRQ_BY_DEVNO() - CONVERT DEVICE IDENTIFIERS

While some device drivers act on the IRQ (subchannel) only, others take user defined device
configurations on device number base, according to the device numbers configured in the IOCDS. The
following routines serve the purpose to convert IRQ values into device numbers and vice versa.

int get_| RQ by devno(unsigned int devno);
unsi gned int get_devno_by IRQY int IRQ);

The functions return:

* The requested IRQ/devno values

83

= -1 if the requested conversion could not be accomplished. This could either be caused by
IRQ/devno be outside the valid range (value > Oxffff or value < 0) or not identifying a known
device.

READ_DEV_CHARS() - READ DEVICE CHARACTERISTICS

This routine returns the characteristics for the device specified.

The function is meant to be called without an IRQ handler being in place. However, the IRQ for the
requested device must not be locked or this will cause a deadlock situation. Further, the driver must
assure that nobody else has claimed ownership for the requested IRQ) yet or the owning device driver’s
internal accounting may be affected.

In case of a registered interrupt handler, the interrupt handler must be able to propetly react on
interrupts related to the read_dev_chars() I/O commands. While the tequest is processed
synchronously, the device interrupt handler is called for final ending status. In case of error situations the
interrupt handler may recover appropriately. The device IRQQ handler can recognize the corresponding
interrupts by the interruption parameter being 0x00524443. If using the function with an existing device
interrupt handler in place, the IRQ must be locked prior to call r ead_dev_chars().

The function may be called enabled or disabled.
int read_dev_chars(int IRQ void **buffer, int length);

I RQ specifies the subchannel the device characteristic retrieval is requested for

buffer pointer to a buffer pointer. The buffer pointer itself may be NULL to have the function
allocate a buffer or must contain a valid buffer area.

length length of the buffer provided or to be allocated.

The read_dev_chars() function returns :

0 Successful completion

-ENODEV | IRQ does not specify a valid subchannel number

-EINVAL An invalid parameter was detected

-EBUSY An irrecoverable I/O etror occurred or the device is not operational

Usage Notes The function can be used in two ways:

1. If the caller does not provide a data buffer, read_dev_chars() allocates a data

84

buffer and provides the device characteristics together. It is the caller’s responsibility to release
the kernel memory if not longer needed. This behavior is triggered by specifying a NULL buffer
area (*buffer == NULL).

2. Alternatively, if the user specifies a buffer are, nothing is allocated.

In either case the
allocated.

caller must provide the data area length: for the buffer specified or the buffer wanted

READ_CONF_DATA() - READ CONFIGURATION DATA

Rettieve the device dependent configuration data. Please have a look at your device dependent 1/O
commands for the device specific layout of the node descriptor elements.

The function is meant to be called without an IRQ handler being in place. However, the IRQ for the
requested device must not be locked or this will cause a deadlock situation!

The function may be called enabled or disabled.

int read_conf_data(int irqg, void **buffer, int *length, _ u8 Ipm;

irqg Specifies the subchannel the configuration data is to be retrieved for.
Pointer to a buffer pointer. The read_conf_data() routine will allocate a bufter and

buf f er initialize the buffer pointer accordingly. It's the device driver's responsibility to release
the kernel memory if no longer needed.

I'ength Length of the buffer allocated and retrieved.

| pm Logical path mask to be used for retrieving the data. If zero the data is retrieved on the
next path available.

The read_conf_data() function returns :

0 Successful completion

-ENODEV irq doesn't specify a valid subchannel number

-EINVAL An invalid parameter was detected

-EIO An irrecoverable I/O etror occured ot the device is not operational.
-ENOMEM The read_conf_data() routine couldn't obtain storage
-EOPNOTSUPP | The device doesn't support the read configuration data command.

REQUEST_IRQ() - REQUEST DEVICE OWNERSHIP

As previously discussed a device driver will scan for the devices its supports by calling get _dev_i nfo().
Once it has found a device it will call request _| RQY) to request ownership for it. This call causes the
subchannel to be enabled for interrupts if it was found operational.

Note: This function is obsolete and provided for compatibility purposes only. Device drivers should use
$390 _request _irq_speci al () instead.

int request I RQY unsigned int IRQ int (*handler)(int, void *, struct pt_regs *),
unsi gned long irqgflags, const char *devnane, void *dev_id);

I RQ Specifies the subchannel the ownership is requested for

handl er Specifies the device driver’s interrupt handler to be called for interrupt processing
irgflags IRQ flags, must be 0 (zero) or SA_SAMPLE_RANDOM

devnane Device name

dev_id Required pointer to a device specific buffer of type devstat_t

typedef struct {

_ule6 devno; /* device nunber, aka. "cuu" fromirb */
unsigned long intparm /* interrupt paraneter */
_u8 cstat; /* channel status - accumul ated */
_us8 dstat; /* device status - accurul ated */
_u8 | pum /* last path used mask fromirb */
_us8 unused, /* not used - reserved */
unsigned int flag; /* flag : see bel ow */
_u32 cpa; /* CCWaddress fromirb at primary status */
_u32 rescnt; /* res. count fromirb at primary status */
_u32 scnt; /* sense count, if DEVSTAT_FLAG SENSE AVAI L */
uni on {
irb_t irb; /* interruption response bl ock */
sense_t sense; /* sense information */
Yoii; /* interrupt information */
} devstat_t;

During request _| RQ() processing, the devstat_t layout does not matter as it will not be used during
request _| RQ) processing. See “do_lO() - Initiate I/O Request” on page 92 for a functional
description of its usage.

Therequest _| RY) function returns :

‘ 0 ‘ Successful completion

-EINVAL An invalid parameter was detected

-EBUSY Device (subchannel) already owned

-ENODEV | The device is not operational

-ENOMEM | Not enough kernel memory to process request

Usage Notes
While Linux for Intel defines dev_id as a unique identifier for shared interrupt lines it has a

totally different purpose on Linux/390. Here it setves as a shared interrupt status area
between the generic device support layer, and the device specific driver. The value passed to
request _| RQ() must therefore point to a valid devstat_t type buffer area the device driver must
preserve for later usage. That is, it must not be released prior to a call to f ree_I RQY) .

Currently, irgflags are ignored by the CDS layer. The Linux/390 ketnel does not know about “fast”
interrupt handlers, or does it allow for interrupt sharing. Remember, the term interrupt level (IRQ)),
device, and subchannel are used interchangeably in Linux/390.

If request _I| RQY() was called in enabled state, or if multiple CPUs are present, the device may present
an interrupt to the specified handler prior to request _| RY) return to the caller already. This includes
the possibility of unsolicited interrupts or a pending interrupt status from an eatlier solicited I/O request.
The device driver must be able to handle this situation propetly or the device may become non-
operational.

Although the interrupt handler is defined to be called with a pointer to a struct pt _regs buffer area, the
Linux/390 genetic I/O device dtiver support layer does not implement this. The device drivert’s
interrupt handler must therefore not rely on this parameter on function entry.

S390_REQUEST_IRQ_SPECIAL() - REQUEST DEVICE OWNERSHIP

As previously discussed a device driver will scan for the devices its supports by calling get _dev_i nf o() .
Once it has found a device it will call r equest _i rq() to request ownership.

Note: This function replaces request _i rq() described previously.

int s390 _request _irqg_special (

int irq,

i o_handl er_func_t i o_handl er,

not _oper _handl er _func_t not_oper_handl er,
unsi gned | ong i rgfl ags,

const char *devnane,

voi d *dev_id);

87

irq Specifies the subchannel the ownership is requested for

i o_handl er Specifies the device driver's interrupt handler to be called for interrupt processing

not_oper _handl er | Specifies a device driver “not operational” handler

iraflags IRQ flags, currently ignored
devnane Device name
dev_id Required pointer to a device specific buffer of type devst at _t
typedef struct {
_ule6 devno; /* device nunber, aka. "cuu" fromirb */
unsigned long intparm /* interrupt paraneter */
_u8 cstat; /* channel status - accumul ated */
__us8 dstat; /* device status - accurul ated */
_u8 | pum /* last path used mask fromirb */
__us8 unused; /* not used - reserved */
unsigned int flag; /* flag : see bel ow */
_u32 cpa; /* CCWaddress fromirb at primary status */
_u32 rescnt; /* res. count fromirb at primary status */
_u32 scnt; /* sense count, if DEVSTAT_FLAG SENSE AVAI L */
uni on {
irb_t irb; /* interruption response bl ock */
sense_t sense; /* sense information */
Yoii; /* interrupt information */
} devstat_t;

During request _irqg() processing, the devstat_t layout does not matter as it won't be used during
request _i rq() processing. See “do_IO() - Initiate I/O Request” on page 92 for a functional description
of its usage.

typedef void (* io_handler_func_t) (int irq,
voi d *devst at,
struct pt_regs *rgs);
irq IRQ the interrupt handler is called for
devst at Device status block
rgs Obsolete

typedef (void)(* not_oper_handler_func_t)(int irq,
int status);

irq IRQ the not operational status has been encountered for

status Device status

Status may contain the following:

DEVSTAT_NOT_OPER - device is not operational

DEVSTAT REVALIDATE - revalidate device number
DEVSTAT_DEVICE_GONE - no such device (irq)

Note: Revalidate indicates that running under VM the device number has been modified by means of a
DEFI NE xxxx [as] yyyy command. Therewith device number xxxx was altered to yyyy. It's the device
driver’s responsibility to decide whether device ownership can be retained.

Gone indicates that the device was detached under VM, or the device number became invalid (native,
LPAR). In order to prevent further I/O the IRQ was implicitly freed on behalf of the device driver. The
driver must not call free_irq itself.

Not Oper indicates the device became not operational. It's the device driver's responsibility whether it
wants to maintain ownership for the IRQ, or not.

The s390_request_irq_special() function returns :

0 Successful completion
-EINVAL An invalid parameter was detected
-EBUSY Device (subchannel) already owned

-ENODEV The device is not operational

-ENOMEM Not enough kernel memory to process request

Usage Notes

While Linux for Intel defines dev_id as a unique identifier for shared interrupt lines, it has a
totally different purpose on Linux for S/390. Hereit serves as a shared interrupt status area between the
generic device support layer and the device specific driver. The value passed to request _irg() must
therefore point to a valid devstat_t type buffer area the device driver must preserve for later usage. That
s, it must not be released prior to a calltofree_irq().

Currently, the value of irqflags is ignored. The Linux for S/390 kernel does neither know about “fast”
interrupt handlers, nor does it allow for interrupt sharing. Remember, the term interrupt level (IRQ),
device, and subchannel are used interchangeably in Linux for S/390.

Other than request _irq(), this function does allow for a not operational handler to be defined. This
handler is called when a device either became not operational, the last path to a device became not
operational, or the device was detached from the system. A detach could be a “detach” under VM or

that the device became unassigned by the Support Element (SE) or Hardware Management Console
HMCO).

If s390_request _i rq_speci al () was called in enabled state, or if multiple CPUs are present, the device
may present an interrupt to the specified handler prior to request _irq() return to the caller already!
This includes the possibility of unsolicited interrupts or a pending interrupt status from an earlier
solicited I/O request. The device driver must be able to handle this situation propetly or the device may
become unoperational!

Although the interrupt handler is defined to be called with a pointer to a struct pt_regs buffer area,
this is not implemented by the Linux for S/390 platform specific common 1/O support layer. The
device driver's interrupt handler must therefore not rely on this parameter on function entry.

FREE_IRQ() - RELEASE DEVICE OWNERSHIP

A device driver may call f ree_| RQ() to release ownership of a previously acquired device.
void free_IRQ unsigned int IRQ void *dev_id);

I RQ Specifies the subchannel the ownership is requested for

Required pointer to a device specific buffer of type devstat_t.

dev_id This must be the same as the one specified during a previous call to

request_IRQ().

Usage Notes . o .
Unfortunately free_| RQ() is defined not to return error codes. That is, if called with

wrong parameters a device may still be operational although there is no device driver
available to handle its interrupts. Further, during f ree_| RQ() processing we may possibly find pending
interrupt conditions. As those need to be processed, we have to delay free_| RQ() returning until a
clean device status is found by synchronously handling them.

The call to free_I RY) will also cause the device (subchannel) be disabled for interrupts. The device
driver must not release any data areas required for interrupt processing prior to free_| RQY) return to
the caller as interrupts can occur prior to f ree_| RQY) returning. This is also true when called in disabled
state if either multiple CPUs are presents or a pending interrupt status was found during free_| RQ()
processing,

DISABLE_IRQ() - DISABLE INTERRUPTS FOR A GIVEN DEVICE

This function may be called at any time to disable interrupt processing for the specified IRQ. However,
as Linux/390 maps IRQs to the device (subchannel) one-to-one, this may require more extensive 1/O
processing than anticipated, especially if an interrupt status is found pending on the subchannel that
requires synchronous error processing.

int disable |RQY unsigned int I1RQ);

I RQ

Specifies the subchannel to be disabled

The di sabl e- 1 RY) routine may return:

0 Successful completion
-EBUSY Device (subchannel) already owned
-ENODEV | The device is not operational or the IRQ does not specify a valid

subchannel

Usage Notes

Unlike the Intel based hardware architecture the ESA/390 architecture does not have a
programmable interrupt controller (PIC) where a specific interrupt line can be disabled.

Instead the subchannel logically representing the device in the channel subsystem must be disabled for
interrupts. However, if there are still interrupt conditions pending they must be processed first in order
to allow for proper processing after re-enabling the device at a later time. This may lead to delayed
disable processing.

As described previously the disable processing may require extensive processing. Therefore disabling and
re-enabling the device using di sabl e_I RY() or enabl e_| RQY) should be avoided and is not suitable
for high frequency operations.

Linux for Intel
defines this
function

void disable IRQ) int IRQ;

This 1s suitable for the Intel PC architecture as this only causes to mask the requested IRQ
line in the PIC, which is not applicable for the ESA/390 architecture. Therefore we allow
for returning error codes.

ENABLE_IRQ() - ENABLE INTERRUPTS FOR A GIVEN DEVICE

This function is used to enable a previously disabled device (subchannel). See “disable_IRQ() - Disable
Interrupts for a given Device” on page 90 for more details.

int enable_ | RQY unsigned int IRQ);

I RQ

Specifies the subchannel to be enabled

The enabl e_| RQY) routine may return:

0

Successful completion

-EBUSY

Device (subchannel) busy, which implies the device is already enabled

91

-ENODEV ‘ The device is not operational or the IRQ does not specify a valid subchannel

DO_IO() - INITIATE 1I/O REQUEST

The do_| Q) routines is the I/O request front-end processor. All device driver I/O requests must be
issued using this routine. A device driver must not issue ESA/390 I/O commands itself. Instead the
do_I () routine provides all interfaces required to drive arbitrary devices.

This description also covers the status information passed to the device driver’s interrupt handler as this
is related to the rules (flags) defined with the associated I/O request when calling do_I () .

int do IQ int IRQ ccwl_t *cpa, unsigned |ong intparm unsigned int | pm unsigned |ong
flag);

I RQ IRQ (subchannel) the I/O request is destined for

cpa Logical start address of channel program

User-specific interrupt information; will be presented back to the device driver’s
i ntparm interrupt handler. Allows a device driver to associate the interrupt with a
particular I/O request.

Defines the channel path to be used for a specific I/O request. Valid with flag

|
P value of DOIO_VALID_LPM only.

flag Defines the action to be performed for I/O processing

Possible flag values are:

DOIO_EARLY_NOTIFICATION | Allow for eatly interrupt notification

DOIO_VALID_LPM LPM input parameter is valid (see usage notes for details)

DOIO_WAIT_FOR_INTERRUPT | Wait synchronously for final status

DOIO_REPORT _ALL Report all interrupt conditions

The cpa parameter points to the first format 1 CCW of a channel program:

typedef struct {
__u8 cnd_code;/* conmand code */

ug8 flags; /* flags, |like | DA adressing, etc. */
ulé count; /* byte count */

u32 cda;

/* data address */

} __at tribut e ((packed, aligned(8))) ccwl_t;
The following CCW flags values are defined:

COW FLAG DC Data chaining

OCW FLAG CC Command chaining

CCW FLAG SLI Suppress incorrect length
OCW FLAG SKI P Skip

CCOW FLAG PQl PCI

CCOW FLAG | DA Indirect addressing

COW FLAG_SUSPEND Suspend

The do_| () function returns:

0 Successful completion or request successfully initiated

-EBUSY The do_i o() function was called out of sequence. The device is currently processing a
previous I/O request

-ENODEV IRQ does not specify a valid subchannel, the device is not operational (check
dev_id.flags) or the IRQ) is not owned.

-EINVAL Both DO O_EARLY_NOTI FI CATI ON and DO O_RECRT_ALL flags have been specified.

The usage of those flags is mutual exclusive.

When the I/O request completes, the CDS first level interrupt handler will setup the dev_id buffer of
type devstat_t defined during request_irq() processing. See “request IRQ() - Request Device
Ownership” on page 86 for the devstat _t data layout. The dev_i d- >i nt par mfield in the device status
area will contain the value the device driver has associated with a particular I/O request. If a pending
device status was tecognized dev_i d- >i nt parmwill be set to 0 (zero). This may happen during I/O
initiation or delayed by an alert status notification.

93

In any case this status is not related to the current (last) I/O request. In case of a delayed status
notification no special interrupt will be presented to indicate I/O completion as the I/O request was
never started, even though do_I () returned with successful completion.

Possible dev_i d- >f | ag values are:

DEVSTAT_FLAG SENSE_AVAI L Sense data is available

DEVSTAT_NOT_CPER Device is not operational

DEVSTAT_START_FUNCTI CN Interrupt is presented as a result of a call to do_I ()
DEVSTAT_HALT_FUNCTI ON Interrupt is presented as a result of a call to hal t _I ()

A pending status was found. The I/O request (if any) was not
DEVSTAT_STATUS_PENDI NG initiated. This status might have been presented delayed, after
do_I () orhalt _I () have successfully be started previously.

DEVSTAT FI NAL_STATUS This is a final interrupt status for the I/O request identified by

intparm.
DEVSTAT_PQ A Program Controlled Interrupt was received.
DEVSTAT_SUSPENDED A “suspended” intermediate status was received.

If device status DEVSTAT_FLAG SENSE AVAI L is indicated in field dev_i d->flag, fiel d dev_id-
>scnt describes the number of device specific sense bytes available in the sense area dev_i d-
>i i . sense. No device sensing by the device driver itself is required.
typedef struct {

__u8 res[32]; /* reserved */

_u8 data[32]; /* sense data */
} __attribute__ ((packed)) sense_t;

The device interrupt handler can use the following definitions to investigate the primary unit check
source coded in sense byte 0:

SNSO_CVD_REJECT 0x80
SNSO_| NTERVENTI ON_REQ 0x40
SNSO_BUS_QOUT_CHECK 0x20

94

SNSO_EQUI PMENT _CHECK 0x10

SNSO_DATA CHECK 0x08

SNSO_OVERRUN 0x04

Depending on the device status, multiple of those values may be set together. Please refer to the device
specific documentation for details.

The devi _i d->cst at field provides the (accumulated) subchannel status:

SCHN_STAT_PCl Program controlled interrupt
SCHN_STAT_I NOORR _LEN Incorrect length
SCHN_STAT_PROG CHECK Program check
SCHN_STAT_PROT_CHECK Protection check
SCHN_STAT_CHN DATA CHK Channel data check
SCHN_STAT_CHN_CTRL_CHK Channel control check
SCHN_STAT_| NTF_CTRL_CGHK Interface control check
SCHN_STAT_CHAI N_CHECK Chaining check

The dev_i d->dst at field provides the (accumulated) device status:

DEV_STAT_ATTENTI ON Attention
DEV_STAT_STAT MDD Status modifier
DEV_STAT_CU END Control unit end
DEV_STAT_BUSY Busy
DEV_STAT_CHN _END Channel end

DEV_STAT_DEV_END Device end

DEV_STAT_UNI T_CHECK Unit check

DEV_STAT_UN T_EXCEP Unit exception

Please see the ESA/390 Principles of Operation manual for details on the individual flag meanings.

In rare error situations the device driver may require access to the original hardware interrupt data

beyond the scope of previously mentioned information. For those situations the Linux/390 common

device support provides the interrupt response block (IRB) as part of the device status block in dev_i d-

>ii.irb.
Usage Notes Prior to call do_| () the device driver must assure disabled state, that is, the I/O mask
value in the PSW must be disabled. This can be accomplished by calling
__save_flags(flags). The current PSW flags are preserved and can be restored by
__restore_flags(fl ags) atalater time.

If the device driver violates this rule while running in a uni-processor environment an interrupt might be
presented prior to the do_I () routine returning to the device driver main path. In this case we will end
in a deadlock situation, as the interrupt handler will try to obtain the IRQ lock the device driver still
owns.

The driver must assure to hold the device specific lock. This can be accomplished by
1. s390irqg_spin_l ock(1RQ, or
2. s390irq_spin_lock_ irgsave(l RQ flags)

Option (1) should be used if the calling routine is running disabled for I/O interrupts already. Option (2)
obtains the device gate and puts the CPU into 1/O disabled state by preserving the current PSW flags.

See the descriptions of s390i r g_spi n_| ock() or s390i rq_spi n_l ock_i rqsave() for more details.

The device driver is allowed to issue the next do_| () call from within its interrupt handler already. It is
not required to schedule a bottom-half, unless an non deterministically long running error recovery
procedure or similar needs to be scheduled. During 1/O processing the Linux/390 generic 1/O device
driver support has already obtained the IRQ lock, that is, the handler must not try to obtain it again
when calling do_I () or we end in a deadlock situation. Anyway, the device driver’s interrupt handler
must only call do_I () if the handler itself can be entered recursively if do_I Q(), for example, it finds a
status pending and needs to all the interrupt handler itself.

Device drivers should not tely on DO O WAl T_FCR_| NTERRUPT synchronous I/O request processing too
heavily. All I/O devices, but the console device are driven using a single shated interrupt subclass (ISC).

For synchronous processing the device is temporarily mapped to a special ISC while the calling CPU
waits for I/O completion. As this special ISC is gated, all synchronous requests in an SMP environment
are serialized which may cause other CPUs to spin. Primarily, this service is meant to be used during
device driver initialization for ease of device setup.

If the device driver is using the DO O TIMEQUT parameter, it is a good idea also to specify
DO O CANCEL_ON_TI MEQUT. Otherwise, the failing channel program may prevent the execution of any
other channel program at the subchannel.

The lpm input parameter might be used for multi-path devices shared among multiple systems as the
Linux/390 CDS is not grouping channel paths. Therefore, its use might be required if multiple access
paths to a device are available and the device was reserved by means of a reserve device command (for
devices supporting this technique). When issuing this command the device driver needs to extract the
dev_i d- >l pumvalue and restrict all subsequent channel programs to this channel path until the device is
released by a device release command. Otherwise a deadlock may occut.

If a device driver relies on an I/O request to be completed prior to statt the next it can reduce 1/O
processing overhead by chaining a no-op I/O command ccw CMD_NOCP to the end of the submitted
CCW chain. This will force Channel-End and Device-End status to be presented together, with a single
interrupt.

However, this should be used with care as it implies the channel will remain busy, not being able to
process 1/O requests for other devices on the same channel. Therefore, for example, read commands
should never use this technique, as the result will be presented by a single interrupt anyway.

In order to minimize I/O overhead, a device driver should use the DO O REPORT_ALL only if the device
can report intermediate interrupt information prior to device-end the device driver urgently relies on. In
this case all I/O interruptions are presented to the device driver until final status is recognized.

If a device is able to recover from asynchronously presented I/O errors, it can perform ovetlapping 1/O
using the DO O EARLY_NOTI FI CATI ON flag. While some devices always report channel-end and device-end
together, with a single interrupt, others present primary status (channel-end) when the channel is ready
for the next I/O request and secondary status (device-end) when the data transmission has been
completed at the device.

The previously mentioned flag allows exploitation of this feature, for example, for communication
devices that can handle lost data on the network to allow for enhanced 1/O processing.

Unless the channel subsystem at any time presents a secondary status interrupt, exploiting this feature
will cause only primary status interrupts to be presented to the device driver while ovetlapping I/O is
performed. When a secondary status without error (alert status) is presented, this indicates successful
completion for all ovetlapping do_I () requests that have been issued since the last secondary (final)
status.

During interrupt processing the device specific interrupt handler should avoid basing its processing
decisions on the interruption response block (IRB) that is part of the dev_id buffer area. The IRB area

97

represents the interruption parameters from the last interrupt received. Unless the device driver has
specified DO O REPORT_ALL or is called with a pending status (DEVSTAT_STATUS PENDI NG), the IRB
information may or may not show the complete interruption status, but the last interrupt only. Therefore
the device driver should usually base its processing decisions on the values of dev_i d->cstat and
dev_i d->dstat that represent the accumulated subchannel and device status information gathered
since do_| Q() request initiation.

Channel programs that intend to set the suspend flag on a channel command word (CCW) must start
the I/O operation with the DO O ALLOW SUSPEND option ot the suspend flag will cause a channel
program check. At the time the channel program becomes suspended an intermediate interrupt will be
generated by the channel subsystem.

RESUME_IO - RESUME CHANNEL PROGRAM EXECUTION

If a device driver chooses to suspend the current channel program execution by setting the CCW
suspend flag on a particular CCW, the channel program execution is suspended. In order to resume
channel program execution the CIO layer provides the resume_IO() routine.

int resune_IQ(int irq);

irqg IRQ) (subchannel) the halt operation is requested for

Theresune_| Q) function returns:

0 Suspended channel program is resumed
-EBUSY Status pending

-ENODEV Invalid or not operational subchannel
-EINVAL Resume function not applicable

-ENOTCONN | There is no I/O request pending for completion

Usage Notes Please have a look at the do_I () usage notes on page 96 for more details on suspended

channel programs.
HALT_IO() - HALT 1/0 REQUEST PROCESSING
Sometimes a device driver might need a possibility to stop the processing of a long-running channel

program or the device might initially require issuing a halt subchannel (HSCH) I/O command. For those
purposes the hal t _I () command is provided.

int halt _1Q int IRQ /* subchannel nunber */
unsi gned | ong i ntparm /* dummy intparm*/
unsi gned long flag); /* operation node */
‘ IRQ IRQ (subchannel) the halt operation is requested for

i nt parm Interruption parameter; value is only used if no I/O is outstanding, otherwise the
intparm associated with the I/O request is returned
flag 0 (zero) or DA O WAl T_FOR_| NTERRUPT

Thehal t _|) function returns:

0 Successful completion or request successfully initiated

-EBUSY The device is cutrently performing a synchronous I/O operation: do_| Q() with flag
DA O WAI T_FOR | NTERRUPT or an error was encountered and the device is
currently be sensed

-ENODEV The IRQ specified does not specify a valid subchannel, the device is not operational
(check dev_id.flags) or the IRQ) is not owned.

Usage Notes A device driver may write a never-ending channel program by writing a channel program

that at its end loops back to its beginning by means of a transfer in channel (TIC)
command (CCW_CMD_TIC). Usually network device drivers perform this by setting the PCI CCW
flag (CCW_FLAG_PCI). Once this CCW is executed a program controlled interrupt (PCI) is generated.
The device driver can then perform an appropriate action. Prior to interrupt of an outstanding read to a
network device (with or without PCI flag) a hal t _| () is required to end the pending operation.

We do not allow the stopping of synchronous 1/O requests by means of ahal t _I () call. The function
will return -EBUSY instead.

Miscellaneous Support Routines

This section desctibes vatious routines to be used in a Linux/390 device driver programming
environment.

S390IRQ_SPIN_LOCK() / S390IRQ_SPIN_UNLOCK()

These two macro definitions are required to obtain the device specific IRQ lock. The lock needs to be
obtained if the device driver intends to call do_I () or halt_I () from anywhere but the device
interrupt handler (where the lock is already owned). Those routines must only be used if running
disabled for interrupts already. Otherwise use s390i r g_spi n_| ock_i rgsave() and the corresponding
unlock routine instead.

s390i rg_spin_l ock(int 1RQ;
s$390i rg_spi n_unl ock(int 1 RQ;

S390IRQ_SPIN_LOCK_IRQSAVE() / S390_IRQ_SPIN_UNLOCK_IRQRESTORE()

These two macro definitions are required to obtain the device specific IRQ lock. The lock needs to be
obtained if the device driver intends to call do_I () or halt_I () from anywhere but the device
interrupt handler (where the lock is already owned). Those routines should only be used if running
enabled for interrupts. If running disabled already, the driver should use s390i r q_spi n_| ock() and
the corresponding unlock routine instead.

s390i rg_spin_l ock_irgsave(int 1RQ unsigned |ong flags);
s390i rg_spin_unlock_irgrestore(int 1RQ unsigned |ong flags);

Special Console Interface Routines

This section describes the special interface routines required for system console processing. Though they
are an extension to the Linux/390 device dtiver interface concept, they base on the same principles. It
was necessary to build those extensions to assure a deterministic behavior in critical situations, for
example, printk() messages by other device drivers running disabled for interrupts during 1/O
interrupt handling or in case of a pani ¢() message being raised.

SET_CONS_DEV() - SET CONSOLE DEVICE

This routine allows specification of the system console device. This is necessary as the console is not
driven by the same ESA/390 interrupt subclass as are other devices, but it is assigned its own interrupt
subclass. Only one device can act as system console. See “wait_cons_dev() - Synchronously Wait for
Console Processing” on page 101 for details.

int set_cons_dev(int IRQ;

IRQ ‘ Subchannel identifying the system console device

Theset _cons_dev() function returns

0 Successful completion

-EIO An unhandled interrupt condition is pending for the specified subchannel (IRQ) -
status pending

-ENODEV IRQ) does not specify a valid subchannel or the device is not operational

-EBUSY The console device is already defined

RESET_CONS_DEV() - RESET CONSOLE DEVICE

This routine allows for resetting the console device specification. See “set_cons_dev() - Set Console
Device” on page 100 for details.

100

int reset_cons_dev(int IRQ;

‘ IRQ Subchannel identifying the system console device

Thereset _cons_dev() function returns

0 Successful completion

-E10 An unhandled interrupt condition is pending for the specified subchannel (IRQ) -
status pending

-ENODEV IRQ) does not specify a valid subchannel or the device is not operational

WAIT_CONS_DEV() - SYNCHRONOUSLY WAIT FOR CONSOLE PROCESSING

The wait_cons_dev() routine is used by the console device driver when its buffer pool for
intermediate request queuing is exhausted and a new output request is received. In this case the console
driver uses the wai t _cons_dev() routine to synchronously wait until enough buffer space is gained to
enqueue the current request. Any pending interrupt condition for the console device found during
wai t _cons_dev() processing causes its interrupt handler to be called.

int wait_cons_dev(int IRQ;

IRQ Subchannel identifying the system console device

Thewai t _cons_dev() function returns :

0 Successful completion
-EINVAL The IRQ specified does not match the IRQ) configured for the console device by
set _cons_dev()

Usage Notes The function should be wused carefully. Especially in a SMP environment the

wai t _cons_dev() processing requires that all but the special console ISC are disabled. In
a SMP system this requites the other CPUs to be signaled to disable/enable those ISCs.

101

DASD Device Driver

The following section was copied from the Docunrent at i on/ 390 directory of the Linux distribution. It
was written by Aldo Lung and is copyright IBM 1999, under the GNU Public License.

Linux manages S/390_s disk devices (DASD) via the DASD device driver. It is valid for all types of
DASDs and represents them to Linux as block devices, namely “DASD”. Currently the DASD driver
uses a single major number (94) and 4 minor numbers per volume (1 for the physical volume and 3 for
partitions). With respect to partitions see the following discussion. Thus you may have up to 64 DASD
devices in your system.

The kernel parameter 'dasd=from-to,..." may be issued atbitrary times in the kernel's parameter line or
not at all. The 'from' and 'to' parameters are to be given in hexadecimal notation without a leading Ox.

If you supply kernel parameters the different instances are processed in order of appearance and a minor
number is reserved for any device covered by the supplied range up to 64 volumes. Additional DASDs
are ignored. If you do not supply the 'dasd=' kernel parameter at all, the DASD driver registers all
supported DASDs of your system to a minor number in ascending order of the subchannel number.

The driver currently supports ECKID-devices and there are stubs for support of the FBA and CKD
architectures. For the FBA architecture only some smart data structures are missing to make the support
complete.

We performed our testing on 3380 and 3390 type disks of different sizes, under VM and on the bare
hardware (LPAR), using internal disks of the Multiprise as well as a RAMAC virtual array. Disks
exported by an Enterprise Storage Server (Seascape) should work fine as well.

We currently implement one partition per volume, which is the whole volume, skipping the first blocks
up to the volume label. These ate reserved for IPL records and IBM's volume label to assure accessibility
of the DASD from other operating systems. In a later stage we will provide support of partitions, maybe
VTOC oriented or using a kind of partition table in the label record.

Usage
Low-level format

For using an ECKD-DASD as a Linux hard disk you have to low-level format the tracks by issuing the
BLKDASDFCRVAT-i oct | on that device. This will erase any data on that volume including IBM volume
labels, VT'OCs etceteras. The ioctl may take a 'struct format_data *' or 'NULL'" as an argument.

typedef struct {

int start_unit;
int stop_unit;

102

int blksize;
} format_data t;

When a NULL argument is passed to the BLKDASDFCRVAT i oct| the whole disk is formatted to a
blocksize of 1024 bytes. Otherwise start_unit and stop_unit are the first and last track to be formatted. If
stop_unit is -1 it implies that the DASD is formatted from start_unit up to the last track. blksize can be
any power of two between 512 and 4096. We recommend no blksize lower than 1024 because the ext2fs
uses 1kB blocks anyway and you gain approximately 50% of capacity increasing your blksize from 512
byte to 1kB.

Make a filesystem

Then you can mkr?fs the filesystem of your choice on that volume or partition. For reasons of sanity you
should build your filesystem on the partition / dev/ dd?1 instead of the whole volume. You only lose
3kB but may be sure that you can reuse your data after introduction of a real partition table.

Bugs

® Performance sometimes is rather low because we do not fully exploit clustering
TODO-List

* Add IBM'S Disk layout to genhd

* Enhance driver to use more than one major number
* Enable usage as a module

= Support Cache fast write and DASD fast write (ECKD)

103

Tape Support

The LINUX for zSeries tape device driver manages channel-attached tape drives which are compatible
to IBM 3480 or IBM 3490 magnetic tape subsystems. This includes various models of these devices (for
example the 3490E).

Tape driver features

The device driver supports a maximum of 128 tape devices. No official LINUX device major number is
assigned to the zSeries tape device driver. It allocates major numbers dynamically and reports them on
system startup.

Typically it will get major number 254 for both the character device front-end and the block device
front-end.

The tape device driver needs no kernel parameters. All supported devices present are detected on driver
initialization at system startup or module load. The devices detected are ordered by their subchannel
numbers. The device with the lowest subchannel number becomes device 0, the next one will be device
1 and so on.

Tape character device front-end

The usual way to read or write to the tape device is through the character device front-end. The zSeries
tape device driver provides two character devices for each physical device—the first of these will rewind
automatically when it is closed, the second will not rewind automatically.

The character device nodes are named / dev/ rti bnd (rewinding) and / dev/ nti bn® (non-rewinding) for
the first device, / dev/ rti bml and / dev/ nti b for the second, and so on.

The character device front-end can be used as any other LINUX tape device. You can write to it and
read from it using LINUX facilities such as GNU tar. The tool nt can be used to perform control
operations, such as rewinding the tape or skipping a file.

Most LINUX tape software should work with either tape character device.
Tape block device front-end

The tape device may also be accessed as a block device in read-only mode. This could be used for
software installation in the same way as it is used with other operation systems on the zSeries platform
(and most LINUX distributions are shipped on compact disk using ISO9660 filesystems).

One block device node is provided for each physical device. These are named / dev/ bt i bn® for the first
device, / dev/ bt i bml for the second and so on.

104

You should only use the ISO9660 filesystem on LINUX for zSeries tapes because the physical tape
devices cannot perform fast seeks and the ISO9660 system is optimized for this situation.

Tape block device example

In this example a tape with an ISO9660 filesystem is created using the first tape device. ISO9660
filesystem support must be built into your system kernel for this.

The mt command is used to issue tape commands and the mkisofs command to create an ISO9660
filesystem:

= Create a LINUX directory (somedir) with the contents of the filesystem

nkdi r sonedir
cp contents sonedir

= Inserta tape

* Ensure the tape is at the beginning
nt -f /dev/ntibnD rewnd

= Set the blocksize of the character driver. The blocksizes 512, 1024 and 2048 bytes are supported
by ISO9660. 1024 is the default, which will be used here. nt -f /dev/ntibn® setbl k 1024

= write the filesystem to the character device driver

nki sofs -0 /dev/ntibnD sonedir
* rewind the tape again
m -f /dev/ntibnD rew nd

* Now you can mount your new filesystem as a block device:
mount -t is09660 -0 ro, bl ock=1024 /dev/bti b /mt

TODO List

® The backend code has to be enhanced to support error-recovery actions.

® The seeking algorithm of the block device has to be improved to speed things up
BUGS

There are lots of weaknesses still in the code. This is why it is EXPERIMENTAL.

If an error occurs which cannot be handled by the code you will get a sense-data dump. In that case
please do the following:

1. Set the tape driver debug level to maximum:

echo 6 >/ proc/s390dbf/tape/l evel

105

Re-perform the actions that produced the bug. (Hopefully the bug will ~ reappear.)
Get a snapshot from the debug-feature:

cat /proc/s390dbf/tape/ hex_ascii >sonefile

Now put the snapshot together with a detailed description of the situation that led to the bug:

= Which tool did you use?
= Which hardware do you have?
= Was your tape unit online?

* Isitashared tape unit?

Send an email with your bug report to: mailto:Linux390@de.ibm.com

106

mailto:Linux390@de.ibm.com

3270 Display

3270 Display System Support

This file describes the driver that supports local channel attachment of IBM 3270 devices written by
Dick Hitt <rbhOO@utsglobal.com>. It consists of three sections:

= Introduction
= Installation

= Operation

INTRODUCTION

This paper describes installing and operating 3270 devices under Linux/390. A 3270 device is a block-
mode rows-and-columns terminal of which I'm sure hundreds of millions wete sold by IBM and clone
makers twenty and thirty years ago.

You may have 3270s in-house and not know it. If you're using the VM-ESA operating system, define a
3270 to your virtual machine by using the command "DEF GRAF <hex-address>". This paper
presumes you will be defining four 3270s with the CP/CMS commands

DEF GRAF 620

DEF GRAF 621

DEF GRAF 622
DEF GRAF 623

Your network connection from VM-ESA allows you to use x3270, tn3270, or another 3270 emulator,
started from an xterm window on your PC or workstation. With the DEF GRAF command, an

application such as xterm, and this Linux-390 3270 driver, you have another way of talking to your Linux
box.

OPERATION

The driver defines three areas on the 3270 screen: the log area, the input area, and the status area.

The log area takes up all but the bottom two lines of the screen. The driver writes terminal output to i,
starting at the top line and going down. When it fills, the status area changes from “Li nux Runni ng” to
“Linux More...”. After a scrolling timeout of (default) 5 sec, the screen clears and more output is

written, from the top down.

107

The input area extends from the beginning of the second-to-last screen line to the start of the status area.
You type commands in this area and hit ENTER to execute them.

The status area initializes to “Li nux Runni ng” to give you a warm fuzzy feeling. When the log area fills
up and output waits, it changes to “Li nux More...”. At this time you can do several things or nothing.
If you do nothing, the screen will clear in (default) 5 sec and more output will appear. You may hit
ENTER with nothing typed in the input area to toggle between “Li nux More. .. and “Li nux Hol di ng”,
which indicates no scrolling will occur. (If you hit ENTER with “Li nux Runni ng” and nothing typed,
the application receives a newline.)

You may change the scrolling timeout value. For example, the following command line changes the
scrolling timeout value to 60 seconds:

echo scrolltine=60 > /proc/tty/driver/tty3270

Set scrolltime to 0 if you wish to prevent scrolling entirely.

Other things you may do when the log area fills up are: hit PA2 to clear the log area and write more
output to it, or hit CLEAR to clear the log area and the input area and write more output to the log area.

Some of the Program Function (PF) and Program Attention (PA) keys are preassigned special functions.
The ones that are not yield an alarm when pressed.

<PA1> causes a SI G NT to the currently running application. You may do the same thing from the input
area, by typing “~C” and hitting <ENTER>.

<PA2> causes the log area to be cleared. If output awaits, it is then written to the log area.

<PF3> causes an EOF to be received as input by the application. You may cause an EOF also by typing
“AD” and hitting <ENTER>.

No PF key is preassigned to cause a job suspension, but you may cause a job suspension by typing “z”
and hitting <ENTER>. You may wish to assign this function to a PF key. To make <PF7> cause job
suspension, execute the command:

echo pf7="z > /proc/tty/driver/tty3270

If the input you type does not end with the two characters ““n”; the driver appends a newline character
and sends it to the tty driver; otherwise the driver strips the ““n” and does not append a newline. The
IBM 3215 driver behaves similarly.

<PF10> causes the most recent command to be retrieved from the tube's command stack (default depth
20) and displayed in the input area. You may hit <PF10> again for the next-most-recent command, and so
on. A command is entered into the stack only when the input area is not made invisible (such as for
password entry) and it is not identical to the cutrent top entry. <PF10> rotates backward through the
command stack; <PF11> rotates forward. You may assign the backward function to any PF key (or PA
key, for that matter), say, <PA3>, with the command:

echo -e pa3=\\033k > /proc/tty/driver/tty3270

108

This assigns the string ESG k to <PA3>. Similarly, the string ESC-j performs the forward function.
(Rationale: In bash with vi-mode line editing, ESG k and ESG-j retrieve backward and forward history.
Suggestions welcome.)

Is a stack size of twenty commands not to your liking? Change it on the fly. To change to saving the last
100 commands, execute the command:

echo recal | size=100 > /proc/tty/driver/tty3270

Have a command you issue frequently? Assign it to a PF or PA key! Use the command to execute the
commands nkdi r foobar and cd foobar immediately when you hit <PF24>:

echo pf24="nkdir foobar; cd foobar" > /proc/tty/driver/tty3270

Want to see the command line first, before you execute it? Use the - n option of the echo command:

echo -n pf24="nkdir foo; cd foo" > /proc/tty/driver/tty3270

Happy testing! I welcome any and all comments about this document, the driver, etc etc.

109

XPRAM

The S/390 architecture supports more RAM than can be accessed as main memory. The LINUX for
§/390 main memory is limited to 2 GB. However, additional memory can be declared as expanded
storage. The S/390 architecture allows applications to access up to 16 TB of expanded storage (although
the current hardware can only be equipped with up to 32 GB memory). Memory in the expanded
storage range can be copied in 4 KB blocks to, or from, the main memory.

An interesting feature of expanded storage is that is persistent with respect to IPLs (booting) but volatile
with respect to IMLs (power off/on).

The XPRAM device driver is a block device dtiver that supports LINUX for S/390 allowing it to access
the expanded storage. Thus XPRAM can be used as a basis for fast swap devices and/or fast file
systems.

Features

XPRAM automatically detects whether expanded storage is available on the system. The expanded
storage can be subdivided into up to 32 partitions, the default being a single partition. The XPRAM
device driver has major number 35.

The partitions have minor numbers 0 through 31. The hard sector size of XPRAM is set to 4096 bytes.
Limitations

If expanded storage is not available, XPRAM cannot be used. Its initialization fails gracefully with a log
message reporting the lack of expanded storage.

Configuration option

CONFI G_XPRAM

Module name

XPRAM can be used as module. Its module name is xpr am o.

Kernel parameter syntax

The kernel parameter is optional. The default defines the whole expanded storage to be one partition.
Xpram part s=<nunber _of partition>[,<partition_size>[,...]]

Where <nunber _of _partiti ons> defines how many partitions the expanded storage is split into. The
~th <parti ti on_si ze> defines the size of the 7th partition.

110

The syntax for sizes is:
[0x] <non-negati ve_integer>[k|KImM Mgl G

If the Ox prefix is used the subsequent number is interpreted as a hexadecimal value, otherwise it is
interpreted as a decimal value (default). The <non- negat i ve_i nt eger > value may be followed by a
magnitude:

* Kk orKfor kilo (1024) is the default
* mor Mfor Mega (1024*1024)
= g or Gfor Giga (1024*¥1024*1024)

The <non- negat i ve_i nt eger > value multiplied by its magnitude defines the partition's size in bytes.
The default size is 0.

Any partition defined with a non-zero size is allocated the amount of memory specified by its <non-
negat i ve_i nt eger > parameter.

You can automatically allocate the remaining memory between a set of partitions by specifying zero for
the size of each partition in the set. The following formula is used to calculate the size for each of these
partitions:

(avail abl e exp. storage - sumof all non-zero sizes specified)
COMPUE €0 Si Z@ = =----mmcm o i

nunber of partitions with zero sizes

This formula is only a good approximation of the actual size allocated to each partition. Because of the
requirement to assign blocks in multiples of 4K, partitions can be larger or smaller than the estimate
produced by the calculation. In addition, there might be an amount of memory left as a “guard +space”
between two partitions.

Example

Xpram part s=4, 0x800M 0, 0, 0x1000M

This allocates the extended storage into four partitions. Partition 1 has 2 GB, partition 4 has x 4 GB, and
partitions 2 and 3 use equal parts of the remaining storage. If the total amount of extended storage was
16 GB, then partitions 3 and 4 would each have approximately 5 GB.

Module parameter syntax

XPRAM may be used as module. The syntax of the module parameters passed to i nsnod differs from
the kernel parameter syntax:

[devs=<nunber of devi ces> [sizes=<si ze>[, <size>,...]]]

111

Wherte:
® <nunber_of _devi ces>is used to define the number of partitions.
" <size>is a non-negative integer that defines the partition's size.

Only decimal values are allowed and no magnitudes are accepted. The size will be interpreted in
kilobytes.

Example
devs=4 si zes=2097152, 8388608, 4194304, 2097152

This allocates a total of 16 GB of extended storage into four pattitions, of (respectively) size 2 GB, 8 GB,
4 GB, and 2 GB.

Usage

XPRAM is a block device driver with major 35. Using the standard naming scheme the partitions of
XPRAM can be accessed through / dev/ sl ran®, ...,/ dev/ sl r anB1.

XPRAM does not require any formatting. Partitioning is only possible during device initialization by
kernel or module parameters. Note that if both the expanded storage and the partitioning parameters are
left unchanged between two device initializations (even if LINUX was IPLed in the meantime) then
XPRAM behaves like a persistent storage. This is not true if the system is IMLed.

You can make a files system on a XPRAM partition (for example, mke2f s) with a block size that is a
multiple of 4096 bytes and mount this file system.

Alternatively, an XPRAM pattition can be used as a swap device (mkswap, swapon).

112

CLAW

CISCO CLAW SUPPORT

The ¢7000 module provides support for a channel attached Cisco 7xxx family router on Linux/390.
The parameters for the module are as follows:

base0=0xYYYY This parameter defines the base unit address of the channel-attached router.

I host 0=s1 This parameter defines the local host name and must match the claw directive
“host-name” field (first string). The default value is “UTS”.

uhost 0=s2 This parameter defines the unit's name and must match the claw directive
“device-name” field (second string). The default value is “C7011”.

| appl 0=s3 This parameter defines the local application name and must match the claw
directive “host-app” field (third string). The default value is “TCPIP”.

uappl 0=s4 This parameter defines the unit application name and must match the claw
directive “device-app” field (fourth string). The default value is “TCPIP”.

dbg=x This parameter defines the message level. Higher numbers will result in
additional diagnostic messages. The default value is 0.

noaut 0=z This parameter controls the automatic detection of the unit base address
(base0). When set to a non-zero value, automatic detection of unit base
addresses is not done. The default value is 0.

Note that the values coded in strings s1 - s4 are case sensitive.

For example, assume that the following claw directive has been coded in the Cisco router:

claw 0100 6C 129.212.61. 101 UTS Cr011 TCPI P TCPI P

The module can be loaded using the following command:

i nsnrod ¢7000 base0=0x336¢ | host 0="UTS" uhost 0="C7011" | appl 0="TCPI P' \
uappl 0="TCPI P' dbg=0 noaut o=1

Additional interfaces can be defined via parameters basel - base3, lhostl - Thost3, lappll - lappl3, uhostl1
- uhost3, uappll - uappl3.

The interfaces are named “ci0” — “ci3”. After loading the module, the ifconfig command is used to
configure the interface. For example:

ifconfig ci0 129.212.61. 101
i fconfig ciO netnask 255.255. 255. 0 broadcast 129.212.61.0

113

ifconfig ciO
The route command is used to specify the router as the default route:

route add default gw 129.212.61. 200
The interface can be automatically activated at boot time by following this procedure:

1. Add the following two lines to file / et ¢/ conf . nodul es:

alias ci0 c7000
opti ons ¢7000 base0=0xYYYY | host 0=s1 uhost 0=s2 | appl 0=s3 uappl 0=s4

2. Edit file/ et ¢/ sysconfi g/ net wor k as follows:

NETWORKI NG=yes

FORWARD | PV4=no

HOSTNAME=your - host nane
GATEWAYDEV=ci 0

GATEWAY=your - gat eway- i p- addr ess

Substitute your own host name and gateway IP address.

3. Create a file in directory / et ¢/ sysconfi g/ net wor k- scripts called i fcfg-ci 0. The contents
are as follows:

DEVI CE=cCi O

USERCTL=no

ONBOOT=yes

BOOTPROTO=none

BROADCAST=your - br oadcast - i p- addr ess
NETWORK=your - net wor k- addr ess
NETMASK=your - net mask

| PADDR=your -i p- addr ess

Substitute your IP address, broadcast IP address, network address and network mask.

4. Nextissue: chnmod +x ifcfg-ci0

114

IUCV

IUCV

To explore any of the IUCV functions, one must first register their program using
iucv_register_program(). Once your program has successfully completed a register, it can exploit the
other functions.

For furthur reference on all IUCV functionality, refer to the CP Programming Services book, also
available on the web thru www.ibm.com/s390/vm/pubs, manual # SC24-5760.

Definition of Return Codes:

* All positive return codes including zero are reflected back from CP except for
iucv_register_program. The definition of each return code can be found in CP Programming
Setvices book. Also available on the web thru www.ibm.com/s390/vm/pubs, manual # SC24-
5760

* Return Code of:
0 (-EINVAL) Invalid value
0 (-ENOMEM) storage allocation failed
pgmask defined in iucv_register_program will be set depending on input paramters.
iucv_accept
int iucv_accept (ul6 pathid,
ul6é nsglimreqstd,
uchar user_dat a[16],
int flagsi,
i ucv_handl e_t handl e,

void *pgmdata, int *flagsl out, ul6é * nsglinj;

This function is issued after the user receives a Connection Pending external interrupt and now wishes to
complete the IUCV communication path.

Parameters

pathid Path identification number

msglim_reqstd The number of outstanding messages requested.
user_data Data specified by the iucv_connect function.
flags1 Contains options for this path:

115

* IPPRTY (0x20) - Specifies if you want to send priority message.

e IPRMDATA (0x80) - Specifies whether your program can handle a
message in the parameter list.

* IPQUSCE (0x40) - Specifies whether you want to quiesce the path

being established.
handle Address of handler.
pgm_data Application data passed to interrupt handlers.
flags1_out Pointer to an int. If not NULL, on return the options for the path are stored at

the given location.

* IPPRTY (0x20) - Indicates you may send a priority message.

msglim Pointer to a __ul6. If not NULL, on return the maximum number of
outstanding messages is stored at the given location.

Returns

Return code from CP.
iucv_connect

int iucv_connect (ul6é * pathid,
ulé nsgli mreqgstd,
uchar user_dat a[16],
uchar userid[8],
uchar system nane[8],
int flagsi,
int *flagsl out,
ulé * neglim iucv_handl e t handle, void *pgmdata);

This function establishes an IUCV path. Although the connect may complete successfully, you are not
able to use the path until you receive an IUCV Connection Complete external interrupt.

Parameters

pathid Path identification number

msglim_reqstd Number of outstanding messages requested
user_data 16-byte user data

userid 8-byte of user identification

116

system_name

8-byte identifying the system name

flags1

Specifies options for this path:
» JPPRTY (0x20) - Specifies if you want to send priority message.

» JPRMDATA (0x80) - Specifies whether your program can handle a
message in the parameter list.

* JPQUSCE (0x40) -Specifies whether you want to quiesce the path being
established.

* JPLOCAL (0x01) - Allows an application to force the partner to be on
the local system. If local is specified then target class cannot be specified.

flags1_out

Pointer to an int. If not NULL, on return the options for the path are stored at
the given location.

» [PPRTY (0x20) - Indicates you may send a priority message.

msglim

Pointer to a _ ul6. If not NULL, on return the maximum number of
outstanding messages is stored at the given location.

handle

Address of handler.

pgm_data

Application data to be passed to interrupt handlers.

Returns

The functions returns either the return code from CP (>=0), or one of the following:

-ENOMEM Return code from iucv_declare_buffer

-EINVAL Invalid handle passed by application or pathid entry being used by another
application

-EINVAL Pathid address is NULL

-ENOMEM Pathid table storage allocation failed

iucv_purge

int iucv_purge (ul6é pathid, u32 nsgid, u32 srccls, _ u32 *audit);

A call to this API cancels a message you have sent.

117

Parameters

pathid Path identification number

msgid Message ID of message to purge.

srecls Message class of the message to purge.

audit Pointer to a __u32. If not NULL, on return, information about asynchronous
errors that may have affected the normal completion of this message is stored at
the given location.

Returns

Return code from CP.

iucv_query_maxconn
ul ong iucv_query_maxconn (void);

Determines the maximum number of connections thay may be established.
Parameters

None.

Returns

Maximum number of connections that can be established.
iucv_query_bufsize
ul ong iucv_query bufsize (void);

This function determines how large an external interrupt buffer IUCV requites to store information.
Parameters

None.

Returns

Maximum number of connection the virtual machine may establish.
iucv_quiesce
int iucv_quiesce (ulé pathid, uchar user_data[16]);

This function temporarily suspends incoming messages on an IUCV path. You can later reactivate the
path by invoking the iucv_resume function.

Parameters

pathid Path identification number

118

user_data

16-bytes of user data

Returns

Return code from CP IUCV call.

iucv_receive

int iucv_receive (ul6 pathid,

u32 nsgid,

u32 trgcls,

voi d *buffer,

ul ong bufl en,

int *flagsl out,

ulong * residual _buffer, ulong * residual _|ength);

This function receives messages that are being sent to you over established paths. Data will be returned
in buffer for length of buflen.

Parameters

pathid Path identification number.

msgid Specifies the message 1D.

tracls Specifies target class.

buffer Address of buffer to receive.

buflen Length of buffer to receive.
flags1_out Contains information about this path.

* IPNORPY - 0x10 Specifies this is a one-way message and no reply is
expected.

e IPPRTY - 0x20 Specifies if you want to send priority message.

* IPRMDATA - 0x80 specifies the data is contained in the parameter list

residual_buffer

Address of buffer updated by the number of bytes you have received.

residual_length

Contains one of the following values, if the receive buffer is:
* The same length as the message, this field is zero.

* Longer than the message, this field contains the number of bytes
remaining in the buffer.

119

* Shorter than the message, this field contains the residual count (that is, the
number of bytes remaining in the message that does not fit into the buffer.
In this case b2f0_result = 5.

Returns

Return code from CP IUCV call or -EINVAL (buffer address is pointing to NULL).
iucv_receive_array

int iucv_receive_ array (ul6 pathid,
u32 nsgid,
u32 trgcl s,
iucv_array_t * buffer,
ul ong bufl en,
int *flagsl out,
ulong * residual _buffer, ulong * residual |ength);

This function receives messages that are being sent to you over established paths. Data will be returned
in first buffer for length of first buffer.

Parameters

pathid Path identification number.

msgid Specifies the message ID.

trecls Specifies target class.

buffer Address of an array of buffers to receive data.
buflen Total length of buffers.

flags1_out Contains information about this path.

* IPNORPY - 0x10 Specifies this is a one-way message and no reply is
expected.

e IPPRTY - 0x20 Specifies if you want to send priority message.

* IPRMDATA - 0x80 specifies the data is contained in the parameter list

residual_buffer Address points to the current list entry IUCV is working on.

residual_length Contains one of the following values, if the receive buffer is:

* The same length as the message, this field is zero.

120

* Longer than the message, this field contains the number of bytes
remaining in the buffer.

* Shorter than the message, this field contains the residual count (that is, the
number of bytes remaining in the message that does not fit into the buffer.
In this case b2f0_result = 5.

Returns

Return code from CP IUCV call or -EINVAL (buffer address is pointing to NULL).
iucv_reject
int iucv_reject (ul6 pathid, u32 nmsgid, u32 trgcls);

The reject function refuses a specified message. Between the time you are notified of a message and the
time that you complete the message, the message may be rejected.

iucv_reply

int iucv_reply (ulé pathid,
u32 nsgid,
u32 trgcls,
int flagsi,
void *buffer, ulong buflen, ulong * residual buffer
ulong * residual _|ength);

This function responds to the two-way messages that you receive. You must identify completely the
message to which you wish to reply. That is, pathid, msgid, and trgcls.

Parameters
pathid Path identification number.
msgid Specifies the message ID.
trecls Specifies target class.
buffer Address of reply buffer.
buflen Length of reply buffer.
flags1_out Contains information about this path.
e IPPRTY - 0x20 Specifies if you want to send priority message.
residual_buffer Address of buffer updated by the number of bytes you have sent.

121

residual_length Contains one of the following values:
* If the answer buffer is the same length as the reply, this field contains zero.

* If the answer buffer is longer than the reply, this field contains the number
of bytes remaining in the buffer.

* If the answer buffer is shorter than the reply, this field contains a residual
count (that is, the number of bytes remaining in the reply that does not fit
into the buffer. In this case b2f0_result = 5.

Returns

Return code from CP IUCV call or -EINVAL (buffer address is pointing to NULL).

iucv_reply_array
int iucv_reply array (ul6 pathid,

u32 msgid,

u32 trgcl s,

int flagsi,

iucv_array t * buffer,

ul ong buflen, ulong * residual _address,

ul ong * residual _|ength);
This function responds to the two-way messages that you receive. You must identify completely the

message to which you wish to reply. That is, pathid, msgid, and trgcls. The array identifies a list of
addresses and lengths of discontiguous buffers that contains the reply data.

Parameters
pathid Path identification number.
msgid Specifies the message ID.
trecls Specifies target class.
buffer Address of an array of buffers containing reply data.
buflen Total length of buffers.
flags1_out Contains information about this path.
e IPPRTY - 0x20 Specifies if you want to send priority message.
residual_buffer Address points to the current list entry IUCV is working on.
residual_length Contains one of the following values:

122

* If the answer buffer is the same length as the reply, this field contains zero.

* If the answer buffer is longer than the reply, this field contains the number
of bytes remaining in the buffer.

* If the answer buffer is shorter than the reply, this field contains a residual
count (that is, the number of bytes remaining in the reply that does not fit
into the buffer. In this case b2f0_result = 5.

Returns

Return code from CP IUCV call or -EINVAL (buffer address is pointing to NULL).
iucv_reply prmmsg

int iucv_reply prmmsg (ulé pathid, u32 nsgid,
u32 trgcls, int flagsl, uchar prmsg[8]);

This function responds to the two-way messages that you receive. You must identify completely the
message to which you wish to reply. That is, pathid, msgid, and trgcls. Prmmsg signifies the data is
moved into the parameter list.

Parameters
msgid Specifies the message ID.
trecls Specifies target class.
flags1 Option for path.
* IPPRTY - 0x20 Specifies if you want to send priority message.
prmmsg 8 bytes of data to be placed into the parameter. list.
Returns
Return code from CP IUCV call.

iucv_resume

int iucv_resume (ul6 pathid, uchar user_data[16]);

This function restores communications over a quiesced path.

Parameters
pathid Path identification number.
user_data 16 bytes of user data.

123

Returns

Return code from CP IUCV call.

iucv_send

int iucv_send (ul6 pathid,
u32 * nsgid,
u32 trgcls,
u32 srccls, u32 nmegtag, int flagsl, void *buffer, ulong buflen);

This function transmits data to another application. Data to be transmitted is in a buffer and this is a
one-way message and the receiver will not reply to the message.

Parameters
pathid Path identification number.
msgid Specifies the message ID.
tracls Specifies target class.
srecls Specifies the source message class.
msgtag Specifies a tag to be associated with the message.
flags1 Option for path.
* IPPRTY - 0x20 Specifies if you want to send priority message.
buffer Address of send buffer.
buflen Length of send buffer.
Returns

Return code from CP IUCV call or -EINVAL (buffer address is NULL).

iucv_send2way

int iucv_send2way (ul6 pathid,
u32 * nsgid,
u32 trgcl s,
u32 srccls,
u32 nsgt ag,
int flagsi,
void *buffer, ulong buflen, void *ansbuf, ulong anslen);

This function transmits data to another application. Data to be transmitted is in a buffer. The receiver of
the send is expected to reply to the message anda buffer is provided into which IUCV moves the reply
to this message.

124

Parameters

pathid Path identification number.
msgid Specifies the message ID.
tracls Specifies target class.
srecls Specifies the source message class.
msgtag Specifies a tag to be associated with the message.
flags1 Option for path.
* IPPRTY - 0x20 Specifies if you want to send priority message.
buffer Address of send buffer.
buflen Length of send buffer.
ansbuf Address of buffer into which IUCV moves the reply of this message.
anslen Length reply buffer.
Returns

Return code from CP IUCV call or -EINVAL (buffer address is NULL).

iucv_send2way array

int iucv_send2way_array (ul6 pathid,

u32 * nsgid,

u32 trgcl s,

u32 srccls,

u32 nsgt ag,

int flagsi,

iucv_array t * buffer,

ul ong buflen, iucv_array_t * ansbuf, ulong anslen);

This function transmits data to another application. The contents of buffer is the address of the array of
addresses and lengths of discontiguous buffers that hold the message text. The receiver of the send is
expected to reply to the message and a buffer is provided into which IUCV moves the reply to this

message.

Returns

pathid Path identification number.
msgid Specifies the message ID.

125

trecls

Specifies target class.

srecls Specifies the source message class.
msgtag Specifies a tag to be associated with the message.
flags1 Option for path.
e IPPRTY - 0x20 Specifies if you want to send priority message.
buffer Address of array of send buffers.
buflen Total length of send buffers.
ansbuf Address of array of buffer into which IUCV moves the reply of this message.
anslen Length reply buffers.
Returns

Return code from CP IUCV call or -EINVAL (buffer address is NULL).

iucv_send_array

int iucv_send array (ul6 pathid,

u32 * nsgid,
u32 trgcl s,
u32 srccls,
u32 nsgt ag,
int flagsl, iucv_array t * buffer, ulong buflen);

This function transmits data to another application. The contents of buffer is the address of the array of
addresses and lengths of discontiguous buffers that hold the message text. This is a one-way message
and the receiver will not reply to the message.

Parameters

pathid Path identification number.

msgid Specifies the message ID.

tracls Specifies target class.

srecls Specifies the source message class.

msgtag Specifies a tag to be associated with the message.
flags1 Option for path.

126

* IPPRTY - 0x20 Specifies if you want to send priority message.

buffer Address of send buffers.
buflen Length of send buffer.
Returns

Return code from CP IUCV call or -EINVAL (buffer address is NULL).

iucv_send2way prmmsg

int iucv_send2way prmsg (ul6 pathid,

u32 * nsgid,

u32 trgcl s,

u32 srccls,

u32 nsgt ag,

ul ong fl agsl,

uchar prmmsg[8], void *ansbuf, ulong anslen);

This function transmits data to another application. Prmmsg specifies that the 8-bytes of data are to be
moved into the parameter list. This is a two-way message and the receiver of the message is expected to
reply. A buffer is provided into which IUCV moves the reply to this message.

Parameters
pathid Path identification number.
msgid Specifies the message ID.
tracls Specifies target class.
srecls Specifies the source message class.
msgtag Specifies a tag to be associated with the message.
flags1 Option for path.
* IPPRTY - 0x20 Specifies if you want to send priority message.
prmmsg 8 bytes of data to be placed in parameter list.
ansbuf Address of buffer into which IUCV moves the reply of this message.
anslen Length of buffer.
Returns

Return code from CP IUCV call or -EINVAL (buffer address is NULL).

127

iucv_send2way prmmsg_array

int iucv_send2way_ prmmsg_array (ul6 pathid,

u32 * nsgid,

u32 trgcls,

u32 srccls,

u32 nsgt ag,

int flagsi,

uchar prmmsg[8],

iucv_array t * ansbuf, ulong anslen);

This function transmits data to another application. Prmmsg specifies that the 8-bytes of data are to be
moved into the parameter list. This is a two-way message and the receiver of the message is expected to
reply. A buffer is provided into which IUCV moves the reply to this message. The contents of ansbuf is
the address of the array of addresses and lengths of discontiguous buffers that contain the reply.

Parameters
pathid Path identification number.
msgid Specifies the message ID.
trecls Specifies target class.
srecls Specifies the source message class.
msgtag Specifies a tag to be associated with the message.
flags1 Option for path.
e IPPRTY - 0x20 Specifies if you want to send priority message.
prmmsg 8 bytes of data to be placed in parameter list.
ansbuf Address of array of buffer into which IUCV moves the reply of this message.
anslen Lengths of buffer.
Returns

Return code from CP IUCV call or -EINVAL (buffer address is NULL).

iucv_send_prmmsg

int iucv_send_prnmmsg (ul6 pathid,

u32 * nsgid,
u32 trgcl s,
u32 srccls, u32 nsgtag, int flagsl, uchar prmsg[8]);

128

This function transmits data to another application. Prmmsg specifies that the 8-bytes of data are to be
moved into the parameter list. This is a one-way message and the receiver will not reply to the message.

Parameters

pathid Path identification number.

msgid Specifies the message ID.

trecls Specifies target class.

srecls Specifies the source message class.

msgtag Specifies a tag to be associated with the message.
flags1 Option for path.

* IPPRTY - 0x20 Specifies if you want to send priority message.
prmmsg 8 bytes of data to be placed in parameter list.
Returns
Return code from CP IUCV call.

iucv_setmask

int iucv_setmask (int SetMaskFl ag);

This function enables or disables the following IUCV external interruptions: Nonpriotity and priority
message interrupts, nonpriority and priority reply interrupts.

Parameters

SetMaskFlag - options for interrupts:

* 0x80 - Nonpriority_MessagePendinglnterruptsFlag
* 0x40 - Priority_MessagePendinglnterruptsFlag

* 0x20 - Nonpriority_MessageCompletionlnterruptsFlag
* 0x10 - Priority_MessageCompletionInterruptsFlag
* 0x08 - IUCVControllnterruptsFlag

iucv_sever

int iucv_sever (ul6 pathid, uchar user_data16]);

This function terminates an IUCV path.

129

Parameters

pathid Path identification number.
user_data 16 bytes of user data.
Returns

Return code from CP IUCV call or -EINVAL (interal error, wild pointer).
lucv_register_program

iucv_handl e_t iucv_register_program (uchar pgmane[16],
uchar userid[8],
uchar pgnmask[24],
iucv_interrupt_ops_t * ops,
voi d *pgm dat a);

To explore any of the IUCV functions, you must first register your program using
iucv_register_progran() APL Once your program has successfully completed a register, it can
exploit the other functions.

Parameters

pgmname User identification

userid Machine identification

pgmmask Indicates which bits in the pgmname and userid combined will be used to
determine who is given control.

ops Address of interrupt handler table.

pgm_data Application data to be passed to interrupt handlers.

Returns

The address of handler, or NULL on failure.
Notes

For pgmmask:
* If pgmname, userid and pgmmask are provided, pgmmask is entered into the handler as is.
e If pgmmask is NULL, the internal mask is set to all Oxff's
* When userid is NULL, the first 8 bytes of the internal mask are forced to 0x00.

* If pgmmask and userid are NULL, the first 8 bytes of the internal mask are forced to 0x00 and
the last 16 bytes to Oxff.

130

ops is a vector of functions that handle IUCV interrupts:

typedef struct {

voi d (*Connecti onPendi ng) (iucv_ConnectionPending * eib,

void *pgmdata);

voi d (*Connecti onConpl ete) (iucv_Connecti onConpl ete * eib,

voi d *pgm dat a);

voi d (*Connecti onSevered) (iucv_ConnectionSevered * eib,

voi d *pgmdata);

voi d (*Connecti onQui esced) (iucv_ConnectionQui esced * eib,

voi d *pgm dat a);

voi d (*Connecti onResuned) (iucv_Connecti onResuned * ei b,

voi d *pgm data);

voi d (*MessagePendi ng) (iucv_MessagePending * eib, void *pgmdata);
voi d (*MessageConpl ete) (iucv_MessageConplete * eib, void *pgmdata);
} iucv_interrupt_ops_t;

The parameter list for these functions is defined as follows:

eib

A pointer to a 40-byte area described with one of the structures above.

pgm_data

This data is strictly for the interrupt handler that is passed by the application. This
may be an address or token.

iucv_unregister_program

int iucv_unregister_program (iucv_handl e_t handl e);

Use this API to unregister your application with ITUCV.

Parameters

handle Address of handler
Returns

0 Normal return

-EINVAL Internal error, wild pointer

131

	S/390 and z/Architecture Register Set
	Program Status Word (PSW)

	Prefix Page
	Address Spaces on Linux
	Address Spaces on Linux for S390 and z/Architecture
	Virtual Addresses on S/390 and z/Architecture

	The Linux for S390 Kernel Task Structure
	Register Usage and Stack-Frames on Linux for S390
	Overview
	Glossary

	S/390 and z/Architecture Register Usage
	Stack Frame Layout
	A sample program with comments
	Comments on the function test
	Comments on the function main
	New Compiler Changes
	64 bit z/Architecture code disassembly

	Compiling programs for debugging on Linux for S390 and z/Architecture
	Figuring out gcc compile errors
	Debugging Tools
	objdump

	strace
	
	Q. WHAT IS IT?
	EXAMPLE 1
	EXAMPLE 2
	EXAMPLE 3
	NOW WE ARE GETTING SOPHISTICATED: TELNETD CRASHES
	IMPORTANT OPTIONS
	OTHER HINTS
	MORE INFORMATION

	Performance Debugging
	Using top to find out where processes are sleeping in the kernel
	The time command

	Debugging under VM
	Useful VM debugger commands
	INSTRUCTION TRACING
	DISPLAYING AND MODIFYING REGISTERS
	DISPLAYING MEMORY
	HINTS

	Tracing particular processes
	TRACING PROGRAM EXCEPTIONS
	TRACE SETS
	TRACING LINUX SYSCALLS UNDER VM
	SMP SPECIFIC COMMANDS
	PRODUCING TRACE OF SYSTEM FLOW
	SMP SPECIFIC COMMANDS
	HELP FOR DISPLAYING ASCII TEXT

	Stack tracing under VM
	WHEN YOUR BACKCHAIN REACHES A DEAD END

	S/390 and z/Architecture I/O Overview
	General Concepts
	Common 390 Devices
	Debugging IO on S390 under VM
	Other Common VM Device Related Commands

	gdb on S390
	Invocation
	Online help
	Assembly
	Viewing and modifying variables
	Modifying execution
	breakpoints
	User defined functions/macros
	Other hard to classify stuff
	Hints
	Stack chaining in gdb by hand
	Disassembling instructions without debug information
	For more information

	Examining Core Dumps
	
	WHY HAVE I NEVER SEEN ONE?
	A SAMPLE CORE DUMP

	ldd
	Debugging shared libraries
	Debugging modules
	The proc file system
	Some driver debugging techniques
	DEBUG FEATURE
	HIGH LEVEL DEBUGGING NETWORK DRIVERS
	CHANDEV
	DEBUGGING DRIVERS

	Miscellaneous Techniques
	Starting points for debugging scripting languages etc.
	BASH/SH
	PERL
	JAVA

	SysRq
	References

	Design
	Example

	Kernel Interfaces
	debug_register
	debug_unregister
	debug_set_level
	debug_event
	debug_int_event
	debug_text_event
	debug_sprintf_event
	debug_exception
	debug_int/long_exception
	debug_text_exception
	debug_sprintf_exception
	debug_register_view
	debug_unregister_view

	Predefined views
	Examples
	hex_ascii + raw-view
	sprintf-view

	ProcFS Interface
	Example – Viewing the Debug Log
	Example - Changing the debug level

	Flushing Debug Areas
	lcrash Interface
	Investigating raw memory
	Predefined Views
	Defining views
	Example
	RESULTS

	Command line parameters
	/proc entries
	/proc/subchannels
	/proc/deviceinfo/
	/proc/cio_ignore
	/proc/s390dbf/cio_*/ (S/390 debug feature)
	/proc/irq_count
	/proc/chpids

	Chandev Arguments
	Glossary
	Commonly Used Options
	Power User Options

	General Information
	Overview of CDS interface concepts
	GET_IRQ_FIRST\(\)/GET_IRQ_NEXT\(\) – RETRIEV�
	GET_DEV_INFO_BY_() - RETRIEVE DEVICE INFORMATION
	Usage Notes

	GET_IRQ_BY_DEVNO() - CONVERT DEVICE IDENTIFIERS
	READ_DEV_CHARS() - READ DEVICE CHARACTERISTICS
	Usage Notes

	READ_CONF_DATA\(\) – READ CONFIGURATION DATA
	REQUEST_IRQ() - REQUEST DEVICE OWNERSHIP
	Usage Notes

	S390_REQUEST_IRQ_SPECIAL\(\) – REQUEST DEVICE �
	Usage Notes

	FREE_IRQ() - RELEASE DEVICE OWNERSHIP
	Usage Notes

	DISABLE_IRQ() - DISABLE INTERRUPTS FOR A GIVEN DEVICE
	Usage Notes
	Linux for Intel defines this function

	ENABLE_IRQ() - ENABLE INTERRUPTS FOR A GIVEN DEVICE
	DO_IO() - INITIATE I/O REQUEST
	Usage Notes

	RESUME_IO – RESUME CHANNEL PROGRAM EXECUTION
	Usage Notes

	HALT_IO() - HALT I/O REQUEST PROCESSING
	Usage Notes

	Miscellaneous Support Routines
	S390IRQ_SPIN_LOCK() / S390IRQ_SPIN_UNLOCK()
	S390IRQ_SPIN_LOCK_IRQSAVE() / S390_IRQ_SPIN_UNLOCK_IRQRESTORE()

	Special Console Interface Routines
	SET_CONS_DEV() - SET CONSOLE DEVICE
	RESET_CONS_DEV() - RESET CONSOLE DEVICE
	WAIT_CONS_DEV() - SYNCHRONOUSLY WAIT FOR CONSOLE PROCESSING
	Usage Notes

	Usage
	Low-level format
	Make a filesystem
	Bugs
	TODO-List

	Tape driver features
	Tape character device front-end
	Tape block device front-end
	Tape block device example
	TODO List
	BUGS
	INTRODUCTION
	OPERATION
	Features
	Limitations
	Configuration option
	Module name
	Kernel parameter syntax
	Example

	Module parameter syntax
	Example

	Usage
	Definition of Return Codes:
	iucv_accept
	Parameters
	Returns

	iucv_connect
	Parameters
	Returns

	iucv_purge
	Parameters
	Returns

	iucv_query_maxconn
	Parameters
	Returns

	iucv_query_bufsize
	Parameters
	Returns

	iucv_quiesce
	Parameters
	Returns

	iucv_receive
	Parameters
	Returns

	iucv_receive_array
	Parameters
	Returns

	iucv_reject
	iucv_reply
	Parameters
	Returns

	iucv_reply_array
	Parameters
	Returns

	iucv_reply_prmmsg
	Parameters
	Returns

	iucv_resume
	Parameters
	Returns

	iucv_send
	Parameters
	Returns

	iucv_send2way
	Parameters
	Returns

	iucv_send2way_array
	Returns
	Returns

	iucv_send_array
	Parameters
	Returns

	iucv_send2way_prmmsg
	Parameters
	Returns

	iucv_send2way_prmmsg_array
	Parameters
	Returns

	iucv_send_prmmsg
	Parameters
	Returns

	iucv_setmask
	Parameters

	iucv_sever
	Parameters
	Returns

	Iucv_register_program
	Parameters
	Returns
	Notes

	iucv_unregister_program
	Parameters
	Returns

