z/VM and Linux on IBM System z: The Virtualization Cookbook

A cookbook for installing and customizing z/VM 5.2 and Linux SLES9 on the mainframe

Michael MacIsaac, Carlos Ordonez, Jin Xiong
August 2006
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.2 Copying a vanilla z/VM system to DASD</td>
<td>28</td>
</tr>
<tr>
<td>4.1.3 IPL the vanilla z/VM from DASD</td>
<td>31</td>
</tr>
<tr>
<td>4.1.4 Completing the z/VM installation</td>
<td>33</td>
</tr>
<tr>
<td>4.2 Configuring TCP/IP</td>
<td>34</td>
</tr>
<tr>
<td>4.2.1 Use the IPWIZARD tool</td>
<td>34</td>
</tr>
<tr>
<td>4.3 Configuring the XEDIT profile</td>
<td>37</td>
</tr>
<tr>
<td>4.4 Customizing the SYSTEM CONFIG file</td>
<td>37</td>
</tr>
<tr>
<td>4.5 Configuring TCP/IP to start at IPL time</td>
<td>39</td>
</tr>
<tr>
<td>4.5.1 Renaming the TCPIP configuration file</td>
<td>40</td>
</tr>
<tr>
<td>4.5.2 Copy the PROFILE XEDIT file</td>
<td>41</td>
</tr>
<tr>
<td>4.5.3 Configuring the FTP server</td>
<td>41</td>
</tr>
<tr>
<td>4.5.4 Shutting down and reIPLing the system</td>
<td>42</td>
</tr>
<tr>
<td>4.6 Adding paging volumes</td>
<td>43</td>
</tr>
<tr>
<td>4.6.1 Formatting the paging volumes</td>
<td>43</td>
</tr>
<tr>
<td>4.6.2 Formatting DASD for minidisks</td>
<td>45</td>
</tr>
<tr>
<td>4.6.3 Updating the SYSTEM CONFIG file</td>
<td>46</td>
</tr>
<tr>
<td>4.6.4 Testing the changes</td>
<td>47</td>
</tr>
<tr>
<td>4.7 Creating a user ID for common files</td>
<td>48</td>
</tr>
<tr>
<td>4.7.1 Define the user in the USER DIRECT file</td>
<td>48</td>
</tr>
<tr>
<td>4.7.2 Logging and customizing the new user ID</td>
<td>50</td>
</tr>
<tr>
<td>4.7.3 Copying a PROFILE XEDIT</td>
<td>51</td>
</tr>
<tr>
<td>4.7.4 Creating a PROFILE EXEC</td>
<td>51</td>
</tr>
<tr>
<td>4.7.5 Copying files associated with this book to LNXMAINT</td>
<td>52</td>
</tr>
<tr>
<td>4.8 Customizing system startup and shutdown</td>
<td>52</td>
</tr>
<tr>
<td>4.8.1 Configuring the AUTOLOG1 PROFILE EXEC</td>
<td>52</td>
</tr>
<tr>
<td>4.8.2 Testing the changes</td>
<td>53</td>
</tr>
<tr>
<td>4.9 Addressing z/VM security issues</td>
<td>54</td>
</tr>
<tr>
<td>4.9.1 Changing passwords in USER DIRECT</td>
<td>55</td>
</tr>
<tr>
<td>4.10 Backing up your z/VM system to tape</td>
<td>56</td>
</tr>
<tr>
<td>4.11 Relabeling the system volumes</td>
<td>56</td>
</tr>
<tr>
<td>4.11.1 Modifying labels in the SYSTEM CONFIG file</td>
<td>57</td>
</tr>
<tr>
<td>4.11.2 Modifying labels in the USER DIRECT file</td>
<td>58</td>
</tr>
<tr>
<td>4.11.3 Changing the labels on the five volumes</td>
<td>59</td>
</tr>
<tr>
<td>4.11.4 Shutting down your system and restarting it</td>
<td>60</td>
</tr>
<tr>
<td>4.12 Restoring your z/VM system from tape</td>
<td>61</td>
</tr>
</tbody>
</table>

Chapter 5. Servicing z/VM

5.1 Applying a PTF | 64 |
5.1.1 Determining if a PTF has been applied	64
5.1.2 Getting service via Internet FTP	66
5.1.3 Downloading the service to z/VM	66
5.1.4 Receiving, applying, and building service	67
5.1.5 Putting the service into production	68
5.2 Applying a Recommended Service Upgrade or RSU	69
5.2.1 Making the service available on the Internet via FTP	70
5.2.2 Downloading the service to z/VM	70
5.2.3 Receiving, applying, and building the service	72
5.2.4 Putting the service into production	73

Chapter 6. Configuring an NFS server

6.1 Downloading files associated with this book | 75 |
6.2 Setting up a SLES9 install tree | 76 |
<p>| 6.2.1 SLES9 ISO image file names and sizes | 76 |</p>
<table>
<thead>
<tr>
<th>Chapter 9. Configure Linux for cloning</th>
<th>131</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Defining a new user ID for a virtual server</td>
<td>131</td>
</tr>
<tr>
<td>9.1.1 Adding LINUX01 to AUTOLOG1’s PROFILE EXEC</td>
<td>132</td>
</tr>
<tr>
<td>9.1.2 Creating a parameter file for the new LINUX ID</td>
<td>133</td>
</tr>
<tr>
<td>9.2 Cloning a virtual server manually</td>
<td>134</td>
</tr>
<tr>
<td>9.3 Cloning a virtual server automatically</td>
<td>137</td>
</tr>
<tr>
<td>9.4 Cloning six more virtual servers</td>
<td>140</td>
</tr>
<tr>
<td>9.4.1 Formatting and label six new DASD</td>
<td>140</td>
</tr>
<tr>
<td>9.4.2 Defining six more user IDs</td>
<td>141</td>
</tr>
<tr>
<td>9.4.3 Creating six new parameter files</td>
<td>143</td>
</tr>
<tr>
<td>9.4.4 Granting user IDs access to VSWITCH</td>
<td>143</td>
</tr>
<tr>
<td>9.4.5 Testing logging on to a new user ID</td>
<td>144</td>
</tr>
<tr>
<td>9.5 Reviewing system status</td>
<td>145</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10. Cloning open source virtual servers</th>
<th>147</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Creating a virtual Web server</td>
<td>147</td>
</tr>
<tr>
<td>10.1.1 Installing Apache RPMs</td>
<td>147</td>
</tr>
<tr>
<td>10.1.2 Testing Apache</td>
<td>148</td>
</tr>
<tr>
<td>10.1.3 Configuring SSL for Apache</td>
<td>148</td>
</tr>
<tr>
<td>10.1.4 Populating your Web site</td>
<td>151</td>
</tr>
<tr>
<td>10.1.5 Apache resources</td>
<td>151</td>
</tr>
<tr>
<td>10.2 Creating a virtual LDAP server</td>
<td>151</td>
</tr>
<tr>
<td>10.2.1 Manually installing a Linux virtual server</td>
<td>152</td>
</tr>
<tr>
<td>10.2.2 Configuring the virtual LDAP server</td>
<td>155</td>
</tr>
<tr>
<td>10.2.3 Investigating the new virtual server</td>
<td>155</td>
</tr>
<tr>
<td>10.2.4 Adding a new user</td>
<td>155</td>
</tr>
<tr>
<td>10.2.5 Setting another virtual server to use LDAP server</td>
<td>156</td>
</tr>
<tr>
<td>10.2.6 Pointing the master image to the virtual LDAP server</td>
<td>158</td>
</tr>
<tr>
<td>10.3 Creating a virtual file and print server</td>
<td>159</td>
</tr>
<tr>
<td>10.3.1 Cloning a Linux virtual server</td>
<td>159</td>
</tr>
<tr>
<td>10.3.2 Installing necessary RPMs</td>
<td>159</td>
</tr>
<tr>
<td>10.3.3 Running Bastille</td>
<td>160</td>
</tr>
<tr>
<td>10.3.4 Configuring Samba configuration file</td>
<td>160</td>
</tr>
<tr>
<td>10.3.5 Adding a Samba user</td>
<td>160</td>
</tr>
<tr>
<td>10.3.6 Starting Samba at boot time</td>
<td>161</td>
</tr>
<tr>
<td>10.3.7 Testing your changes</td>
<td>161</td>
</tr>
<tr>
<td>10.3.8 Configuring printing</td>
<td>162</td>
</tr>
<tr>
<td>10.4 Creating a virtual application development server</td>
<td>162</td>
</tr>
<tr>
<td>10.4.1 Cloning a Linux virtual server</td>
<td>163</td>
</tr>
<tr>
<td>10.4.2 Scripting Languages</td>
<td>163</td>
</tr>
<tr>
<td>10.4.3 C/C++ development tools</td>
<td>164</td>
</tr>
<tr>
<td>10.4.4 Java development tools</td>
<td>164</td>
</tr>
<tr>
<td>10.4.5 Additional resources</td>
<td>166</td>
</tr>
</tbody>
</table>

| Chapter 11. Cloning IBM middleware virtual servers | 167 |
Preface

“The search for truth is more precious than its possession.”
— Albert Einstein

This book describes how to roll your own Linux virtual servers on IBM System z hardware under z/VM. It adopts a cookbook format that provides a concise, repeatable set of procedures for installing and configuring z/VM in an LPAR and then installing and customizing Linux. You need a zSeries logical partition (LPAR) with associated resources, z/VM 5.2 media, and a Linux distribution. This book is based on SUSE Linux Enterprise Server 9 (SLES9) for zSeries and both 31-bit and 64-bit distributions are addressed.

In addition, there are a few associated REXX EXECs and Linux scripts to help speed up the process. These tools are not IBM products nor formally supported. However, they will be informally supported. They are available on the Web.

This book assumes that you have a general familiarity with zSeries technology and terminology. It does not assume an in-depth understanding of z/VM and Linux. It is written for those who want to get a quick start with z/VM and Linux on the mainframe.

Summary of changes

This book is based on the IBM redbook z/VM and Linux on IBM System z: The Virtualization Cookbook for SLES9, SG24-6695-01. Some new content has been added:

- Manual cloning: A new section 9.2, “Cloning a virtual server manually” on page 134 is added so you can better understand the steps involved in the cloning process
- Cloning of IBM Middleware: A new chapter “Cloning IBM middleware virtual servers” on page 167 is added that describes installing, sharing, customizing and cloning IBM WebSphere Application Server, DB2 and MQ Series.
- The clone.sh script has three new flags added: --was, --db2 and --mqs to support the cloning of IBM middleware.

Conventions

The following font conventions are used in this book:

Monospace and bold Commands entered by the user on the command line
<value> Value inside angle brackets is to be replaced
monospace File, directory and user ID names

The following command conventions are used in this book:

- z/VM commands are prefixed with ==>
- z/VM XEDIT subcommands are prefixed with =====>
- Linux commands running as root are prefixed with #
- Linux commands that will not fit on one line are suffixed with \n- Linux commands running as non-root are prefixed with $
The team that wrote this book

This book was written in 2005 by Michael MacIsaac, Jin Xiong and Curtis Gearhart. It was updated in 2006 by Michael MacIsaac, Carlos Ordonez and Jin Xiong. The DCSS/XIP2 section was based on work by Carlos Ordonez, which was in turn based on work by Carsten Otte. All the authors work for IBM.

Sincere thanks goes out to the following people who contributed to this project in various ways:

David Boyes, Adam Thornton
Sine Nomine Associates

Bill Bitner, Bruce Hayden, Denny Refsnider, Roger Lunsford, Jim Switzer and Romney White
IBM Endicott

Carsten Otte, Claudia Prawirakusumah
IBM Germany

Duane Beyer, Michel Considine, Roy Costa, Greg Geiselhart, Dionne Graff, Susan Greenlee, Ernest Horn, Bill Norton, Bruce Smilowitz, Kyle Smith, Helen Tsang, Donna Von Dehsen, Hossee Wakil and Dennis Wunder
IBM Poughkeepsie

Marian Gasparovic
IBM Slovakia

Chester Hood
State of Tennessee

Jerry Epker
Fidelity Information Services

Bernard Wu
NCCI

Rob van der Heij
Velocity Software

Thanks the zBMC team in IBM Poughkeepsie and to the many who answered questions on the linux-390 list server. Special thanks to Tony Giaconne in Poughkeepsie for always finding another free LPAR and more DASD.

Comments welcome

Your comments are important. You can send your comments in e-mail directly to:
mikemac@us.ibm.com
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious, like anyone will ever read this, and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM's application programming interfaces.
Trademarks

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
Introduction to z/VM and Linux

“Everything should be made as simple as possible, but not simpler.”
— Albert Einstein

Virtualization is hot. The mainframe and VM (now z/VM) have been doing virtualization for decades. When Linux came to the mainframe in the year 2000, it was a natural fit to run under z/VM. You can run many tens of Linux images on the same zSeries logical partition (LPAR).

With a z/VM and Linux infrastructure, you can reduce the time between deciding on new servers and implementing them because new servers can be deployed in a matter of minutes. This powerful capability can enable you to launch new products and services without planning, purchasing, installing and configuring new hardware and software. Development groups who need test environments built and rebuilt rapidly to efficiently handle change management can also benefit from this unique advantage.

Some of the mainframe’s and z/VM’s best strengths are:

- z/VM and the mainframe’s virtualization capabilities are more mature and robust than any other hardware and virtualization combination.
- z/VM’s virtual switch (VSWITCH) has made Linux networking much simpler.
- Full volume backup of systems allows for complete disaster recovery when another data center is available.
- z/VM is one of the easiest operating systems to customize. There is only a handful of configuration files. Once it is set up, z/VM will run for months with little maintenance and administration required.

z/VM 5.2, available in December of 2005, provides major improvements when operating on z9-109 or zSeries servers with large memory configurations. Scalability is improved with the Control Program (CP) now using memory above 2 GB for a much broader set of operations. Previously, guest pages had to be moved below 2GB for many reasons, for example in both standard I/O and Queued Direct I/O (QDIO). Now I/O can be done using buffers anywhere in real memory, and QDIO structures can reside above 2 GB, as can most CP control blocks.
These improvements offer constraint relief for large-real-memory virtual server environments that are memory intensive.

Read more about zSeries virtualization capabilities on the Web at:

A lot of books and papers are talking about virtualization today, but not telling you how to do it. This book puts the HOWTO behind these words.

1.1 What is virtualization?

Virtualization is the ability for a computer system to share resources so that one physical server can act as many virtual servers. z/VM allows the sharing of the mainframe’s physical resources such as disk (DASD), memory (storage), network adapters (OSA cards) and CPU (CPs or IFLs). These resources are managed by a hypervisor. z/VM’s hypervisor is called Control Program (CP). When the user logs onto z/VM, the hypervisor creates a virtual machine which can run one of many different operating systems. The two operating systems that are discussed in this book are the Conversational Monitoring System (CMS) and Linux. CMS can be thought of as a z/VM shell. Virtual machines running Linux become the virtual servers.

1.2 A philosophy adopted in this book

An important philosophy adopted in this book is to keep all solutions simple. Two common expressions used are “the KISS method” (Keep It Simple, Stupid) and the quote from Albert Einstein at the start of this chapter: *Everything should be made as simple as possible, but not simpler*. Because the former is somewhat condescending and because 2005 was both the first year this book was published and the centennial anniversary of Albert Einstein’s many famous papers, this book will use the latter.

1.3 Choices and decisions made in this book

When deciding on installing, maintaining and provisioning (cloning) Linux virtual servers under z/VM, there are many basic choices to make. Here are some of the more important choices and assumptions made in writing this book:

- **Cloning product versus “roll your own” cloning**

 Cloning products, such as Aduva’s Onstage, IBM Tivoli Provisioning Manager, IBM Director function ‘z/VM Center’ (briefly discussed in “IBM Director and z/VM Center Extension” on page 3) and Levanta, are outside the scope of this book. While these are all viable solutions, the cloning described in this book allows you to roll your own Linux images without requiring such products. However, these products are more sophisticated than the simple EXECs and scripts in this book.

- **Directory Maintenance product versus the USER DIRECT file**

 The USER DIRECT file is chosen over a directory maintenance product such as IBM DirMaint or Computer Associates’ VM:Direct. If you feel that DirMaint as a directory maintenance product is better for your enterprise, use the book *Getting Started With Linux*, SC24-6096, to configure z/VM. You can still use this book to configure Linux.

- **Provisioning versus predefined user IDs**
z/VM user IDs must be predefined to clone. There is no attempt to provision (define and bring Linux user IDs online automatically) as part of the cloning process. The target Linux user ID must exist with the appropriate minidisks defined or the cloning script will fail.

- **Shared read-only Linux \(/usr/\) file system versus read/write**

 Many cloning solutions use an environment which shares the \(/usr/\) file system. This choice often makes the solution more complex, especially when adding software to the virtual servers. A read/write \(/usr/\) file system on the virtual servers is chosen to keep things as simple as possible. However, utilizing a z/VM DCSS to share executable files is discussed as a possible alternative.

- **Conventional 3390 ECKD direct access storage device (DASD) versus FBA disks accessed via SCSI over FCP**

 The zSeries server has traditionally only supported 3390 (or older 3380) DASD. Support has been extended to include SCSI/FBA disks in storage area networks (SANs). The support of FBA disks is more complicated than conventional DASD. In keeping things as simple as possible, only conventional DASD is described in this book.

- **Cloning script or EXEC versus manual installation**

 It is easy to spend more time setting up an infrastructure for cloning Linux under z/VM than the time that it saves you over manually installing Linux, given the number of times you actually clone. When cloning works quickly, it can be an extremely useful tool in your toolbox. Therefore, this book discusses both cloning and manual installation. These two methods of provisioning Linux servers hinge on the existence of an installation parameter file for each Linux user ID. If you want a more complete solution, the products recommended in the first bullet point are recommended.

1.4 IBM Director and z/VM Center Extension

IBM Director 5.10 brings a comprehensive management functionality to Linux on IBM system z. The base IBM Director functions (e.g., monitoring, event action plans, software distribution, inventory, remote control, task scheduling) are now provided for any Linux end point on System z. In addition, the z/VM Center Extension provides further functionality for provisioning and configuration of z/VM Linux guests.

The z/VM Center extension includes the following tasks:

- **Virtual Server Deployment** - creation of virtual servers and deployment of operating systems into them by using virtual server and operating system templates, management of virtual servers (create/delete/activate/properties) and provisioning resources.

- **Server Complexes** - automatic fashion of controlling the configuration (and creation) of groups of Linux guests, handling both the z/VM side and Linux side aspects, supporting z/VM Resource Manager performance goals, virtual networking (based on VM Guest LAN, OSA and VSWITCH), z/VM minidisk attachments and configuration scripts.

The integration of the z/VM Center virtualization functionality with the full breadth of IBM Director on Linux managed end points provides a powerful tool for managing Linux guest colonies on z/VM systems.

1.5 Infrastructure design

To clone Linux, or provision virtual servers, there must be a certain infrastructure design in place. A zSeries server with associated resources and the z/VM operating system define much of this infrastructure. Figure 1-1 shows a block diagram of a System z9 with many
LPARs. z/VM 5.2 is installed in one of these LPARs. z/VM comes with many user IDs predefined. The most important six IDs are shown in the z/VM LPAR above the dashed line. Below the dashed line, you see the user IDs described in this book. Important z/VM minidisks and configuration files are shown next to each user ID.

<table>
<thead>
<tr>
<th>User ID Above Dashed Line</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNXMAINT</td>
<td>A user ID on which to store files that will be used by both CMS and Linux</td>
</tr>
<tr>
<td>SLES9</td>
<td>The 31-bit master Linux image (the copy of Linux to be cloned) and the controller Linux image (the Linux image doing the cloning and other services)</td>
</tr>
<tr>
<td>SLES9X</td>
<td>The 64-bit master Linux image and the controller Linux image</td>
</tr>
<tr>
<td>LINUXnn</td>
<td>The Linux virtual servers, LINUX02-LINUX07, where Linux can either be cloned to or installed manually. Each virtual server is configured with a single 3390-3 minidisk which is slightly more than 2 GB of space.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User ID Below Dashed Line</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLES9: master image (IPL 100), controller (IPL 200)</td>
<td></td>
</tr>
<tr>
<td>SLES9X: master image (IPL 100), controller (IPL 200)</td>
<td></td>
</tr>
<tr>
<td>WAS, DB2, MQS (IPL 100, 30x: production, 40x: test)</td>
<td></td>
</tr>
<tr>
<td>LINUXnn: appliance on 100-102 (IPL 100)</td>
<td></td>
</tr>
</tbody>
</table>

1.6 Usability tests performed for this book

During the writing of this book, many usability tests were conducted. The participants had a variety of skills, but none had both Linux and z/VM system administration skills. By the end of the first day in all of the formal tests, most participants had all completed up to Chapter 6, “Configuring an NFS server” on page 75, so z/VM was installed and customized for TCP/IP communications with a highly available VSWITCH. By the end of the second day, most participants had cloned their first Linux virtual server.

You should be able to complete most steps in the book in four solid days of work, if all goes well.
1.7 The chapters in this book

The remaining chapters and appendixes in this book are summarized in the following list:

- Chapter 2, “Planning” on page 7 describes how to plan hardware, software and networking resources. It discusses DASD labeling conventions used in the book and password planning. Sample worksheets are provided for the examples used in the book, as are blank copies for your use.

- Chapter 3, “Configuring a desktop machine” on page 17 describes how to set up Windows desktops. Specifically, the following tools are discussed:
 - How to get and set up PuTTY: a commonly used SSH client
 - How to get and set up a VNC client: a tool for running graphical applications
 - 3270 emulator applications

- Chapter 4, “Installing and configuring z/VM” on page 25 shows how to install and configure z/VM. This is where you roll up your sleeves and start to work.

- Chapter 5, “Servicing z/VM” on page 63 describes how to apply service to z/VM both in the form of Programming Temporary Fixes (PTFs) and Recommended Service Upgrades (RSUs).

- Chapter 6, “Configuring an NFS server” on page 75, explains how to set up a temporary NFS server on a Linux PC for the purpose of installing the first two Linux images. After the zSeries controller Linux is installed, you can copy the Linux install tree to it and retire the Linux PC server.

- Chapter 7, “Installing and configuring Linux” on page 85, describes how to install and configure two Linux images onto the first Linux user ID: the **master image**, which it is cloned from, and the **controller**, which does the cloning among other tasks.

- Chapter 8, “Configuring NFS on controller” on page 123, illustrates how to move the Linux install tree from the Linux PC server to the controller under z/VM.

- Chapter 9, “Configure Linux for cloning” on page 131 explains how to prepare z/VM user IDs and clone your first virtual server.

- Chapter 10, “Cloning open source virtual servers” on page 147, shows how to configure cloned Linux images into the following virtual servers:
 - Web server virtual server
 - LDAP virtual server
 - File and print virtual server
 - Basic application development system

- Chapter 11, “Cloning IBM middleware virtual servers” on page 167 describes how to install, share, customize and clone IBM WebSphere Application Server, DB2 and MQ Series.

- Chapter 12, “Miscellaneous Recipes” on page 209 describes how to add a logical volume to a Linux system and how to set up a z/VM Discontiguous Saved Segment (DCSS) in conjunction with the Linux eXecute In Place 2 (xip2) file system.

- Chapter 13, “Monitoring z/VM and Linux” on page 227, describes basic steps to begin monitoring z/VM and your new Linux virtual servers.

- Chapter 14, “Backup and restore” on page 241, shows basic steps on how to back up these new systems.

- Appendix A, “References and source code” on page 247, provides information about the files on the CD or associated tar file and lists the source code of the associated REXX EXECs and shell scripts.
Planning

“The only reason for time is so that everything doesn’t happen at once.”
— Albert Einstein

This chapter covers the planning that should be done before installing z/VM. It begins by discussing a bill of materials, or all the resources that you need. Then it explains the labeling of 3390 volumes. Finally resource worksheets are presented for:

- z/VM resources other than direct access storage device (DASD)
- DASD resources
- Linux resources
- Linux user IDs

2.1 Bill of materials

The resources needed for a Linux on zSeries project can be divided into:

- Hardware
- Software
- Networking

2.1.1 Hardware resources

The following hardware is needed:

- A zSeries logical partition (LPAR); z800, z900, z890 or z990, or System z9

 - Processors or CPUs: One IFL (or CP) minimum, two or more recommended

 - Memory: 3 GB central/1 GB expanded minimum, 6 GB/2 GB or more recommended. This 3:1 ratio of central to expanded storage is a good starting point. See the following Web site for a discussion of how to apportion memory:

– DASD: 37 3390-3s or equivalent. If you do not plan to support both 31-bit and 64-bit systems, then 30 3390-3s will be adequate.
– Open Systems Adapter (OSA) network cards: One card minimum with 12 device numbers (technically 9, but OSA “triplets” usually start on an even address). Two OSA Express cards with eight device numbers on one and four on the other is recommended for high availability.
 ▶ A computer that will act as an Network File System (NFS) server temporarily with at least 12 GB of disk space (Linux PC or UNIX server is recommended) and connected to the network.
 ▶ A workstation or desktop that has network access to the mainframe

2.1.2 Software resources

The following software resources are needed:

▶ z/VM 5.2 install media with documentation (DVD install is described in this book.)
▶ Linux install media (SLES9 SP3 is described in this book.)
▶ An operating system for the NFS server (SLES9 and RHEL4 are described in this book.)
▶ The code associated with this book, on the Web at:

 http://linuxvm.org/present/misc/virt-cookbook-2.tgz

▶ Tools on the workstation and desktop:
 – A 3270 Emulator such as Attachmate Extra, Hummingbird Host Explorer, or IBM Personal Communications for Windows desktops (for Linux desktops, a 3270 emulator named x3270 is available)
 – A Linux SSH client such as PuTTY (recommended) or TeraTerm (for Linux desktops the ssh client is built in)
▶ IBM middleware products, if you are going to complete the sections in Chapter 11, “Cloning IBM middleware virtual servers” on page 167.

2.1.3 Networking resources

The following network resources are needed:

▶ A TCP/IP address for z/VM
▶ One TCP/IP address for each Linux virtual server (12 are described in this book)
▶ Associated TCP/IP information:
 – DNS host name
 – DNS domain
 – DNS server TCP/IP address
 – TCP/IP gateway
 – TCP/IP subnet mask
 – TCP/IP broadcast address (usually calculated from address and subnet mask)
 – TCP/IP MTU size

The TCP/IP addresses should be routed to the OSA card(s).
2.2 z/VM conventions

It is good to use conventions so that you and others can recognize z/VM resources by their names. This section discusses conventions for DASD volume names and backup file names.

2.2.1 Volume labeling convention

You should have a convention for labeling DASD. Your shop may already have a labeling convention which will largely determine the labels to be given to the DASD used by your z/VM and Linux LPAR.

Each zSeries DASD is addressed with a device number consisting of four hexadecimal digits. Each zSeries DASD has a six character label. It is convenient to include the four-digit address in the label so that you can easily tell the address of each DASD from its label. When followed, this convention guarantees that no two DASD will have the same label. This can be an important issue especially when z/OS has access to the DASD.

Sometimes DASD is shared among LPARs in which case your z/VM LPAR can see DASD owned by other LPARs. In this situation, it is convenient to identify the LPAR that owns the DASD. Therefore the volume labeling convention used in this book identifies the LPAR via the first character. That leaves the second character in the label to identify the basic function of the DASD.

The LPAR used in this book is identified by the character M. The following characters are used for the types of DASD in the second character of the label:

- M Minidisk space (PERM)
- P Paging space (PAGE)
- S Spool space (SPOL)
- T Temporary disk space (TDISK)
- V z/VM operating system volumes

For example, Figure 2-1 shows the labeling convention for the DASD in LPAR M, of type minidisk at real address A700.

![Figure 2-1](image)

The letter V is hard-coded into two EXECs that adopt this convention. If you want a different LPAR identifier character, they can easily be changed.

Note: The labels are 520RES, 520W01, 520W02, 520SPL, and 520PAG when z/VM is installed.
2.2.2 Backup file naming convention

It is recommend that you keep copies of important z/VM and Linux configuration files. You should always keep copies of original configuration files in case you need to go back to them. Since z/VM file names are limited to 16 characters (eight for the file name and eight for the file type), only the last four characters of the file type are used. This often requires some characters to be overwritten. For the original file, the suffix ORIG is used, and for the most recent working copy, the suffix WRKS (for “it WoRKS”!) is used. For example, the original USER DIRECT file is copied to the USER DIREORIG file.

2.2.3 The command retrieve convention

The ability to retrieve past commands is a common tool. Often it is nice to retrieve in both directions in case you “pass” the command you’re looking for. The default Linux shell, bash, does this by default with the up arrow and down arrow keys.

There is a convention in z/VM to use the F12 function key (labeled PF12 on physical 3270 devices) to retrieve the last command, though it is not defined to all user IDs. There is no convention retrieve commands in the other direction but it is possible to set another key to that function. Therefore, F11 is used to retrieve forward since it is right next to F12. Also, the same function is useful in the editor, XEDIT. The ? subcommand retrieves past commands, so it is recommended that you assign it to F12.

2.3 Password planning

Good passwords are critical to good security. However, requiring many different passwords leads to people writing them down, which detracts from good security. Sometimes it is difficult to balance these two extremes.

This book considers system administration roles:

- The z/VM system administrator
- The Linux system administrator
- The Linux virtual server end users

The z/VM and Linux system administrator may well be the same person.

The method of backing up z/VM data onto the Linux controller means that the Linux administrator will have access to all z/VM passwords. Therefore, the examples in this book set all z/VM and Linux system administration passwords to the same value, LNX4VM. If the z/VM and Linux system administrator roles must be kept separate and the Linux administrator is not to have access to the z/VM passwords, then a different method of backing up z/VM data must be chosen.

Because the passwords to the z/VM Linux user IDs are the same as the system IDs, such as MAINT, this assumes that the Linux end users will not log onto z/VM 3270 sessions. The root passwords of the cloned Linux virtual servers will be different, so the Linux virtual server end users will not inherit the root password of the Linux master image.

You may want to define a finer granularity for passwords based on the following system administration roles:

- The main z/VM system administrator (MAINT)
- The z/VM network administrator (TCPMAINT)
- The z/VM Linux administrator (LNXMAINT, Linux controller, Linux virtual server user IDs)
- The Linux virtual server end user (with or without authority for 3270 sessions)
The sets of passwords that you define will depend on the roles that your organization will adopt.

2.4 Planning worksheets

Four worksheets are included in this section. They are populated with the resources used in writing this book. There are also four corresponding blank worksheets in 2.5, “Blank worksheets” on page 14.

2.4.1 z/VM resources used in this book

Table 2-1 lists the z/VM resource values used in the examples in this book.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPAR name</td>
<td>P21</td>
<td>3 GB central storage/1 GB expanded, 4 shared IFLs</td>
</tr>
<tr>
<td>CPC name</td>
<td>PELCP01</td>
<td>Name of CPC on which the LPAR is located</td>
</tr>
<tr>
<td>z/VM system name</td>
<td>LNXVM52</td>
<td>Name to be assigned to z/VM system</td>
</tr>
<tr>
<td>TCP/IP host name</td>
<td>lat120</td>
<td>Assigned by a network administrator; helpful to set in DNS beforehand, but not necessary</td>
</tr>
<tr>
<td>TCP/IP domain name</td>
<td>pbm.ihost.com</td>
<td>Helpful to set in DNS beforehand</td>
</tr>
<tr>
<td>TCP/IP gateway</td>
<td>129.40.178.254</td>
<td>The router to and from the local subnet</td>
</tr>
<tr>
<td>DNS server 1</td>
<td>129.40.106.1</td>
<td>Assigned by the network administrator</td>
</tr>
<tr>
<td>DNS server 2/3 (optional)</td>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td>OSA device name</td>
<td>eth0</td>
<td>Name of the interface to be assigned by IPWIZARD</td>
</tr>
<tr>
<td>OSA starting device number</td>
<td>3000</td>
<td>Start of OSA triplet for the z/VM TCP/IP stack</td>
</tr>
<tr>
<td>TCP/IP address</td>
<td>129.40.178.120</td>
<td>The TCP/IP address of the z/VM system</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>255.255.255.0</td>
<td>Assigned by network administrator</td>
</tr>
<tr>
<td>OSA device type</td>
<td>QDIO</td>
<td>Often “QDIO" for OSA/Express cards</td>
</tr>
<tr>
<td>Network type</td>
<td>Ethernet</td>
<td>Usually “Ethernet”</td>
</tr>
<tr>
<td>Port name (optional)</td>
<td></td>
<td>Not required by z/VM</td>
</tr>
<tr>
<td>Router type</td>
<td>None</td>
<td>Usually “None”</td>
</tr>
<tr>
<td>Primary OSA device number for VSWITCH</td>
<td>3004</td>
<td>Specify the first device number (must be even number) and the next two device numbers will also be used</td>
</tr>
<tr>
<td>Secondary OSA device number for VSWITCH</td>
<td>3008</td>
<td>Should be on a different CHPID/OSA card</td>
</tr>
</tbody>
</table>

2.4.2 z/VM DASD used in this book

Table 2-2 lists the z/VM DASD resource values used in the examples in this book.
Table 2-2 z/VM DASD worksheet

<table>
<thead>
<tr>
<th>Device number</th>
<th>Label</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A700</td>
<td>520RES</td>
<td>CP owned</td>
<td>z/VM System residence volume</td>
</tr>
<tr>
<td>A701</td>
<td>520SPL</td>
<td>System spool</td>
<td>Spool volume 1 from z/VM installation</td>
</tr>
<tr>
<td>A702</td>
<td>520PAG</td>
<td>CP owned</td>
<td>Paging volume 1 from z/VM installation</td>
</tr>
<tr>
<td>A703</td>
<td>520W01</td>
<td>System spool</td>
<td>z/VM W01 volume</td>
</tr>
<tr>
<td>A704</td>
<td>520W02</td>
<td>System paging</td>
<td>z/VM W02 volume</td>
</tr>
<tr>
<td>A705</td>
<td>MPA705</td>
<td>System paging</td>
<td>Paging volume 2</td>
</tr>
<tr>
<td>A706</td>
<td>MPA706</td>
<td>System paging</td>
<td>Paging volume 3</td>
</tr>
<tr>
<td>A707</td>
<td>MPA707</td>
<td>System paging</td>
<td>Paging Volume 4</td>
</tr>
<tr>
<td>A708</td>
<td>MPA708</td>
<td>System paging</td>
<td>Paging Volume 5</td>
</tr>
<tr>
<td>A709</td>
<td>MPA709</td>
<td>System paging</td>
<td>Paging volume 6</td>
</tr>
<tr>
<td>A70A</td>
<td>MMA70A</td>
<td>System minidisk</td>
<td>SLES9 100 and 102 - the master image</td>
</tr>
<tr>
<td>A70B</td>
<td>MMA70B</td>
<td>System minidisk</td>
<td>SLES9 200 - the controller</td>
</tr>
<tr>
<td>A70C</td>
<td>MMA70C</td>
<td>System minidisk</td>
<td>SLES9 203, the /backup/ file system</td>
</tr>
<tr>
<td>A70D</td>
<td>MMA70D</td>
<td>System minidisk</td>
<td>SLES9 204, part of the /nfs/ logical volume</td>
</tr>
<tr>
<td>A70E</td>
<td>MMA70E</td>
<td>System minidisk</td>
<td>SLES9 205, part of the /nfs/ logical volume</td>
</tr>
<tr>
<td>A70F</td>
<td>MMA70F</td>
<td>System minidisk</td>
<td>SLES9 206, part of the /nfs/ logical volume</td>
</tr>
<tr>
<td>A710</td>
<td>MMA710</td>
<td>System minidisk</td>
<td>SLES9 207, part of the /nfs/ logical volume</td>
</tr>
<tr>
<td>A711</td>
<td>MMA711</td>
<td>System minidisk</td>
<td>SLES9X 100 and 102, the master image</td>
</tr>
<tr>
<td>A712</td>
<td>MMA712</td>
<td>System minidisk</td>
<td>SLES9X 200, the controller</td>
</tr>
<tr>
<td>A713</td>
<td>MMA713</td>
<td>System minidisk</td>
<td>SLES9X 203 and LNXMAINT 191 and 192</td>
</tr>
<tr>
<td>A714</td>
<td>MMA714</td>
<td>System minidisk</td>
<td>SLES9X 204, part of the /nfs/ logical volume</td>
</tr>
<tr>
<td>A715</td>
<td>MMA715</td>
<td>System minidisk</td>
<td>SLES9X 205, part of the /nfs/ logical volume</td>
</tr>
<tr>
<td>A716</td>
<td>MMA716</td>
<td>System minidisk</td>
<td>SLES9X 206, part of the /nfs/ logical volume</td>
</tr>
<tr>
<td>A717</td>
<td>MMA717</td>
<td>System minidisk</td>
<td>SLES9X 207, part of the /nfs/ logical volume</td>
</tr>
<tr>
<td>A718</td>
<td>MMA718</td>
<td>System minidisk</td>
<td>LINUX01 100 and 102</td>
</tr>
<tr>
<td>A719</td>
<td>MMA719</td>
<td>System minidisk</td>
<td>LINUX02 100 and 102</td>
</tr>
<tr>
<td>A71A</td>
<td>MMA71A</td>
<td>System minidisk</td>
<td>LINUX03 100 and 102</td>
</tr>
<tr>
<td>A71B</td>
<td>MMA71B</td>
<td>System minidisk</td>
<td>LINUX04 100 and 102</td>
</tr>
<tr>
<td>A71C</td>
<td>MMA71C</td>
<td>System minidisk</td>
<td>LINUX05 100 and 102</td>
</tr>
<tr>
<td>A71D</td>
<td>MMA71D</td>
<td>System minidisk</td>
<td>LINUX06 100 and 102</td>
</tr>
<tr>
<td>A71E</td>
<td>MMA71E</td>
<td>System minidisk</td>
<td>LINUX07 100 and 102</td>
</tr>
<tr>
<td>A71F</td>
<td>MMA71F</td>
<td>System minidisk</td>
<td>WAS 100 and 102</td>
</tr>
</tbody>
</table>
2.4.3 Linux resources used in this book

Table 2-3 lists the Linux resources used in the examples in this book.

Table 2-3 Linux resources worksheet

<table>
<thead>
<tr>
<th>Device number</th>
<th>Label</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A720</td>
<td>MMA720</td>
<td>System minidisk</td>
<td>WAS 300</td>
</tr>
<tr>
<td>A721</td>
<td>MMA721</td>
<td>System minidisk</td>
<td>WAS 400</td>
</tr>
<tr>
<td>A722</td>
<td>MMA722</td>
<td>System minidisk</td>
<td>DB2 100 and 102</td>
</tr>
<tr>
<td>A723</td>
<td>MMA723</td>
<td>System minidisk</td>
<td>DB2 301 and 401</td>
</tr>
<tr>
<td>A724</td>
<td>MMA720</td>
<td>System minidisk</td>
<td>MQS 100 and 102</td>
</tr>
<tr>
<td>A725</td>
<td>MMA720</td>
<td>System minidisk</td>
<td>MQS 302 and 402</td>
</tr>
</tbody>
</table>

2.4.4 Linux user IDs used in this book

Table 2-4 lists the Linux user IDs used in the examples in this book.

Table 2-4 Linux user ID worksheet

<table>
<thead>
<tr>
<th>Linux user ID</th>
<th>IP address</th>
<th>DNS name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLES9X</td>
<td>129.40.178.130</td>
<td>lat130.pbm.ihost.com</td>
<td>A 64-bit controller and master image</td>
</tr>
<tr>
<td>SLES9</td>
<td>129.40.178.131</td>
<td>lat131.pbm.ihost.com</td>
<td>A 31-bit controller and master image</td>
</tr>
<tr>
<td>LINUX01</td>
<td>129.40.178.121</td>
<td>lat121.pbm.ihost.com</td>
<td>A Web virtual server</td>
</tr>
<tr>
<td>LINUX02</td>
<td>129.40.178.122</td>
<td>lat122.pbm.ihost.com</td>
<td>An LDAP virtual server</td>
</tr>
<tr>
<td>LINUX03</td>
<td>129.40.178.123</td>
<td>lat123.pbm.ihost.com</td>
<td>A file and print virtual server</td>
</tr>
<tr>
<td>LINUX04</td>
<td>129.40.178.124</td>
<td>lat124.pbm.ihost.com</td>
<td>An application development virtual server</td>
</tr>
<tr>
<td>LINUX05</td>
<td>129.40.178.125</td>
<td>lat125.pbm.ihost.com</td>
<td>A WebSphere Application Server</td>
</tr>
<tr>
<td>LINUX06</td>
<td>129.40.178.126</td>
<td>lat126.pbm.ihost.com</td>
<td>A DB2 Server</td>
</tr>
<tr>
<td>LINUX07</td>
<td>129.40.178.127</td>
<td>lat127.pbm.ihost.com</td>
<td>An MQ Series server</td>
</tr>
<tr>
<td>WAS</td>
<td>129.40.178.132</td>
<td>lat132.pbm.ihost.com</td>
<td>The WebSphere Application Server master</td>
</tr>
</tbody>
</table>
2.5 Blank worksheets

Blank copies of the same four worksheets are provided for your use.

2.5.1 z/VM resources worksheet

Use the worksheet in Table 2-5 to document the z/VM resources that you will use.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPAR name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPC name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP/IP host name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP/IP domain name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP/IP gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNS server 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNS server 2/3 (optional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSA device name</td>
<td></td>
<td>Often “eth0”</td>
</tr>
<tr>
<td>OSA starting device number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP/IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subnet mask</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSA device type</td>
<td></td>
<td>Often “QDIO”</td>
</tr>
<tr>
<td>Network Type</td>
<td></td>
<td>Often “Ethernet”</td>
</tr>
<tr>
<td>Port name (optional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router Type</td>
<td></td>
<td>Often “None”</td>
</tr>
<tr>
<td>Primary OSA device number for VSWITCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary OSA device number for VSWITCH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linux user ID</th>
<th>IP address</th>
<th>DNS name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB2</td>
<td>129.40.178.133</td>
<td>lat133.pbm.ihost.com</td>
<td>The DB2 server master</td>
</tr>
<tr>
<td>MQS</td>
<td>129.40.178.134</td>
<td>lat134.pbm.ihost.com</td>
<td>The MQ Series server master</td>
</tr>
</tbody>
</table>
2.5.2 z/VM DASD worksheet

Use the worksheet in Table 2-6 to document the z/VM DASD that you will use. The examples in this book use twenty 3390-3s (see 2.4.2, “z/VM DASD used in this book” on page 11), five each for the z/VM system, paging space, the LNXMAINT and SLES9 user IDs, and seven for the seven Linux virtual servers.

Table 2-6 z/VM DASD blank worksheet

<table>
<thead>
<tr>
<th>Device number</th>
<th>Label</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.5.3 Linux resources worksheet

Use the worksheet in Table 2-7 to document your Linux resources.

Table 2-7 Linux resources blank worksheet

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFS server TCP/IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linux install password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linux TCP/IP gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linux TCP/IP broadcast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linux DNS server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VNC Installation password</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.5.4 Linux user ID worksheet

Use the worksheet in Table 2-8 to document the Linux user IDs that you will create.

Table 2-8 Linux user ID blank worksheet

<table>
<thead>
<tr>
<th>Linux user ID</th>
<th>IP address</th>
<th>DNS name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring a desktop machine

“Technological progress is like an axe in the hands of a pathological criminal.”
— Albert Einstein

Many people use Microsoft Windows as a desktop operating system. This chapter addresses the following tools that are recommended for accessing z/VM and Linux from a Windows desktop:

- An SSH client: PuTTY is recommended
- A VNC client: RealVNC is recommended
- A 3270 emulator: Many choices are available

3.1 PuTTY: A free SSH client for Windows

Throughout this book, SSH is used to log into Linux systems. It is simple to use and cryptographically secure. If you are using a Linux desktop system, an SSH client is built in. But if you are using a Windows desktop, you will need a good SSH client.

PuTTY is probably the most commonly used. You can also find a PuTTY client for Windows on CD1 of a SUSE LINUX Enterprise Server (SLES) distribution in the /dosutils/putty file. Or you can download it from the Web at:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

To download from this page, click on the putty.exe link for your architecture. Save the file in a directory path such as C:\WINNT. You may want to include the version in the file name such as putty-0.56.exe. PuTTY is a stand-alone executable. There is no formal installation process. You may also want to create a shortcut on your desktop or task bar.

Invoke PuTTY. The PuTTY Configuration window (Figure 3-3) should open. Spend a few minutes to configure PuTTY, which will save you time later.
1. In the PuTTY Configuration window, complete these tasks:
 a. Under the Protocol heading on the right, click the SSH radio button.
 b. In the left Category panel, click SSH.

 ![PuTTY Configuration window](image)

 Figure 3-1 PuTTY Configuration window

2. Click on Logging. Click the radio button Log printable output only. This will allow you to go back and check on the output of certain commands. Set the Log file name to \&H&M&D&T.log so it will include a timestamp in the file name.

 ![Setting Logging](image)

 Figure 3-2 Setting Logging
3. The window changes as shown in Figure 3-3. Complete these steps:
 a. On the right side of the window, under **Preferred SSH protocol version**, click the **2 only** radio button.
 b. In the left Category panel, click **Terminal**.

![Figure 3-3 Customizing PuTTY SSH settings (Part 1 of 4)](image)

4. The window changes as shown in Figure 3-4.
 a. Select the **Use background colour to erase screen** check box, which results in a better job of painting the screen for applications that uses curses (block graphics).
 b. Click **Window** in the left pane.

![Figure 3-4 Customizing PuTTY SSH settings (Part 2 of 4)](image)
5. You see the window in Figure 3-5. You may choose more rows and columns than the default of 24x80. In this example, 43 rows and 100 columns are set. In the left panel, click Session.

![Figure 3-5 Customizing PuTTY window settings (Part 3 of 4)](image)

6. You see the initial window when PuTTY is invoked (see Figure 3-6).
 a. In the Save Sessions area, select Default Settings and click Save. This makes all future sessions that you define inherit these preferences.

![Figure 3-6 Customizing PuTTY window settings (Part 4 of 4)](image)
b. In the Host Name (or IP address) field, enter the TCP/IP address (or DNS name).

c. Under Saved Sessions, choose a name that you will remember. In this example, the name \texttt{lat40 (SLES9)} is used. This is the DNS name and the z/VM user ID.

d. Again click \texttt{Save} and the session is saved.

Now whenever you start PuTTY, you can simply double-click any saved session name, and an SSH session to the desired Linux system is invoked. The final window should appear similar to that shown in Figure 3-7.

\begin{figure}[]
\centering
\includegraphics[width=\textwidth]{puTTY.png}
\caption{Saving default PuTTY settings and creating new sessions}
\end{figure}

3.2 Setting up a VNC client

A VNC client allows access to a graphical environment with zSeries Linux.

If you are using a Linux desktop you probably have, or at least have access to a VNC client, named \texttt{vncviewer}. It is part of the tightvnc package.

3.2.1 Downloading and running RealVNC

If you have a Windows desktop, the VNC client from RealVNC is recommended. You can purchase a full function client, or there is a free version. The RealVNC home page is:

http://www.realvnc.com/

The page to download from is:

http://www.realvnc.com/download.html

Fill out the Web form and download the executable. When you have downloaded it, run it and an install program will start. At the time of writing of this book, RealVNC 4.1.1 was the current version.
Accept all defaults, however, you probably do not need a VNC server on your desktop. So you can deselect VNC Server from the Select Components panel as shown in Figure 3-8.

Complete the screens and the installation process should go quickly.

3.2.2 Customizing RealVNC

The latest VNC protocol is version 4, which is the default with the VNC client. However, version 3.3 is still required with the VNC server shipped with SLES9. Therefore, to communicate, you must set the VNC protocol to 3.3. This should be the only configuration change that is necessary.

Open the VNC client and click on the Options button as shown in the left side of Figure 3-9. Click on the Misc tab. Click the checkbox named Use only protocol version 3.3 as shown in the center of the figure. Finally, click the Load/Save tab and click Save the changes.

Your VNC client should now be ready to connect to the VNC server that your Linux systems will have.
3.3 3270 emulators

To access a logon session with z/VM, it is common to use a 3270 emulator that runs on Windows. Many commercial products are available. Some of the more common ones are:

- Attachmate Extra!
- Hummingbird Host Explorer
- IBM Personal Communications
- Quick3270

It is beyond the scope of this book to explain the details of configuring all the various emulators. However, it is recommended that you investigate the following characteristics of your emulator:

- Have the **Enter** and **Clear** keys where you would expect them. On some emulators, the default Enter key action is set to the right `Ctrl` key of modern keyboards. Likewise the Clear key action is sometimes set to the `Esc` key in the upper left corner of modern keyboards or the Pause key in the upper right.

- Have a larger screen. Often the default number of lines in an emulator session is 24. You may be more productive with a 32 or 43 lines if that can easily fit in a window given your desktop display size and resolution.

- Have the session automatically reconnect after logoff. Having a new logon screen come back immediately after you log off can also save you time in the long run. This is often not the default behavior.

Save your connection sessions. Rather than continually typing in the IP address or DNS name of the system to which you want to connect, spend a few minutes to define and save a session for each system to which you may connect, as was described for PuTTY. Then you can usually double-click the saved connection to quickly access a new 3270 session.
4

Installing and configuring z/VM

“Example isn’t another way to teach. It is the only way to teach.”
— Albert Einstein

To complete this chapter, you must complete the majority of Chapter 6, “Configuring an NFS server” on page 75. However, it is recommended that you start here, because there is a step when installing z/VM (instdvd) that takes over two hours or possibly much longer. While that process is running, you can configure the Network File System (NFS) server. Alternatively, if you have other personnel who can work on the project, you can start both chapters at the same time on the different systems.

4.1 Installing z/VM from DVD

The section that follows assumes a first level installation of z/VM from DVD onto DASD. If you have not already done so, complete the worksheet in 2.5.1, “z/VM resources worksheet” on page 14. You will need access to the Hardware Management Console (HMC).

z/VM 5.2 is shipped on tape and DVD. z/VM should install faster from tape due to faster I/O speeds, however, installing from tape may require more trips between and the HMC and the tape drive.

If you are familiar with the HMC, you can use the two page z/VM Summary for Automated Installation and Service (DVD Installation) to replace or augment the description that follows.

If you are not familiar with the HMC and z/VM, you may want to use the complete installation manual z/VM Guide for Automated Installation and Service Version 5 Release 2.0, GC24-6099. If you are installing z/VM at the second level (z/VM under z/VM) or onto SCSI disk, you will want to use that book as the sections that follow don’t address these options.
4.1.1 Booting z/VM from DVD

This section explains how to install z/VM 5.2 from an HMC with a DVD-ROM onto 3390-3 DASD. For alternative configurations such as installing from tape or onto SCSI disks, refer to the z/VM documentation.

1. On the Hardware Management Console, select the LPAR on which you want to install z/VM.

2. On the CPC Recovery menu, double-click the **Integrated 3270 Console** as shown at the bottom of Figure 4-1. A Personal Communications emulator session opens.

 Hint: It is convenient to use the Alt-Tab key sequence to move between the HMC window and 3270 console.

3. Place the z/VM DVD Product Package 3390 in the HMC DVD drive.

4. Get into **Single Object Operations** mode. To get into this mode, perform the following steps:
 a. Double-click **Defined CPCs** in the **Groups Work Area**.
 b. Select your CPC.
 c. If necessary, go around the racetrack (the buttons with circular arrows on the bottom right corner) to the **CPC Recovery** menu.
 d. Double-click the **Single Object Operations** icon. Click **yes** to confirm. Now the **Primary Support Element Workplace** window should appear. This will be a “window within a window”.
 e. Double-click **Groups** near the top of this window.
 f. Double-click **Images** in the Groups Work Area.

5. Select the LPAR that z/VM will be installed into.

6. Go around the racetrack in this window to the CPC Recovery menu. Double-click the **Load from CD-ROM or Server** icon when you see it (see Figure 4-2 on page 27).
Figure 4-2 CPC Recovery menu with “Load from CD-ROM or Server” icon present.

7. On the **Load CD-ROM or Server** window as shown in Figure 4-3, the radio button **Hardware Management Console CD-ROM** should be selected.

8. In the same **Load CD-ROM or Server** window, fill in **File Location** with `/cpdvd`. This is the directory on the DVD with the z/VM 5.2 installation code.

9. Click **OK**.

Figure 4-3 **Load from CD-ROM or Server** panel

10. Load the RAMDISK:
a. From the Load from CD-ROM or Server panel, the software 520vm.ins should be selected as shown in Figure 4-4. Click OK.

![Load from CD-ROM or Server - Select Software to Install](image)

Figure 4-4 Selecting z/VM 5.2 RAMdisk system

b. From the Confirm the action window, click Yes. You should see the Load from CD-ROM, DVD or Server Progress window. The green light on the DVD drive should light up.

c. When you see the message Completed successfully. Click OK to close. This should normally take about four to six minutes.

Attention: Normally, the z/VM RAMdisk (IBMVMRAM) loads in about four minutes. However, slow load times have been observed (15-18 minutes). When the green light on the DVD drive is solid, the load time will be acceptable. When it is intermittently dark more than it is green, long load times can result. This will also affect the estimated run time of 2 - 2.5 hours of the INSTDVD process.

You should now have an in-memory z/VM 5.2 system running.

4.1.2 Copying a vanilla z/VM system to DASD

This section describes the steps to copy z/VM to DASD.

1. You can now get out of Single object operations mode. To do so, log off the primary SE window by closing that window.

2. Use the Alt-Tab sequence, move to the Integrated 3270 Console window. The RAMdisk IPLs and the system comes up with the MAINT user ID logged on. You should see z/VM boot as shown in Figure 4-5:
3. Invoke the `instplan` command. This will allow you to choose associated z/VM products to install, the language to use and the type of DASD on which to install:

```plaintext
==> instplan
```
4. You should see the display as shown in Figure 4-6. During installation leave the M's in the top section alone, and type the letter X next to AMENG (or select your language) and 3390 Mod 3 (or the type of DASD you will use) as shown above. Then press F5.

If you choose to omit some products in the top section then blank out the M next to the products.

You should the message HCPINP8392I INSTPLAN EXEC ENDED SUCCESSFULLY.

5. Attach the DASD devices onto which z/VM will be installed defined in your planning worksheet in 2.5.2, "z/VM DASD worksheet" on page 15. In this example, the devices are a700-a704.

```sh
=> att <a700-a704> *
a700-a704 ATTACHED TO MAINT
```

Important: The angle brackets, <>, in the above example should not be typed. They are used throughout the book to signify that you should replace the example value with the correct value for your site. For example, if you are installing z/VM onto DASD 1200-1204, you would type

```sh
=> att 1200-1204 *
```

6. Execute the **INSTDVD EXEC** to begin laying down z/VM to DASD:

```sh
=> instdvd
```
7. If you are using 3390-3s, you see a panel asking for the five volumes as shown in Figure 4-7.

![Figure 4-7 INSTDV DASD address panel](image)

a. Enter the addresses of the five volumes that onto which z/VM will be installed.
b. Do not select the DO NOT FORMAT DASD check box on the right side of the panel.
c. Press F5 to start the installation.

8. When you see the question **DO YOU WANT TO CONTINUE?**, type **Y**. You should see the message **NOW FORMATTING DASD <A700>**.

9. You are asked to place the system RSU in the drive. Insert it into the HMC DVD-ROM drive and type **GO**. You should see a messages of the form **DVDLOAD: LOADING FILE CKD500X IMAGE *.** This step takes two to four minutes.

10. Finally, you should see the message **HCPIDV8329I INSTDV EXEC ENDED SUCCESSFULLY**.

4.1.3 IPL the vanilla z/VM from DASD

IPL your initial z/VM system now on DASD.

1. From the HMC, **select your LPAR**. You may have to first double-click **Groups**.
2. You should see the **CPC Recovery Menu**. Double-click the **Load** icon in the menu at the right side.
3. The Load window opens as shown in Figure 4-8. Follow these steps:
 a. Check the radio button **Clear**.
b. Set the load address to the new system residence (520RES) volume which is \texttt{<A700>} in this example.

c. Set the load parameter to \texttt{SYSG}. This specifies to use the Integrated 3270 console.

d. Click \textbf{OK} to IPL.

4. When you see the \textit{Load Task Confirmation} window, click \textbf{Yes}.

5. After 1-3 minutes you should see \textit{COMPLETED} in the Load Program window. Click \textbf{OK}.

6. Use the \textbf{Alt-Tab} sequence to move back to the Integrated 3270 console window. You should see the \textit{Standalone Program Loader} panel as shown below.

 a. Press the \textbf{Tab} key to traverse to the \textit{IPL Parameters} section and enter the value \texttt{cons=sysg}.

 b. Press the \textbf{F10} key to continue the IPL of your z/VM system. This should take around 2-3 minutes.
7. At the Start (Warm|Force|COLD|CLEAN) prompt, enter the following:
   ```
   ==> cold drain noautolog
   ```

8. At the Change TOD clock prompt enter:
   ```
   ==> no
   ```

9. The last message should be HCPCRC8082I EREP records are accumulating for userID EREP. You can disconnect from the OPERATOR user ID:
   ```
   ==> disc
   ```
 Press Enter to get a new logon screen. This may take a minute or two.

4.1.4 Completing the z/VM installation

Follow these steps to complete the z/VM installation:

1. On the z/VM login screen, logon as MAINT. The password is MAINT. You may receive messages HCPLMN108E or DMSACP113S about disks not linked or attached. This is not a problem. Press Enter when you see the VM Read prompt in the lower right corner.

2. IPL CMS and press Enter. Then run the instvm dvd command:
   ```
   ==> ipl cms:
   ==> Enter
   ==> instvm dvd
   ...
   HCPPLD8329I POSTLOAD EXEC ENDED SUCCESSFULLY
   ...
   ```
 This EXEC continues the installation process. This step should take about 4-8 minutes. The last message should be HCPIVM8392I INSTVM ENDED SUCCESSFULLY.

3. Load the recommended service. For z/VM 5.2, the service name is 5202RSU1. Run the following commands:
   ```
   ==> ipl cms
   ==> Enter
   ==> acc 500 c
   DMSACC724I 500 replaces C (2CC)
   ==> listfile * servlink c
   5201RSU1 SERVLINK C1
   ==> service all 5201rsu1
   ```
 This step should take about 4-8 minutes. The last message should be VMFSRV2760I SERVICE processing completed successfully.

4. Now IPL CMS and run the put2prod command. This puts the service into production:
   ```
   ==> ipl cms
   ==> Enter
   ==> put2prod
   ```
This step should take about 4-8 minutes. The last message should be VMFP2P2760I
PUT2PROD processing completed successfully.

A return code of 0 is ideal. You may get a return code of 4 and the message:

VMFP2P2760I PUT2PROD process completed with warnings.

In general a return code of 4 is acceptable. That means that only warnings were issued. A
return code of 8 or greater generally means that errors were encountered.

5. Enter the following command to shutdown and reIPL your system:

```bash
===> shutdown reipl
SYSTEM SHUTDOWN STARTED
```

6. You will lose your 3270 session. The system should come back in about 2-4 minutes. After
it comes back, the last message should be “Press enter or clear key to continue”.

`Press Enter` and you should see a z/VM logon screen.

Congratulations! You should now have a vanilla z/VM system installed.

4.2 Configuring TCP/IP

It is recommended that you initially configure TCP/IP via the `IPWIZARD` command which is
generally used just once. After `IPWIZARD` creates the initial configuration files, they are
typically maintained manually.

From the z/VM logon panel `Logon to MAINT`. The default password for all z/VM user IDs is the
same as the user ID. So enter a password of `maint` which will not be echoed on the screen.

```bash
USERID  ==> maint
PASSWORD ==> 
```

After entering the user ID and password, press `Enter` when the status area in the lower right
reads “VM READ”.

4.2.1 Use the IPWIZARD tool

The `IPWIZARD` command is on the MAINT 193 disk. You will need to access it file mode G via
the `ACCESS` command so you will pick up `IPWIZARD` from that minidisk.

1. Access the MAINT 193 disk:

```bash
===> acc 193 g
```

2. Invoke `IPWIZARD`.

```bash
===> ipwizard
```

3. The `z/VM TCP/IP Configuration Wizard` opens as shown in the following example. The first
field, User ID, should always be `TCP/IP`. Obtain the remaining values from the 2.5.1, “z/VM
resources worksheet” on page 14 and press `F8`.
4. An Interface Name of ETH0 is arbitrary but recommended. The Device Number will be the starting address of the OSA triplet that the z/VM stack will use. The IP address which must be routed to the OSA card will become the TCP/IP address of the z/VM system. The Interface Type will typically be QDIO with modern OSA devices. When completed, press F8.

5. In general a value for the Port Name is no longer necessary and a Router Type of None is recommended. Press F5 to complete the wizard.
You should see output similar to the following:

```
DTCIPW2508I DTCIPWIZ EXEC is attempting to create the necessary
DTCIPW2508I configuration files
The TCP/IP stack (TCPIP) must be restarted as part of this procedure
Would you like to restart and continue?
Enter 0 (No), 1 (Yes)
1
USER DSC LOGOFF AS TCPIP USERS = 2 FORCED BY MAINT
... 
Successfully PINGed Interface (129.40.178.120)
Successfully PINGed Gateway (129.40.178.254)
Ping Level 520: Pinging host 129.40.106.1.
Enter 'HX' followed by 'BEGIN' to interrupt.
```

```
DTCIPW2519I Configuration complete; connectivity has been verified
DTCIPW2520I File PROFILE TCPIP created on TCPIP 198
DTCIPW2520I File TCPIP DATA created on TCPIP 592
DTCIPW2520I File SYSTEM DTCPARMS created on TCPIP 198
HCPINP8392I IPWIZARD EXEC ENDED SUCCESSFULLY
DMSVML2061I TCPIP 592 released
```

6. If the DNS server cannot be pinged, enter 1 to try it again. Watch for the message IPWIZARD EXEC ENDED SUCCESSFULLY.

```
PING: Ping #1 timed out
Not all of the PINGS were successful. Would you like
to try them again?
Enter 0 (No), 1 (Yes)
==> 1
... 
Successfully PINGed Interface (129.40.178.120)
Successfully PINGed Gateway (129.40.178.254)
Successfully PINGed DNS (129.40.106.1)
DTCIPW2519I Configuration complete; connectivity has been verified
DTCIPW2520I File PROFILE TCPIP created on TCPIP 198
DTCIPW2520I File TCPIP DATA created on TCPIP 592
DTCIPW2520I File SYSTEM DTCPARMS created on TCPIP 198
HCPINP8392I IPWIZARD EXEC ENDED SUCCESSFULLY
DMSVML2061I TCPIP 592 released
```

7. At this point your z/VM TCP/IP stack should be up. You should now be able to ping it from another system.

If the IPWIZARD fails you must continue debugging it until it succeeds. Double check all values. Verify that the TCP/IP network and OSA information you were given are properly associated.
4.3 Configuring the XEDIT profile

Logon to MAINT if you are not already.

The XEDIT command looks for the file XEDIT PROFILE configuration file when it is invoked. Many z/VM user IDs do not have such a file, so all XEDIT default values are in effect. The MAINT 191 (A) disk has a PROFILE XEDIT so when you are editing files on MAINT, the values in this profile are usually in effect.

One setting that can be dangerous, especially if you use F12 to retrieve commands, is that PF12 is set to the FILE subcommand. Sometimes you may not want to save your changes with the stroke of one key. It is recommended that you set PF12 to the ? subcommand which has the effect of a retrieve key:

```plaintext
==>
copy profile xedit a profile xeditorig a (oldd
==>
x profile xedit a
```

Before:

SET PF12 FILE

After:

SET PF12 ?

Save your changes with the FILE subcommand.

4.4 Customizing the SYSTEM CONFIG file

The first configuration file read when z/VM IPLs is the SYSTEM CONFIG file. The following changes are recommended:

- Change the system name
- Increase retrieve capacity and allow virtual disks (VDISKs) to be created
- Turn off the Disconnect Timeout. This will prevent idle disconnected users from being forced off the system
- Define a virtual switch (VSWITCH)

To make these changes, perform the following steps:

1. To edit the SYSTEM CONFIG file, the MAINT CF1 minidisk must be released as a CP disk via the CPRELASE command. The CP disks are queried via the QUERY CPDISK command. Note the MAINT CF1 disk is accessed as CP disk A before it is released but not after.

```plaintext
==>
c q cpdisk
Label Userid Vdev Mode Stat Vol-ID Rdev Type StartLoc EndLoc
MNTCF1 MAINT 0CF1 A R/O MVA740 A740 CKD 39 158
MNTCF2 MAINT 0CF2 B R/O MVA740 A740 CKD 159 278
MNTCF3 MAINT 0CF3 C R/O MVA740 A740 CKD 279 398
==>
cp rela a
```
CPRELEASE request for disk A scheduled.
HCPZAC6730I CPRELEASE request for disk A completed.

```sql
q cpdisk
```

<table>
<thead>
<tr>
<th>Label</th>
<th>Userid</th>
<th>Vdev</th>
<th>Mode</th>
<th>Stat</th>
<th>Vol-ID</th>
<th>Rdev</th>
<th>Type</th>
<th>StartLoc</th>
<th>EndLoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNTCF2</td>
<td>MAINT</td>
<td>0CF2</td>
<td>B/R/O</td>
<td>MVA740</td>
<td>A740</td>
<td>CKD</td>
<td></td>
<td>159</td>
<td>278</td>
</tr>
<tr>
<td>MNTCF3</td>
<td>MAINT</td>
<td>0CF3</td>
<td>C/R/O</td>
<td>MVA740</td>
<td>A740</td>
<td>CKD</td>
<td></td>
<td>279</td>
<td>398</td>
</tr>
</tbody>
</table>

2. Once it is released you are able to access the MAINT CF1 disk read/write. Use the LINK command with multi-read (MR) parameter and ACCESS command to get read/write access to the minidisk.

```sql
=> link * cf1 cf1 mr
=> acc cf1 f
```

3. Now the MAINT CF1 disk is accessed read/write as your F disk. First make a backup copy of the vanilla SYSTEM CONFIG file using the COPYFILE command with the OLDDATE parameter so the file's timestamp is not modified, then edit the original copy:

```sql
=> copy system config f system config f (oldd
=> x system config f
```

4. The system name is set to ZVMV5R10 by default in the System_Identifier_Default statement. You can search for it using the /XEDIT subcommand:

```
/ System_Identifier_D
```

Modify this to the new name of your system:

```
System_Identifier_Default <LNXVMS2>
```

5. Next look for the Features statement. You can search for it again or you can use F8 to page down. The following changes and additions are recommended:

- Increase the number of commands that can be retrieved from 20 to 99.
- Set the Disconnect_Timeout to off so disconnected users do not get forced off.
- Allow unlimited VDISKs to be created by users by changing Userlim to infinite and by adding the Syslim infinite clause:

```
Features ,
    Disable ,/* Disable the following features */
    Set_Privclass ,/* Disallow SET PRIVCLASS command */
    Auto_Warm_IPL ,/* Prompt at IPL always */
    Clear_TDisk ,/* Don't clear TDisks at IPL time */
    Retrieve ,/* Retrieve options */
    Default 99 ,/* Default.... default is 20 */
    Maximum 255 ,/* Maximum.... default is 255 */
    MaxUsers noLimit ,/* No limit on number of users */
    Passwords_on_Cmds ,/* What commands allow passwords? */
    Autolog yes ,/* ... AUTOLOG does */
    Link yes ,/* ... LINK does */
    Logon yes ,/* ... and LOGON does, too */
    Disconnect_Timeout off ,/* Don't force disconnected users */
    Vdisk ,
        Syslim infinite ,/* Allow VDISKS for Linux swaps */
    Userlim infinite
```

6. Define a VSWITCH:

Use the BOTTOM subcommand to go to the bottom of the file. Add some lines (you can use the XEDIT add subcommand a3). Define a VSWITCH and set the MAC address prefix. If you have multiple z/VM systems, each should have a unique prefix. Modify the two starting addresses of the OSA triplets (3004 and 3008 in this example) to those you specified in 2.5.1, “z/VM resources worksheet” on page 14.

```
===> bot
===> a3
```
/* define vswitch named vsw1 and set MAC address prefixes to 02-00-01 */
define vswitch vsw1 rdev <3004> <3008>
vmlan macprefix 020001

7. Save your changes with the XEDIT FILE subcommand:
 ===> file

8. Test your changes with the CPSYNTAX command which is on the MAINT 193 disk:
 ===> acc 193 g
 ===> cpsyntax system config f
 CONFIGURATION FILE PROCESSING COMPLETE -- NO ERRORS ENCOUNTERED.
 Pay attention to the output. If you get any syntax errors, fix them before proceeding.

9. Release and detach the MAINT CF1 disk with the RELEASE command and DETACH parameter. Then put it back online with the CPACCESS command:
 ===> rel f (det
 DASD OCF1 DETACHED
 ===> cpacc * cf1 a
 CPACCESS request for mode A scheduled.
 HCPZAC6731 CPACCESS request for MAINT's OCF1 in mode A completed.
 ===> q cpdisk
 Label Userid Vdev Mode Stat Vol-ID Rdev Type StartLoc EndLoc
 MNTCF1 MAINT 0CF1 A R/O MVA740 A740 CKD 39 158
 MNTCF2 MAINT 0CF2 B R/O MVA740 A740 CKD 159 278
 MNTCF3 MAINT 0CF3 C R/O MVA740 A740 CKD 279 398
 Note that all three CP disks are now accessed.

4.5 Configuring TCP/IP to start at IPL time

Configure the TCPIP service machine to be started when z/VM IPLs. This is commonly accomplished from AUTOLOG1's PROFILE EXEC. If the noautolog parameter is not specified when z/VM starts the AUTOLOG1 virtual machine is started. Because it IPLs CMS, the PROFILE EXEC that is found on its A disk is run. This is analogous to the /etc/profile file on Linux and the autoexec.bat on DOS systems.

1. Logoff of MAINT.
 ===> log

2. You should see a new logon panel. Logon to AUTOLOG1. Again the password is the same as the user ID.

3. At the VM READ prompt enter the command ACCESS (NOPROF) so that the PROFILE EXEC is not run.

 LOGON AUTOLOG1
 z/VM Version 5 Release 2.0, Service Level 0501 (64-bit),
 built on IBM Virtualization Technology
 There is no logmsg data
 FILES: NO RDR, NO PRT, NO PUN
 LOGON AT 13:30:12 EST THURSDAY 01/19/06
 DMSIND2015W Unable to access the Y-disk. Filemode Y (19E) not accessed
 z/VM V5.2.0 2005-12-22 09:36
 acc (nopref)

4. Copy the PROFILE XEDIT from the MAINT 191 disk so XEDIT sessions will have a common interface among user IDs.
 a. Use the VMLINK command to both link to the disk read/only and to access it as the highest available file mode. The default read password is read:
40

vmlink maint 191
ENTER READ PASSWORD:
read
DMSVML2060I MAINT 191 linked as 0120 file mode Z

b. Copy the PROFILE XEDIT to your A disk:

```plaintext
=> copy profile xedit z = = a
```

5. Make a backup copy of the PROFILE EXEC and edit it:

```plaintext
=> copy profile exec a = execorig =
=> x profile exec
```

6. You should see the text in the top half of the following example.

a. The z/VM Shared File System (SFS), is not required to run Linux so you can safely
delete the three lines that XAUTOLOG the user IDs VMSERVS, VMSERVR and VMSERVU.

b. You can also safely delete the Address Command line.

c. Add a line to start the TCPIP user ID via the XAUTOLOG command and keep two
statements that start the VSWITCH controllers.

d. Add a line to logoff of AUTOLOG1 when the PROFILE is complete. There is no need to
keep that virtual machine running as its sole purpose is to run the PROFILE EXEC.

e. Before:

```plaintext
/*****************************/
/*  Autolog1 Profile Exec */
/*****************************/
Address Command
'CP XAUTOLOG VMSERVS'
'CP XAUTOLOG VMSERVU'
'CP XAUTOLOG VMSERVR'
'CP XAUTOLOG DTCVSW1'
'CP XAUTOLOG DTCVSW2'
```

After:

```plaintext
/*****************************/
/*  Autolog1 Profile Exec */
/*****************************/
'cp xautolog tcpip'   /* start up TCPIP */
'CP XAUTOLOG DTCVSW1' /* start VSWITCH controller 1 */
'CP XAUTOLOG DTCVSW2' /* start VSWITCH controller 2 */
'cp logoff'           /* logoff when done */
```

7. Save your changes with the FILE subcommand and logoff of AUTOLOG1:

```plaintext
====> file
====> log
```

When your z/VM system IPLs, the TCP/IP stack should now come up automatically (as long
as you do not specify the notautolog parameter at IPL time).

4.5.1 Renaming the TCPIP configuration file

It is recommended that you change the name of the main TCPIP configuration file from
PROFILE TCPIP to <system_ID> TCPIP, where <system_ID> is the name of your new z/VM
system. This is to avoid the possibility that the PROFILE TCPIP file will be overwritten when
applying maintenance.
Logon to TCPMAINT. The PROFILE TCPIP file is on the TCPMAINT 198 disk which is accessed as the D disk.

Make a backup copy the original PROFILE TCPIP, then rename it to `<SYSTEM_ID> TCPIP` (where `<SYSTEM_ID>` is LNXVM52 in this example). When the TCPIP service machine starts, it will search for this file before the file PROFILE TCPIP:

\[=> \text{copy profile tcpip d = tcpiorig = (oldd} \]
\[=> \text{rename profile tcpip d <lnxvm52> = =} \]

You have now renamed your TCP/IP profile.

4.5.2 Copy the PROFILE XEDIT file

Again copy the PROFILE XEDIT from the MAINT 191 disk so XEDIT sessions will have a common interface among user IDs.

a. Use the `VMLINK` command to both link to the disk read/only and to access it as the highest available file mode. The default read password is `read`:

\[=> \text{vmlink maint 191} \]
\[\text{ENTER READ PASSWORD: read} \]
\[\text{DMSVML2060I MAINT 191 linked as 0120 file mode Z} \]

b. Copy the PROFILE XEDIT to your A disk:

\[=> \text{copy profile xedit z = = a} \]

Now, XEDIT sessions on TCPMAINT will have a similar look and feel.

4.5.3 Configuring the FTP server

It is recommend that you turn on the FTP server. To do so, edit the newly renamed configuration file and add an `AUTOLOG` statement near the top of the file with `FTPSERVE` as the only entry. In the `PORT` statement, remove the semicolons to uncomment the lines with `FTPSERVE` on them (ports 20 and 21). These changes will cause the FTP server to start when TCPIP is started. The important lines before the file is edited and after are shown:

\[=> x <lnxvm52> tcpip d \]

Before:

```verbatim
; ---------------------------------------------------------------------
OBEY
OPERATOR TCPMAINT MAINT MROUTE ROUTED DHCPD REXECD SNMPD SNMPQE
ENDOBEY
; ---------------------------------------------------------------------
PORT
 ; 20 TCP FTPSERVE NOAUTOLOG ; FTP Server
 ; 21 TCP FTPSERVE ; FTP Server
 ; 23 TCP INTCLIENT ; TELNET Server
 ; 25 TCP SMTP ; SMTP Server
...
```

After:

```verbatim
; ---------------------------------------------------------------------
OBEY
OPERATOR TCPMAINT MAINT MROUTE ROUTED DHCPD REXECD SNMPD SNMPQE
ENDOBEY
; ---------------------------------------------------------------------
AUTOLOG
```
Save your changes with the FILE subcommand. You could continue to configure the system, but at this time it is recommended that you test your changes by shutting down and reIPLing the system.

4.5.4 Shutting down and reIPLing the system

It is now time to shutdown and reIPL the system. You should still be working from the HMC. Eventually you will want to work remotely over the network via a 3270 emulator. You will also want to be able to shutdown and reIPL z/VM without having to access the HMC. Often, the HMC will be logged off and thus the Integrated 3270 console (SYSG) will not be available. Because of these factors it is useful to use the System Console (SYSC) which has a title of Operating System Messages on the HMC in order to shut down z/VM and reIPL it without needing to use the console. This console is always accessible whether you are logged on to the HMC or not. z/VM messages during both the shutdown and reIPL process will be written to the system console, but often you will be able to ignore them - you just want your system back in a few minutes over the network.

1. Pass the parameter IPLPARMS CONS=SYSC to the SHUTDOWN REIPL command:

   ```
   => shutdown repl iplparms cons=sysc
   ```

 You will lose your session, but it should come back in a few minutes as described above. You may want to watch the system console as z/VM shuts down and comes back up.

2. **Login as MAINT.** You should have TCP/IP and FTP access to z/VM.

3. **Query the new VSWITCH:**

   ```
   => q vswitch
   VSWITCH SYSTEM VSW1      Type: VSWITCH Connected: 0     Maxconn: INFINITE
   PERSISTENT RESTRICTED NONROUTER Accounting: OFF
   VLAN Unaware
   State: Ready
   IPTtimeout: 5        QueueStorage: 8
   Portname: UNASSIGNED RDEV: 3004 Controller: DTCVSW1 VDEV: 3004
   Portname: UNASSIGNED RDEV: 3008 Controller: DTCVSW2 VDEV: 3008 BACKUP
   ```

 You should see that the VSWITCH exists and that there are two built-in VSWITCH controllers, DTCVSW1 and DTCVSW2. Before z/VM 5.2, these user IDs had to be created manually.

4. **Query the changes made to the Features statement in the SYSTEM CONFIG file:**

   ```
   => q vdisk userlim
   VDISK USER LIMIT IS INFINITE
   ```

 This shows that the changes to the SYSTEM CONFIG file have taken effect.
4.6 Adding paging volumes

The z/VM operating system resides on the first three CP volumes. z/VM 5.2 now also installs with one full paging volume and one full spool volume. A single spool volume is probably adequate for Linux needs, however, a single paging volume is probably not.

It is recommended that you add five paging volumes so you will have a total of six. If you do not have a lot of DASD, this number can be reduced. Having adequate paging space will give you plenty of headroom to add more Linux virtual machines. A rule of thumb for the amount of paging space is to have twice as much as the total of all memory for all running Linux user IDs combined.

4.6.1 Formatting the paging volumes

Before adding paging volumes to the system, the DASD volumes to be used for minidisk space (PERM) and paging space (PAGE) must be formatted. Normally this is done one volume at a time via the CPFMTXA command. If you have just a few volumes, that is fine, but when you have many volumes to format, the process of running CPFMTXA can become time consuming and tedious which can lead to errors.

Therefore, a REXX EXEC named CPFORMAT has been provided to allow you to format many volumes with a single command. The source code for this EXEC is in the section A.5.1, “The CPFORMAT EXEC” on page 249. It is a wrapper around CPFMTXA. To use this EXEC, each DASD to be formatted must first be attached with the virtual device address the same real device address (using ATTACH <realDev> *).

Note: This EXEC will label the volumes according to the convention described in 2.2.1, “Volume labeling convention” on page 9. If you want different volume labels, you can use the CPFMTXA command and manually specify each volume label.

Important: At this point, you will need access to the server described in Chapter 5, Chapter 6, “Configuring an NFS server” on page 75 in order to get the files CPFORMAT EXEC. If you did not complete that chapter while INSTDVD was running, do it now.

Getting the CPFORMAT EXEC to z/VM

Logoff of MAINT so you will be able to get the MAINT 191 disk in read/write mode via FTP.

Start an SSH (putty) session on the NFS server where the files associated with this book are were copied to (in 6.1, “Downloading files associated with this book” on page 75). Copy the CPFORMAT.EXEC from that server to z/VM via an FTP client. Being able to FTP to z/VM shows that both TCP/IP and the FTP server have started.

```bash
# cd /nfs/virt-cookbook-2/vm
# ftp <129.40.178.120>
220-FTPSERVE IBM VM Level 520 at LAT120.PBM.IHOST.COM, 14:53:44 EST WEDNESDAY 2004-12-08
Name (129.40.178.120:root): maint
Password: ...
ftp> put CPFORMAT.EXEC
...
ftp> quit
```
Using the CPFORMAT EXEC

Log back into MAINT. You should now have access to the CPFORMAT EXEC. You can get brief help on CPFORMAT by using a parameter of ?:

```bash
=> cpformat ?
```

Synopsis:

Format one or a range of DASD as page, perm, spool or temp disk space

The label written to each DASD is V<t><xxxx> where:

- `<t>` is type - `P` (page), `M` (perm), `S` (spool) or `T` (temp disk)
- `<xxxx>` is the 4 digit address

Syntax is:

```bash
PAGE-
>>--CPFORMAT--.--rdev--------------.--AS---+-PERM-+---------><
| <---------------< |       |-SPOL-|
'-rdev1-rdev2-------'       '-TDSK-
```

The following example shows how to attach five DASD volumes and use CPFORMAT to format them as paging space (refer to the planning work sheets that you filled out in 2.5.2, “z/VM DASD worksheet” on page 15): Rather than using five consecutive DASD addresses, you may consider using DASD from different address ranges in an attempt to locate the paging volumes on different ranks in your disk array. This should enable z/VM to page more efficiently:

```bash
=> att <a705-a709> *
A705-A709 ATTACHED TO MAINT
=> cpformat <a705-a709> as page
```

Format the following DASD:

<table>
<thead>
<tr>
<th>TargetID</th>
<th>Tdev</th>
<th>OwnerID</th>
<th>Odev</th>
<th>Dtype</th>
<th>Vol-ID</th>
<th>Rdev</th>
<th>StartLoc</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINT</td>
<td>A705</td>
<td>MAINT</td>
<td>A705</td>
<td>3390</td>
<td>MPA705</td>
<td>A705</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A706</td>
<td>MAINT</td>
<td>A706</td>
<td>3390</td>
<td>MPA706</td>
<td>A706</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A707</td>
<td>MAINT</td>
<td>A707</td>
<td>3390</td>
<td>MPA707</td>
<td>A707</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A708</td>
<td>MAINT</td>
<td>A708</td>
<td>3390</td>
<td>MPA708</td>
<td>A708</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A709</td>
<td>MAINT</td>
<td>A709</td>
<td>3390</td>
<td>MPA709</td>
<td>A709</td>
<td>0</td>
<td>3339</td>
</tr>
</tbody>
</table>

WARNING - this will destroy data!
ARE YOU SURE you want to format the DASD as PAGE space (y/n)?
y

DASD status after:

<table>
<thead>
<tr>
<th>TargetID</th>
<th>Tdev</th>
<th>OwnerID</th>
<th>Odev</th>
<th>Dtype</th>
<th>Vol-ID</th>
<th>Rdev</th>
<th>StartLoc</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINT</td>
<td>A705</td>
<td>MAINT</td>
<td>A705</td>
<td>3390</td>
<td>MPA705</td>
<td>A705</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A706</td>
<td>MAINT</td>
<td>A706</td>
<td>3390</td>
<td>MPA706</td>
<td>A706</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A707</td>
<td>MAINT</td>
<td>A707</td>
<td>3390</td>
<td>MPA707</td>
<td>A707</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A708</td>
<td>MAINT</td>
<td>A708</td>
<td>3390</td>
<td>MPA708</td>
<td>A708</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A709</td>
<td>MAINT</td>
<td>A709</td>
<td>3390</td>
<td>MPA709</td>
<td>A709</td>
<td>0</td>
<td>3339</td>
</tr>
</tbody>
</table>

This formatting job should run for about 10-50 minutes depending on many factors. But don’t take a break yet! You can format more volumes for PERM (minidisk) space in the next section.
4.6.2 Formatting DASD for minidisks

You could wait until **CPFORMAT** of the five paging volumes completes on MAINT, and then format more volumes for PERM or minidisk space. However, you can also get more format jobs going by using a different user ID.

1. Start a new 3270 session and **logon as SYSMAINT**. Press **Enter** when you get the VM READ prompt:

 LOGON SYSMAINT

 z/VM Version 5 Release 2.0, Service Level 0501 (64-bit),
 built on IBM Virtualization Technology
 There is no logmsg data
 FILES: NO RDR, NO PRT, NO PUN
 LOGON AT 11:13:41 EST WEDNESDAY 01/18/06
 z/VM V5.2.0 2005-12-22 09:36

 DMSACP113S A(191) not attached or invalid device address
 DMSACP723I D (192) R/O

2. Link to the **MAINT 191** disk read only to pick up the **CPFORMAT EXEC**. This can be done with the **VMLINK** command (**VMLINK** performs the **LINK** and **ACCESS** commands, with a read-only link and accessing the highest free file mode letter).

   ```
   ==> vmlink maint 191
   DMSVML2060I MAINT 191 linked as 0192 file mode D
   ```

3. Attach the seven volumes that you will use for the SLES9X user ID and the eighth that will be used for the first Linux clone. In this example it is the DASD at addresses A711-A718. Invoke the **CPFORMAT** command against these volumes using the parameter **as perm**:

   ```
   ==> att <a711-a718> *
   A711-A718 ATTACHED TO MAINT
   ==> cpformat <a711-a718> as perm
   ```

 Format the following DASD:

<table>
<thead>
<tr>
<th>TargetID</th>
<th>Tdev</th>
<th>OwnerID</th>
<th>Odev</th>
<th>Dtype</th>
<th>Vol-ID</th>
<th>Rdev</th>
<th>StartLoc</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINT</td>
<td>A711</td>
<td>MAINT</td>
<td>A711</td>
<td>3390</td>
<td>MMA711</td>
<td>A711</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A712</td>
<td>MAINT</td>
<td>A712</td>
<td>3390</td>
<td>MMA712</td>
<td>A712</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A713</td>
<td>MAINT</td>
<td>A713</td>
<td>3390</td>
<td>MMA713</td>
<td>A713</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A714</td>
<td>MAINT</td>
<td>A714</td>
<td>3390</td>
<td>MMA714</td>
<td>A714</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A715</td>
<td>MAINT</td>
<td>A715</td>
<td>3390</td>
<td>MMA715</td>
<td>A715</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A716</td>
<td>MAINT</td>
<td>A716</td>
<td>3390</td>
<td>MMA716</td>
<td>A716</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A717</td>
<td>MAINT</td>
<td>A717</td>
<td>3390</td>
<td>MMA717</td>
<td>A717</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A718</td>
<td>MAINT</td>
<td>A718</td>
<td>3390</td>
<td>MMA718</td>
<td>A718</td>
<td>0</td>
<td>3339</td>
</tr>
</tbody>
</table>

 WARNING - this will destroy data!
 ARE YOU SURE you want to format the DASD as PERM space (y/n)?
 y

 DASD status after:

<table>
<thead>
<tr>
<th>TargetID</th>
<th>Tdev</th>
<th>OwnerID</th>
<th>Odev</th>
<th>Dtype</th>
<th>Vol-ID</th>
<th>Rdev</th>
<th>StartLoc</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINT</td>
<td>A711</td>
<td>MAINT</td>
<td>A711</td>
<td>3390</td>
<td>MMA711</td>
<td>A711</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A712</td>
<td>MAINT</td>
<td>A712</td>
<td>3390</td>
<td>MMA712</td>
<td>A712</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A713</td>
<td>MAINT</td>
<td>A713</td>
<td>3390</td>
<td>MMA713</td>
<td>A713</td>
<td>0</td>
<td>3339</td>
</tr>
<tr>
<td>MAINT</td>
<td>A714</td>
<td>MAINT</td>
<td>A714</td>
<td>3390</td>
<td>MMA714</td>
<td>A714</td>
<td>0</td>
<td>3339</td>
</tr>
</tbody>
</table>

 Chapter 4. Installing and configuring z/VM 45
Now you can take a break! You should now have page volumes being formatted on MAINT and PERM or minidisk volumes being formatted on SYSMAINT.

When completed, you should have eight newly formatted volumes that can be used as minidisks.

4.6.3 Updating the SYSTEM CONFIG file

Follow these steps to update the SYSTEM CONFIG file:

1. Now that the many PAGE and PERM volumes are ready for use, they must be added to the SYSTEM CONFIG file so z/VM knows about them. The following example uses the same steps to access the MAINT CF1 disk read/write that you used earlier:

   ```
   ==> q cpdisk
   Label  Userid   Vdev Mode Stat Vol-ID Rdev Type   StartLoc     EndLoc
   MNTCF1 MAINT    0CF1  A   R/O  520RES 0200 CKD          39         83
   MNTCF2 MAINT    0CF2  B   R/O  520RES 0200 CKD         84        128
   MNTCF3 MAINT    0CF3  C   R/O  520RES 0200 CKD         129        188
   ==> cprel a
   CPRELEASE request for disk A scheduled.
   HCPZAC6730I CPRELEASE request for disk A completed.
   ==> link * cf1 cf1 mr
   ==> acc cf1 f
   ```

 It is good to remember this sequence of steps.

2. Edit the SYSTEM CONFIG file and specify each of the new page volumes (PAGE) by name as CP_Owned. When you system IPLs it will pick up these as paging volumes.

   ```
   ==> x system config f
   ...
   /*****************************************************************************/
   /*                     CP_Owned Volume Statements */
   /*****************************************************************************/
   CP_Owned   Slot   1  520RES
   CP_Owned   Slot   2  520W01
   CP_Owned   Slot   3  520W02
   CP_Owned   Slot   4  520SPL
   CP_Owned   Slot   5  520PAG
   CP_Owned   Slot   6 `<MPA705>
   CP_Owned   Slot   7 `<MPA706>
   CP_Owned   Slot   8 `<MPA707>
   CP_Owned   Slot   9 `<MPA708>
   CP_Owned   Slot  10 `<MPA709>
   CP_Owned   Slot  11 RESERVED
   CP_Owned   Slot  12 RESERVED
   CP_Owned   Slot  13 RESERVED
   ...
   ```

3. Move down to the User_Volume_List section. User volumes (PERM) can be specified individually with the User_Volume_List statement, or with wild cards via the User_Volume_Include statement. If you are using the labelling convention enforced by the CPFORMAT EXEC, then add the following single line to include all PERM space as volume labels all begin with "MM":

   ```
   CP_Owned   Slot   1  520RES
   CP_Owned   Slot   2  520W01
   CP_Owned   Slot   3  520W02
   CP_Owned   Slot   4  520SPL
   CP_Owned   Slot   5  520PAG
   CP_Owned   Slot   6 `<MPA705>
   CP_Owned   Slot   7 `<MPA706>
   CP_Owned   Slot   8 `<MPA707>
   CP_Owned   Slot   9 `<MPA708>
   CP_Owned   Slot  10 `<MPA709>
   CP_Owned   Slot  11 RESERVED
   CP_Owned   Slot  12 RESERVED
   CP_Owned   Slot  13 RESERVED
   ...
4. Save your changes with the FILE subcommand. Verify the integrity of the changes with the CPSYNTAX command then put the MAINT CF1 disk back online. The following example shows how you did this previously:

```plaintext
==> acc 193 g
==> cpsyntax system config f
CONFIGURATION FILE PROCESSING COMPLETE -- NO ERRORS ENCOUNTERED.
==> rel f (det
DASD OCF1 DETACHED
==> cpacc * cf1 a
CPACCESS request for mode A scheduled.
HCPZAC6732I CPACCESS request for MAINT's OCF1 in mode A completed.
==> q cpdisk
Label Userid Vdev Mode Stat Vol-ID Rdev Type StartLoc EndLoc
MNTCF1 MAINT 0CF1 A R/O 520RES 0200 CKD 39 83
MNTCF2 MAINT 0CF2 B R/O 520RES 0200 CKD 84 128
MNTCF3 MAINT 0CF3 C R/O 520RES 0200 CKD 129 188
```

4.6.4 Testing the changes

It is recommended that you again shutdown and reIPL to test the changes. Before you shut down, note that you have only one page volume (520PAG) via the QUERY ALLOC PAGE command. Your output should look similar to the following:

```plaintext
==> q alloc page
EXTENT EXTENT TOTAL PAGES HIGH %
VOLID RDEV START END PAGES IN USE PAGE USED
------ ---- ---------- ---------- ------ ------ ------ ----
520PAG A702 1 3338 600840 0 0 0%
MPA705 A705 0 3338 601020 0 0 0%
MPA706 A706 0 3338 601020 0 0 0%
MPA707 A707 0 3338 601020 0 0 0%
MPA708 A708 0 3338 601020 0 0 0%
```

Now shut the system down again with the command SHUTDOWN REIPL IPLPARMS CONS=SYSC. This is analogous to the Linux reboot command in that the system attempts to come back up after it shuts down. If you are connected via a 3270 emulator, you will lose your session, but if all goes well, your system will be available again in a couple of minutes.

```plaintext
==> shutdown reipl iplparms cons=sysc
```

After the system comes back, logon as MAINT and look at the page space again. You should see output similar to the following:

```plaintext
==> q alloc page
EXTENT EXTENT TOTAL PAGES HIGH %
VOLID RDEV START END PAGES IN USE PAGE USED
------ ---- ---------- ---------- ------ ------ ------ ----
520PAG A702 1 3338 600840 0 0 0%
MNTCF1 MAINT 0CF1 A R/O 520RES 0200 CKD 39 83
MNTCF2 MAINT 0CF2 B R/O 520RES 0200 CKD 84 128
MNTCF3 MAINT 0CF3 C R/O 520RES 0200 CKD 129 188
```
The output shows there are five paging volumes constituting 3521 KB pages, or about 14 GB of page space (there are 4KB/page).

4.7 Creating a user ID for common files

Now it is time to define your first z/VM user ID, LNXMAINT. It will be used to store files that will be shared by both CMS and Linux users. Before starting, make a copy of the original USER DIRECT file:

```
copy user direct c = direorig = (oldd
```

4.7.1 Define the user in the USER DIRECT file

A small 20 cylinder minidisk is allocated at virtual address 191 and a larger 300 cylinder minidisk, to be shared by many guests, is defined at virtual address 192. Use the next free DASD designated as PERM space on your worksheet (2.5.2, "z/VM DASD worksheet" on page 15). Cylinder 0 should always be reserved for the label therefore you should start minidisks at cylinder 1.

1. Edit the USER DIRECT file and add the following user ID definition to the bottom of the file:

```
x user direct c
====> bottom
====> a 6
...
USER LNXMAINT LNXMAINT 64M 128M BEG 1
 INCLUDE TCPCMSU 2
 LINK TCPMAINT 592 592 RR 3
 MDISK 0191 3390 0001 0020 <MMA713> MR READ WRITE MULTIPLE 4
 MDISK 0192 3390 0021 0300 <MMA713> MR ALL WRITE MULTIPLE 5
*
...
====> file
```

Note the following points for the numbers in black:

1. User ID LNXMAINT, same password, default size of 64MB, with class B, E and G privileges
2. Include the profile named TCPCMSU
3. Link to the TCPMAINT 592 disk read only for access to FTP and other TCP/IP commands
4. Define a 191 minidisk of size 20 cylinders from volume MMA713
5. Define 192 minidisk of size 300 cylinders from volume MMA713 with the special read password of ALL which allows read access from any user ID without a disk password
6. An empty comment line for better readability.

2. Whenever an MDISK statement is added or modified in the USER DIRECT file you should always check for overlapping cylinders and gaps (gaps will only leave empty disk space, however z/VM will allow you to shoot yourself in the foot by defining multiple minidisks over the same disk space). This is done with the DISKMAP command:
===> diskmap user
The minidisks with the END option specified in this directory will not be includ
ed in the following DISKMAP file.

File USER DISKMAP A has been created.

3. The file created, USER DISKMAP, contains a mapping of all minidisk volumes defined in the
USER DIRECT file. It will list any overlaps or gaps found on the volumes. Edit the file and turn
off the prefix area with the XEDIT PREFIX OFF subcommand to view 80 columns:

===> x user diskmap
=====> prefix off

4. Search for the text overlap with the / subcommand:

=====> /overlap
You should see the error message: DMSXDC546E Target not found. This means that no
minidisks are overlapping each other.

Now search for gaps. You should also see some gaps:

=====> /gaps

<table>
<thead>
<tr>
<th>VOLUME</th>
<th>USERID</th>
<th>CUU</th>
<th>DEVTYPE</th>
<th>START</th>
<th>END</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$$$$$</td>
<td>DATAMOVE</td>
<td>5F0</td>
<td>3380</td>
<td>00501</td>
<td>00501</td>
<td>00001</td>
</tr>
<tr>
<td></td>
<td>DATAMOVE</td>
<td>5FF</td>
<td>3380</td>
<td>00502</td>
<td>00502</td>
<td>00001</td>
</tr>
</tbody>
</table>

... The two GAPS should be listed on the right side: a gap of 501 cylinders on the $$$$$$ volume and a new 1 cylinder gap exists on the volume that was just used to create disk space for the LNMXMAINT user ID; in this case the MMA713 volume.

Don't worry about the 501 cylinder gap, but to avoid a 1 cylinder gap being reported on each user volume, it is recommended to use the user ID $ALLOC$. This user is set to NOLOG which means it can never be logged onto. Thus it is not a conventional user ID, rather, it is a convenient place to put dummy minidisk definitions for cylinder 0 of all PERM volumes.

Look at the rest of the file. You should see the three volumes that z/VM installs onto are already there (520RES, 520W01, 520W02).

5. Get out of the file USER DISKMAP with the QUIT command or by pressing F3.

6. Edit the USER DIRECT file again and add a new minidisk definition:

===> x user direct
=====> /user $alloc
USER $ALLOC$ NOLOG
MDISK A01 3390 000 001 520RES R
MDISK A02 3390 000 001 520W01 R
MDISK A03 3390 000 001 520W02 R
MDISK A04 3390 000 001 $MMA713$ R

7. Save your changes and run DISKMAP again. Edit the USER DISKMAP file. This time you should see just the single 501 cylinder gap and cylinder 0 of the first user volume allocated to the $ALLOC$ user ID. When you are done you can quit without saving changes by pressing F3.

===> diskmap user
Now that you are sure the minidisk layout is correct, the changes to the USER DIRECT file can be brought online via the DIRECTXA command:

```plaintext
=> directxa user
```

z/VM USER DIRECTORY CREATION PROGRAM - VERSION 5 RELEASE 2.0
EOJ DIRECTORY UPDATED AND ON LINE
HCPDIR494I User directory occupies 39 disk pages

If the DIRECTXA command fails, you must correct the problem before proceeding.

You have now defined your first z/VM user ID named LNXMAINT.

### 4.7.2 Logging and customizing the new user ID

Now you should be able to logon to the new user ID and format its two minidisks.

1. **Logoff of MAINT and logon to LNXMAINT.**

   ```plaintext
 logon LNXMAINT
 z/VM Version 5 Release 2.0, Service Level 0501 (64-bit),
 built on IBM Virtualization Technology
 There is no logmsg data
 FILES: NO RDR, NO PRT, NO PUN
 logon at 12:52:24 EST WEDNESDAY 01/18/06
 z/VM V5.2.0 2005-12-22 09:36

 DMSACP112S A(191) device error
   ```

   You should see an error message ending in “device error”. When CMS is started, it tries to access the user's 191 minidisk as file mode A. The 191 minidisk has been defined to this user ID, however, it has never been formatted as a CMS file system.

2. To format this disk for CMS use the **FORMAT** command. It requires a parameter specifying the file mode to access the disk as, mode A in the following example:

   ```plaintext
 => format 191 a
 DMSFOR603R FORMAT will erase all files on disk A(191). Do you wish to continue?
 Enter 1 (YES) or 0 (NO).
 1
 DMSFOR605R Enter disk label:
 lxm191
 DMSFOR733I Formatting disk A
 DMSFOR732I 20 cylinders formatted on A(191)
   ```

3. Format the larger 192 disk as the D minidisk which should take a minute or two:

   ```plaintext
 => format 192 d
 DMSFOR603R FORMAT will erase all files on disk D(192). Do you wish to continue?
 Enter 1 (YES) or 0 (NO).
 1
 DMSFOR605R Enter disk label:
 lxm192
 DMSFOR733I Formatting disk D
   ```
You have now formatted the two minidisks and accessed them as file modes A and D.

### 4.7.3 Copying a PROFILE XEDIT

Copy the PROFILE XEDIT from the MAINT 191 disk so XEDIT sessions will have a common interface among user IDs.

1. Use the `vmlink` command to both link to the disk read/only and to access it as the highest available file mode. The default read password is `read`:

```
===> vmlink maint 191
ENTER READ PASSWORD:
```

```
DMSVML2060I MAINT 191 linked as 0120 file mode Z
```

2. Copy the PROFILE XEDIT to your A disk:

```
===> copy profile xedit z = = a
```

### 4.7.4 Creating a PROFILE EXEC

Create a simple PROFILE EXEC that will be run each time this user ID is logged on.

1. Create the new file and add the following lines. REXX EXECs must always begin with a C language-style comment.

```
===> x profile exec a
====> a 5
/* PROFILE EXEC */
'acc 592 e'
'cp set run on'
'cp set pf11 retrieve forward'
'cp set pf12 retrieve'
====> file
```

This PROFILE EXEC access the TCPMAINT 592 disk as file mode E, sets CP run on, and sets the retrieve keys per the convention.

2. You could test your changes by logging off and logging back on. However, typing the command PROFILE will do the same. By default CMS tries to access the 191 disk as A and the 192 disk as D. Also you should have the TCPMAINT 592 disk accessed as E. To see your minidisks, use the `query disk` command:

```
===> profile
DMSACP723I E (592) R/O
```

```
===> q disk
LABEL VDEV M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
LXM191 191 A R/W 20 3390 4096 2 9-01 3591 3600
LXM192 192 D R/W 300 3390 4096 14 3747-02 176253 180000
TCM592 592 E R/O 67 3390 4096 877 8167-68 3893 12060
MNT190 190 S R/O 100 3390 4096 689 14325-80 3675 18000
MNT19E 19E Y/S R/O 250 3390 4096 1010 26665-59 18335 45000
MNT191 191 Z R/O 175 3390 4096 36 224-01 31276 31500
```

3. Verify that your F11 and F12 keys are set to the RETRIEVE command:

```
===> q pf11
PF11 RETRIEVE FORWARD
```

```
===> q pf12
PF12 RETRIEVE BACKWARD
```
4.7.5 Copying files associated with this book to LNXMAINT

The z/VM files associated with this book are in the vm/ subdirectory of the NFS server you set up earlier. These files should be stored on the larger 192 disk which is accessed as your D disk. Log off of LNXMAINT so that the 192 disk can be accessed read/write.

Start an SSH session on the NFS server and change directory to the VM files associated with this book.

```
cd /nfs/virt-cookbook-2/vm
```

FTP to z/VM. By default FTP copies files to your 191 disk, so first change directory to the LNXMAINT 192 disk. Then use the `mput *` subcommand to copy all the files from the `vm/` subdirectory to LNXMAINT. The files are all in ASCII so the default transfer type of ASCII will cause the files to be converted to EBCDIC.

```
ftp <129.40.178.120>
220-FTPSERVE IBM VM Level 520 at LAT120.PBM.IHOST.COM, 14:53:44 EST WEDNESDAY 2004-12-08
Name (129.40.178.120:root): lnxmaint
Password:
ftp> cd lnxmaint.192
250 Working directory is LNXMAINT 192
ftp> prompt
Interactive mode off
ftp> mput *
...
ftp> quit
```

Logon to LNXMAINT. You should see the following files on your D disk:

```
==> file * * d

LNXMAINT FILELIST A0 V 169 Trunc=169 Size=8 Line=1 Col=1 Alt=0

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Filename</th>
<th>Filetype</th>
<th>Fm</th>
<th>Format</th>
<th>Lrec</th>
<th>Records</th>
<th>Blocks</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHPW52</td>
<td>XEDIT</td>
<td>D1 V</td>
<td>70</td>
<td>180</td>
<td>3</td>
<td>1/24/06 14:48:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPFORMAT</td>
<td>EXEC</td>
<td>D1 V</td>
<td>79</td>
<td>231</td>
<td>3</td>
<td>1/24/06 14:48:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABEL520</td>
<td>EXEC</td>
<td>D1 V</td>
<td>73</td>
<td>108</td>
<td>2</td>
<td>1/24/06 14:48:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABEL520</td>
<td>XEDIT</td>
<td>D1 V</td>
<td>71</td>
<td>41</td>
<td>1</td>
<td>1/24/06 14:48:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROFILE</td>
<td>EXEC</td>
<td>D1 V</td>
<td>72</td>
<td>26</td>
<td>1</td>
<td>1/24/06 14:48:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLES9X</td>
<td>EXEC</td>
<td>D1 V</td>
<td>74</td>
<td>9</td>
<td>1</td>
<td>1/24/06 14:48:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLES9X</td>
<td>PARMFILE</td>
<td>D1 V</td>
<td>93</td>
<td>8</td>
<td>1</td>
<td>1/24/06 14:48:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWAPGEN</td>
<td>EXEC</td>
<td>D1 V</td>
<td>72</td>
<td>358</td>
<td>5</td>
<td>1/24/06 14:48:15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

See Appendix A.5, “z/VM source code listings” on page 249 for more details.

4.8 Customizing system startup and shutdown

When your z/VM system is IPLed, it is often desirable to have important Linux systems also start. Conversely, when you shut down z/VM, it is desirable to have all Linux systems shut down first.

4.8.1 Configuring the AUTOLOG1 PROFILE EXEC

It is recommended that the following tasks be accomplished by using AUTOLOG1’s PROFILE EXEC.

- Configure Linux to shut down gracefully via the SET SIGNAL command
- Overcommit memory via the SET SRM command
- Grant access to the VSWITCH for each Linux user
- Start user IDs that should be started via the XAUTOLOG command
1. **Logoff of LNXMAINT and logon to AUTOLOG1.** At the VM READ prompt you have usually been pressing Enter which causes the PROFILE EXEC to be run. If you do not want this EXEC to run, enter the command **ACCESS (NOPROF):**

```
LOGON AUTOLOG1
z/VM Version 5 Release 2.0, Service Level 0501 (64-bit),
built on IBM Virtualization Technology
There is no logmsg data
FILES: NO RDR, NO PRT, NO PUN
LOGON AT 13:39:10 EST WEDNESDAY 01/18/06
DMSIND2015W Unable to access the Y-disk. Filemode Y (19E) not accessed
z/VM V5.2.0 2005-12-22 09:36
```  

2. **Make a copy of the working PROFILE EXEC**

```
=> copy profile exec a = execwrks =
```

3. **Edit the file and add the emboldened text.**

```
=> x profile exec
/***********************
/* Autolog1 Profile Exec */
/***************************/
'cp xautolog tcpip' /* start up TCPIP */
'CP XAUTOLOG DTCVS1' /* start VSWITCH controller 1 */
'CP XAUTOLOG DTCVS2' /* start VSWITCH controller 2 */
'cp set pf12 ret' /* set the retrieve key */
'cp set mdc stor 0m 128m' /* Limit minidisk cache in CSTOR */
'cp set mdc xstore 0m 0m' /* Disable minidisk cache in XSTOR */
'cp set srm storbuf 300% 250% 200%' /* Overcommit memory */
'cp set signal shutdown 180' /* Allow guests 3 min to shut down */

/* Grant access to VSWITCH for each Linux user */
'cp set vswitch vsw1 grant sles9x'

/* XAUTOLOG each Linux user that should be started */
'cp xautolog sles9x'

'cp logoff' /* logoff when done */
```

Save your changes with the FILE subcommand.

---

**Important:** The set mdc and set srm lines are z/VM tuning values. It is believed that these are good starts for Linux systems, but may not be optimal. For more reading on these values see the following Web sites:


You may choose to modify or omit some of these settings. Your system should now be configured to start up and send a signal to shut down Linux user IDs.

### 4.8.2 Testing the changes

To test your changes you must reIPL z/VM again. Perform the following steps:
1. Shutdown and rel IPL your system.

```bash
===> shutdown reipl iplparms cons=sysc
SYSTEM SHUTDOWN STARTED
```

2. When your system comes back logon as MAINT.

3. Use the `QUERY NAMES` command to see that TCPIP, the FTP server and the two VSWITCH controllers have been logged on:

```bash
===> q n
FTPSERVE - DSC , DTCVSW2 - DSC , DTCVSW1 - DSC , TCPIP - DSC
OPERSYMP - DSC , DISKACNT - DSC , EREP - DSC , OPERATOR - DSC
MAINT -LO004
VSM - TCPIP
```

4. Query the SRM values to see that the new STORBUF settings is in effect and the SIGNAL SHUTDOWN value is set to 180 seconds:

```bash
===> q srm
IABIAS : INTENSITY=90%; DURATION=2
LDUBUF : Q1=100% Q2=75% Q3=60%
STORBUF : Q1=300% Q2=250% Q3=200%
DSPBUF : Q1=32767 Q2=32767 Q3=32767
...
===> q signal shutdown
System default shutdown signal timeout: 180 seconds
```

This output shows that your changes have taken effect.

### 4.9 Addressing z/VM security issues

This section briefly discusses the following security issues.

- z/VM security products
- High level z/VM security
- Linux user ID privilege classes
- z/VM user ID and minidisk passwords

#### VM security products

You might want to use a z/VM security product such as IBM RACF or Computer Associates VM:Secure. They allow you to address more security issues such as password aging and the auditing of users/ access attempts.

#### High level z/VM security

The paper `z/VM Security and Integrity` by Cliff Laking and Alan Altmark discusses the isolation and integrity of virtual servers under z/VM. It is on the Web at:


#### Linux user ID privilege classes

Another security issue is the privilege class that Linux user IDs are assigned. The IBM redpaper `Running Linux Guests with less than CP Class G Privilege` by Rob van der Heij addresses this issue. It is on the Web at:


#### z/VM user ID and minidisk passwords

All passwords in a vanilla z/VM system are the same as the user ID. This is a large security hole. The *minimum* you should do to address this issue.
There are two types of passwords in the USER DIRECT file:

User IDs  The password required to logon with
Minidisks  Separate passwords for read access, write access and multi-write access

Both types of passwords should be modified. This can be done using the CHPW52 XEDIT macro defined in the next section

4.9.1 Changing passwords in USER DIRECT

Changing the passwords can be done manually in XEDIT. However, this is both tedious and error-prone. So a profile named CHPW52 XEDIT has been included with this book. The source code is in Appendix A.5.2, “The CHPW52 XEDIT macro” on page 253.

This macro will change all z/VM passwords to the same value, which may still not be adequate security given the different function of the various user IDs. If you want different passwords, you have to modify the USER DIRECT file manually, either with or without using the CHPW52 XEDIT macro.

To modify all user ID and minidisk passwords to the same value, perform the following steps.

1. Logon to MAINT.
2. Link and access the LNXMAINT 192 disk to pick up the CHPW52 EXEC:
   
   ```
 => vmlink lnxmaint 192
 DMSVML2060I LNXMAINT 192 linked as 0120 file mode Z
   ```
3. Make a backup copy of the USER DIRECT file and first be sure the password that you want to use is not a string in the file. For example if you want to change all passwords to lnx4vm, then do the following:
   
   ```
 => copy user direct c = direwrks = (oldd
 => x user direct c
 ===> /lnx4vm
 DMSXDC546E Target not found
 ===> quit

 The Target not found message shows that the string LNX4VM is not used in the USER DIRECT file, so it is a good candidate for a password.
   ```
4. Edit the USER DIRECT file with a parameter of (profile chpw52) followed by the new password. Rather than invoking the default profile of PROFILE XEDIT, this command will invoke the XEDIT macro named CHPW52 XEDIT and pass it the new password. For example, to change all passwords to lnx4vm, enter the following command:
   
   ```
 => x user direct c (profile chpw52) lnx4vm

 Changing all passwords to: LNX4VM

 DMSXCG517I 1 occurrence(s) changed on 1 line(s)
 DMSXCG517I 1 occurrence(s) changed on 1 line(s)
 DMSXCG517I 1 occurrence(s) changed on 1 line(s)
 ...
   ```
5. When the profile finishes you are left in the XEDIT session with all passwords modified. You may wish to first examine the changes. Then save the changes with the FILE subcommand:
   
   ```
 ===> file
   ```
6. Bring the changes online with the DIRECTXA command:
   
   ```
 => directxa user
   ```
z/VM USER DIRECTORY CREATION PROGRAM - VERSION 5 RELEASE 2.0
EOJ DIRECTORY UPDATED AND ON LINE
HCPDIR494I User directory occupies 39 disk pages

Your new directory is online. Do not forget the new password!

Note that this XEDIT macro will only work on a vanilla USER DIRECT file because it searches for the original user IDs next to passwords. If you want to change your password again, it should be much easier as you can use the XEDIT CHANGE subcommand. For example to change all passwords from lnx4vm to vm5lnx, invoke the following commands:

```plaintext
==> x user direct c
====> c/lnx4vm/vm5lnx/* *
DMSXC6517I 773 occurrence(s) changed on 328 line(s)
```

Congratulations, your z/VM system is now customized and ready for Linux. It is recommended that you back up your system to tape.

### 4.10 Backing up your z/VM system to tape

Your system is now customized with a running TCP/IP stack, a highly available VSWITCH, a startup and shutdown process and with a user ID for shared files. You have changed the passwords. This would be a good time to back up the system to tape.

There are five system volumes that should be backed up 520RES, 520W01, 520W02, 520SPL and 520PAG. You also have configured a sixth volume that is important to Linux: that is the first 320 cylinders of the volume with LNXMAINT on it (MMA713 in this example). Back up that entire volume, because the remainder of it will be used for Linux backup data also.

To backup these volumes to tape, refer to chapter 8. *Load the System Image*, Step 11. *Store a Backup Copy of the z/VM System on Tape* in the manual *The z/VM Guide for Automated Installation and Service*, GC204-6099.

### 4.11 Relabeling the system volumes

This step is optional, however, it is recommended. There are times when you will want to change the volume labels of the five z/VM system volumes. If there is a possibility that another vanilla z/VM system with the same labels is installed onto volumes accessible by your z/VM system, one of the systems will not IPL correctly.

To understand this possibility, refer to Figure 4-9. The z/VM system with the lower device addresses starting at E340 should IPL fine (though you may see a warning at system startup time about duplicate volume labels). However, if the z/VM system starting at device address F000 is IPLed, the 520RES volume will be used, but the remaining volumes in the system are searched for by volume label, not by device address. Because z/VM system 1’s addresses are lower than z/VM system 2’s, system 2 will be using system 1’s volumes. This is not good for either system!
If there is a possibility of another z/VM system being installed on DASD that this system will have access to, it is recommended that you perform the following steps. You will need access to the HMC to perform them:

- “Modifying labels in the SYSTEM CONFIG file” on page 57
- “Modifying labels in the USER DIRECT file” on page 58
- “Changing the labels on the five volumes” on page 59
- “Shutting down your system and restarting it” on page 60

**Important**: This process must be done as documented. Making a mistake in one of the steps can easily result in an unusable system. Check your steps carefully and your system will come back with no problems. Try to do all steps in succession in a short amount of time.

### 4.11.1 Modifying labels in the SYSTEM CONFIG file

Note the first five CP-owned volumes via the `QUERY CPOWNED` command:

```bash
=> q cpowned
Slot Vol-ID Rdev Type Status
 1 520RES A700 Own Online and attached
 2 520SPL A701 Own Online and attached
 3 520PAG A702 Own Online and attached
 4 520W01 A703 Own Online and attached
 5 520W02 A704 Own Online and attached
 6 MPA705 A705 Own Online and attached
 7 MPA706 A706 Own Online and attached
 8 MPA707 A707 Own Online and attached
 9 MPA708 A708 Own Online and attached
10 MPA709 A709 Own Online and attached
11 ------ ---- ---- Reserved
12 ------ ---- ---- Reserved
...
```

The labeling convention described in 2.2.1, “Volume labeling convention” on page 9 suggests using ‘V’ in the second character of the label. An XEDIT macro, `LABEL520 XEDIT`, is supplied to help make this process more reliable. It can be used on both the SYSTEM CONFIG and USER DIRECT files.

To modify the labels in the SYSTEM CONFIG file, release the A CP-disk and access it read/write. Back up the SYSTEM CONFIG file, then edit it with the `LABEL520 XEDIT` macro passing the five addresses of the z/VM system volumes (a700-a704 in this example):

```bash
==> cprel a
CPRELEASE request for disk A scheduled.
```
HCPZAC6730I CPRELEASE request for disk A completed.

```
==> link * cfl cfl mr
==> acc cfl f
==> copy system config f = confwrks = (oldd rep
==> x system config f (profile label520) <a700> <a701> <a702> <a703> <a704>
DMSXCG517I 3 occurrence(s) changed on 3 line(s)
DMSXCG517I 1 occurrence(s) changed on 1 line(s)
```

Clear the screen and you will be left editing the file. Search for the string `cp_owned` and you should see the new labels. Be sure they are correct before saving the file with the FILE subcommand:

```
****> /cp_owned
/* CP_Owned Volume Statements */
**
CP_Owned Slot 1 MVA700
CP_Owned Slot 2 MVA701
CP_Owned Slot 3 MVA702
CP_Owned Slot 4 MVA703
CP_Owned Slot 5 MVA704
CP_Owned Slot 6 MPA705
CP_Owned Slot 7 MPA706
CP_Owned Slot 8 MPA707
CP_Owned Slot 9 MPA708
CP_Owned Slot 10 MPA709
CP_Owned Slot 11 RESERVED
...
****> file
```

Verify there are no syntax errors:

```
==> acc 193 g
==> cpsyntax system config f
```

CONFIGURATION FILE PROCESSING COMPLETE -- NO ERRORS ENCOUNTERED.

Release and detach the F disk, CPACCESS the A disk and verify:

```
==> rel f (det
DASD OCF1 DETACHED
==> cpacc * cfl a
CPACCESS request for mode A scheduled.
Ready; T=0.01/0.01 09:19:57
HCPZAC6732I CPACCESS request for MAINT's OCF1 in mode A completed.
==> q cpdisk
Label Userid Vdev Mode Stat Vol-ID Rdev Type StartLoc EndLoc
MNTCF1 MAINT 0CF1 A R/O 520RES A700 CKD 39 83
MNTCF2 MAINT 0CF2 B R/O 520RES A700 CKD 84 128
MNTCF3 MAINT 0CF3 C R/O 520RES A700 CKD 129 188
```

You have now changed the labels of the system volumes in the SYSTEM CONFIG file. It is critical that you proceed as your system is now in a state where it will not reIPL.

### 4.11.2 Modifying labels in the USER DIRECT file

Now modify the labels in the USER DIRECT file, again using the LABELS20 XEDIT macro. You should see many more occurrences of the labels being changed:
===> copy user direct c = direwrks = (oldd rep
==> x user direct c (profile label520) <a700> <a701> <a702> <a703> <a704>
DMSXCG517I 84 occurrence(s) changed on 84 line(s)
DMSXCG517I 134 occurrence(s) changed on 134 line(s)
DMSXCG517I 69 occurrence(s) changed on 69 line(s)
DMSXCG517I 2 occurrence(s) changed on 2 line(s)
DMSXCG517I 1 occurrence(s) changed on 1 line(s)

You may choose to traverse the file before saving the changes:
=====> file

You have now changed the labels of the system volumes in the USER DIRECT and SYSTEM CONFIG files. Again, it is critical that you proceed with the remaining steps.

4.11.3 Changing the labels on the five volumes

Next change the labels on the 5 volumes via the CPFMTXA command. You could do this one volume at a time with the CPFMTXA LABEL command. However, the LABEL520 EXEC has been written to make this step easier. It takes the physical addresses of the 5 system volumes and applies the labelling convention used in this book.

===> label520 <a700> <a701> <a702> <a703> <a704>
The volumes are:
DASD A700 CP OWNED 520RES 50
DASD A701 CP OWNED 520SPL 1
DASD A702 CP OWNED 520PAG 0
DASD A703 CP OWNED 520W01 93
DASD A704 CP OWNED 520W02 1

The system volume labels will become:
MVA700 MVA701 MVA702 MVA703 MVA704

ARE YOU SURE you want to relabel the DASD (y/n)?
y
HCPCCF6209I INVOKING ICKDSF.
...
ICK03000I CPVOL REPORT FOR 0123 FOLLOWS:

VOLUME SERIAL NUMBER IS NOW = MVA700
...
VOLUME SERIAL NUMBER IS NOW = MVA701
...
VOLUME SERIAL NUMBER IS NOW = MVA702
...
VOLUME SERIAL NUMBER IS NOW = MVA703
...
VOLUME SERIAL NUMBER IS NOW = MVA704
...
ICK00002I ICKDSF PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS 0
DASD 0A03 DETACHED

Now that the five volumes have been relabeled (sometimes called clipping the volumes), you can run the DIRECTXA command to update the directory:

===> directxa user
z/VM USER DIRECTORY CREATION PROGRAM - VERSION 5 RELEASE 2.0
EOJ DIRECTORY UPDATED
HCPDIR494I User directory occupies 41 disk pages
Ready(00005); T=0.01/0.01 14:30:37
A return code of 5 is expected because the labels in the USER DIRECT file are different from the spool data in the currently running system.

Finally, you are ready to issue a `SHUTDOWN` command.

### 4.11.4 Shutting down your system and restarting it

To test the changes you must shut your system down and then restart it. You cannot do a SHUTDOWN REIPL in this situation because you will have to do a FORCE start

```bash
===> shutdown
SYSTEM SHUTDOWN STARTED
HCPSHU9601 System shutdown may be delayed for up to 210 seconds
```

You will lose your 3270 session. Perform the following steps to bring the system back up:

1. Go back to the HMC to IPL your system.
2. Click the `LOAD` icon in the `CPC Recovery` menu.
3. Select the `Clear` radio button. All the other parameters should be correct from the previous IPL. Click `OK`
4. Click `Yes` on the `Load Task Confirmation` panel.
5. Go back to the Integrated 3270 console. After a few minutes the `Standalone Program Loader` panel should appear. Use the `TAB` key to traverse to the section `IPL Parameters` and enter the value `cons=sysg`
6. Press the `F10` key to continue the IPL of your z/VM system. This takes around 3 minutes.
7. At the Start prompt you have to specify a FORCE start, again because the spool volume label has changed. Enter the following:

```bash
===> force drain
```
8. Do not change the time of day clock

```bash
===> no
```
9. When the IPL completes, `DISCONNECT` from the `OPERATOR` user ID and `logon` to `MAINT`.

```bash
===> disc
```

Now your z/VM system volumes should be relabeled. Verify with the `QUERY CPOWNED` command:

```bash
===> q cpowned
```

<table>
<thead>
<tr>
<th>Slot</th>
<th>Vol-ID</th>
<th>Rdev</th>
<th>Type</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MVA700</td>
<td>A700</td>
<td>Own</td>
<td>Online and attached</td>
</tr>
<tr>
<td>2</td>
<td>MVA701</td>
<td>A701</td>
<td>Own</td>
<td>Online and attached</td>
</tr>
<tr>
<td>3</td>
<td>MVA702</td>
<td>A702</td>
<td>Own</td>
<td>Online and attached</td>
</tr>
<tr>
<td>4</td>
<td>MVA703</td>
<td>A703</td>
<td>Own</td>
<td>Online and attached</td>
</tr>
<tr>
<td>5</td>
<td>MVA704</td>
<td>A704</td>
<td>Own</td>
<td>Online and attached</td>
</tr>
<tr>
<td>6</td>
<td>MPA705</td>
<td>A705</td>
<td>Own</td>
<td>Online and attached</td>
</tr>
<tr>
<td>7</td>
<td>MPA706</td>
<td>A706</td>
<td>Own</td>
<td>Online and attached</td>
</tr>
<tr>
<td>8</td>
<td>MPA707</td>
<td>A707</td>
<td>Own</td>
<td>Online and attached</td>
</tr>
<tr>
<td>9</td>
<td>MPA708</td>
<td>A708</td>
<td>Own</td>
<td>Online and attached</td>
</tr>
<tr>
<td>10</td>
<td>MPA709</td>
<td>A709</td>
<td>Own</td>
<td>Online and attached</td>
</tr>
<tr>
<td>11</td>
<td>------</td>
<td>----</td>
<td>-----</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

In the event that you IPLed a system with duplicate system volumes, it is possible that you may have destroyed your saved segments. You will know this is the case when you cannot `IPL CMS`. Rather, you will have to `IPL 190`. 

---

60  
`z/VM and Linux on IBM System z: The Virtualization Cookbook`
4.12 Restoring your z/VM system from tape

It is good to practice to restore a system. You don’t want to be doing your first restore when the pressure is on.

Restoring a z/VM system from tape that has the same set of volume labels as the system that is running is problematic. If there are two z/VM systems on the same LPAR with the same volume labels, both systems cannot be IPLed cleanly. IPLing one of the two will probably find the correct W01, W02, PAG and SPL volumes, but IPLing the other one will probably find the wrong set.

Perform this step only if you successfully completed 4.10, “Backing up your z/VM system to tape” on page 56, and 4.11, “Relabeling the system volumes” on page 56. If you have done both, then the system on tape has volume labels of 520xxx and the system on DASD has volume labels MVyyy. You can restore this system to five other 3390-3s.

Refer to the Appendix E “Restore the z/VM System Backup Copy from Tape” in the manual The z/VM Guide for Automated Installation and Service, GC204-6099.

Important: Only do this if your saved segments have been destroyed! To rebuild saved segments, try the following commands:

```bash
=> vmfsetup zvm cms
=> sampnss cms
=> i 190 cl parm savesys cms
=> vmfbld ppf segbld esasegs segblist (all
```
Servicing z/VM

You cannot solve a problem with the same kind of thinking that created it.
--Albert Einstein

This section describes how to apply a Programming Temporary Fix (PTF) and a Recommended Service Upgrade (RSU) from “envelope files”. Both processes are basically the same.

Important: When applying service, there is always a chance that you may want to back it out. It is recommended that you have a backup of your system before starting this section.

The application of corrective service to z/VM is covered in the z/VM V5R1 Service Guide and VMSES/E Introduction and Reference. Both of these documents can be downloaded in PDF format from the following URL:
http://www.vm.ibm.com/library

VMSES/E is a component of z/VM that provides the SERVICE and PUT2PROD EXECs. The SERVICE EXEC:

- Installs an RSU or applies CORrective service for z/VM components, features, or products.
- Displays either the RSU level of the component specified or whether a particular PTF or APAR has been applied (when used with STATUS).
- Creates PTF bitmap files (when used with BITMAP).

When SERVICE is successfully complete, the PUT2PROD EXEC places the z/VM components, features, or products that are installed on the z/VM System DDR into production.
5.1 Applying a PTF

You may determine that you need to apply a specific fix or PTF to your system.

For example, an Authorized Program Analysis Report (APAR), VM63895, was opened to address the problems reported with virtual NIC support. There are three known symptoms addressed by this APAR:

- Linux guests may lose connectivity after `shutdown -r now` (or any device reset).
- Using an External Security Manager (ESM) to authorize a VLAN list may lead to an FRF002 abend.
- Virtual Hipersockets NIC configured with "VLAN nnn" (exploiting Set Global VLAN ID) did not really filter inbound frames.

The APAR was assigned the following PTF numbers:

- z/VM 5.1.0 VM63895 UM31612
- z/VM 5.2.0 VM63895 UM31613

There are more details on:

http://www-1.ibm.com/support/docview.wss?uid=isg1VM63895

So for z/VM 5.2, you will want to apply PTF UM31613. Following is an example of how to do so.

**Important:** It is strongly recommended that you apply this PTF. If you do not, examples of cloning Linux in Chapter 9, “Configure Linux for cloning” on page 131 very likely will fail due to network connectivity problems.

5.1.1 Determining if a PTF has been applied

Check to make sure the PTF has not previously been applied.

1. Logon to MAINT and issue the `VMFSETUP` command to set up minidisks for TCPIP and link to them:

   ```
 ==> vmfsetup zvm cp (link
 VMFSET2760I VMFSETUP processing started for ZVM CP
 VMFUTL2205I Minidisk|Directory Assignments:
 String Mode Stat Vdev Label/Directory
 VMFUTL2205I LOCALMOD E R/W 2C4 MNT2C4
 VMFUTL2205I LOCALSAM F R/W 2C2 MNT2C2
 ...
 VMFSET2760I VMFSETUP processing completed successfully
   ```

2. Use the `VMFINFO` command to query the Software Inventory files. Move the Tab key to ZVM and type s to select it on the PPF Fileid panel:

   ```
 ==> vmfinfo
 PPF Fileid - Help
   ```

   Product parameter files (PPFs) define the environment and key variables required to process the queries. The following is a list of all PPFs
found on all accessed disks. Select one to continue. The View function can be used to examine one or more PPFs.

Type a "V" next to one or more PPFs to view their contents, or type an "S" next to one PPF to select.

Options: S - select  V - view

<table>
<thead>
<tr>
<th>Option</th>
<th>PPF Fileid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$5654260 PPF D1</td>
</tr>
<tr>
<td></td>
<td>SEGBLD PPF D2</td>
</tr>
<tr>
<td></td>
<td>SERVP2P PPF D1</td>
</tr>
<tr>
<td></td>
<td>UCENG PPF D2</td>
</tr>
<tr>
<td>$</td>
<td>ZVM PPF D2</td>
</tr>
<tr>
<td></td>
<td>4OSASF40 PPF D1</td>
</tr>
</tbody>
</table>

3. Because the description of the PTF cites a component name of “VM CP”, select CP on the Component Name panel.

4. Select PTFs/APARs on the VMFINFO Main Panel

5. Type in the PTF number UM31613 in the PTF number field then select Status of PTF on the PTF/APAR Queries panel:

PTF/APAR Queries

Enter a PTF or APAR number and type an option code. Then press Enter.

PPF fileid ....... ZVM       PPF D
Component name .. CP                 Setup ... NO
Product ID ...... 5VMCPR20           System .. VM
PTF number ...... UM31613
APAR number ..... 

Options: S - select

<table>
<thead>
<tr>
<th>Option</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>Status of PTF</td>
</tr>
<tr>
<td></td>
<td>Requisites/supersedes of PTF</td>
</tr>
<tr>
<td></td>
<td>Dependencies/superseding of PTF</td>
</tr>
<tr>
<td></td>
<td>User memo of PTF</td>
</tr>
<tr>
<td></td>
<td>Serviceable parts included by PTF</td>
</tr>
<tr>
<td></td>
<td>Abstract of APAR(s)</td>
</tr>
</tbody>
</table>

6. If the PTF has not been successfully applied, you should see the message No data found:

Query Output - PTF Status

PPF fileid ....... ZVM       PPF D
Component name .. CP                 Setup ... NO
Product ID ...... 5VMCPR10           System .. VM
-------------------------------------------------------------------
WN:VMFSIP2481W No entries match search arguments
WN:            TDATA :PTF UM31198
WN:            in table 5VMCPR10 SRVRECS J

No data found

This shows that PTF UM31613 has not been successfully applied. The sections that follow describe how to obtain and apply it.
5.1.2 Getting service via Internet FTP

You may get service for z/VM via tapes. However, you may also wish to get service over the Internet. If so, point a Web browser to:

https://techsupport.services.ibm.com/server/login

If you have an IBM user ID and password, use that. If you do not, you can fill out the form to create an IBM ID and password. You should then be at the following Web site:

https://www.ibm.com/account/profile/us

1. Click on **Support and Downloads** at the top menu.
2. Click on **Downloads and Drivers** on the left frame.
3. Under **Category**, select **zSeries (mainframe)**
4. Under **Operating Systems**, select **z/VM** and click **Go**. This should take you to a page entitled **Support for VM**.
5. Click on **Download specific fixes**. You may be prompted for your IBM ID and password.
6. In the text box **Enter PTF numbers below [e.g: U412345, U467890]**, enter **UM31613**. All other defaults should be correct. Click **Continue**.
7. In the Verify Order page, click **Submit**. You should get a message similar to the following

   "Your order has been submitted for processing. Email will be sent to nospm@us.ibm.com. COER NUMBER is <390473266>. This number is used to submit your request. You will receive a confirmation email that contains your ORDER NUMBER."

...  

5.1.3 Downloading the service to z/VM

You should receive two e-mails. The first e-mail has your order number. The second e-mail has instructions on how to download the service files. Make sure you have access to these. Following is an example.

```
TEXT = Data sent via "INET". To retrieve your service:
TEXT = FTP to: ptf.boulder.ibm.com
TEXT = Log on using userid "owte8a" and password "h2q9nep9"
TEXT = Enter the following FTP commands:
TEXT = cd /390268476/c568411202
TEXT = ascii
TEXT = get ftp8476.txt
TEXT = binary f 1024
TEXT = get rlst1585.bin
TEXT = get rptf1585.bin
```

1. **Logon to MAINT.**
2. The MAINT 500 disk should have a lot of free space, so it is a good minidisk on which to download the files. By default the FTP client saves files on the A disk, so access the 500 disk as A:

   ```
 ==> vmlink tcpmaint 592
 DMSVML2060I TCPMAINT 592 linked as 0120 file mode Z
 ==> acc 500 a
 DMSACC724I 500 replaces A (191)
   ```
3. Now use the FTP client to get the PTF *envelope files* off the Internet. The envelope files can be large so this may take some time. As you are downloading the files, note the file sizes. Following is an example.

   ```
 ==> ftp ptf.boulder.ibm.com
   ```
ftp> <owte8a>
ftp> <h2q9nep9>
ftp> cd </390268476/c568411202>
ftp> ascii
ftp> get ftp1585.txt
... 
ftp> binary f 1024
ftp> get vlst1585.bin
... 
150 Opening BINARY mode data connection for vlst1585.bin (7168 bytes).
7168 bytes transferred in 0.231 seconds. Transfer rate 31.03 Kbytes/sec.
ftp> get vptf1585.bin
... 
551936 bytes transferred in 22.272 seconds. Transfer rate 24.78 Kbytes/sec.
ftp> quit

4. Use the BROWSE command to view the first text file and verify that the correct number of bytes were downloaded for each file. Press the F3 key to quit.

```shell
=> browse ftp1585 txt
VM PTF Package Information

This file contains byte counts of files to receive and instructions for preparing the files for installation. The byte counts listed below should match the byte counts of the files when they are received using FTP.

FILE BYTE COUNTS

The vptf1585.bin byte count is: 551936.
The vlst1585.bin byte count is: 7168.

Match these byte counts to that reported during the FTP get.
...
====> F3
```

5. You should now have the service or envelope files on your z/VM system. Rename the file type from BIN to SERVLINK as this is the file type that the SERVICE command expects.

```shell
=> rename vlst1585 bin a = servlink =
=> rename vptf1585 bin a = servlink =
```

6. The envelope files arrive in a compressed format to speed downloads. In order to use them they must first be uncompressed with the DETERSE command. Use the (REPLACE parameter to uncompress them in place and save disk space:

```shell
=> deterse vlst1585 servlink a = = = (replace
=> deterse vptf1585 servlink a = = = (replace
```

5.1.4 Receiving, applying, and building service

You must receive, apply, and build the PTF. Then it can be put into production. This can be done in a process that is much easier now with the SERVICE command.

To prepare to use the SERVICE command, you must have a 256MB virtual machine and you must have the minidisk with a lot of free space - that is what the MAINT 500 minidisk is for.

1. Increase the size of the MAINT virtual machine with the DEFINE STORAGE command:

```shell
=> def stor 256M
STORAGE = 256M
Storage cleared - system reset.
```
2. ReIPL CMS:

```plaintext
===> ipl cms
IPL CMS
z/VM V5.2.0 2006-01-24 13:26
===> Enter
```

3. The `SERVICE` command will write to the current A disk. Again access minidisk 500 as A:

```plaintext
===> acc 500 a
DMSACC724I 500 replaces A (191)
```

4. Now use the `SERVICE ALL` command specifying the envelope files you downloaded. Many, many screens of output will scroll by and the screens will automatically be cleared. Important messages will be saved to the A (500) disk. This process may take many minutes. Following is an example:

```plaintext
===> service all vptf1585
VMFSUT7260I VMFSUFTB processing started
VMFSUT7260I VMFSUFTB processing completed successfully
VMFSRV7260I SERVICE processing completed successfully

A return code of 0 is ideal. In general a return code of 4 is acceptable. That means that only warnings were issued. A return code of 8 or greater generally means that errors were encountered.

5. The output files written to the A disk are of the form `$VMF* $MSGNUM`. You may wish to inspect these files.

```plaintext
===> file $VMF* $MSGLOG
MAINT    FILELIST A0  V 169  Trunc=169 Size=5 Line=1 Col=1 Alt=0
    Cmd   Filename Filetype Fm Format Lrecl    Records    Blocks    Date     Time
$VMFSRV  $MSGLOG  A1 V         80        132          3  1/31/06 12:58:09
$VMFBLD  $MSGLOG  A1 V         80         76          2  1/31/06 12:57:34
$VMFAPP  $MSGLOG  A1 V         80         70          2  1/31/06 12:57:13
$VMFREC  $MSGLOG  A1 V         80         55          1  1/31/06 12:57:12
$VMFMRD  $MSGLOG  A1 V         80         30          1  1/31/06 12:57:10
```

6. Invoke the `VMFVIEW SERVICE` command to review the results of the previous `SERVICE` command. Press the `F3` key to quit. Following is an example:

```plaintext
===> vmfview service
************************************************************************
****             SERVICE               USERID: MAINT                ****
************************************************************************
****            Date: 01/31/06            Time: 12:57:09            ****
************************************************************************
====>
```

Ideally there will be no output which as there is in this example. That means the service applied perfectly.

5.1.5 Putting the service into production

Use the `PUT2PROD` command to put the service into production.
Important: If you run PUT2PROD from a 3270 emulator session, you may lose your connection as the TCPIP service machine may be recycled. Therefore you may want to run this command from a console.

In this example, applying PTF UM31613 did not affect the emulator session.

```
put2prod
RDR FILE 0016 SENT FROM MAINT CON WAS 0016 RECS 0004 CPY 001 T NOHOLD NOKEEP
VMFP2P2760I PUT2PROD processing started
VMFP2P2760I PUT2PROD processing started for VMSES
VMFSET2760I VMFSETUP processing started for SERVP2P VMSESP2P
... USER DSC LOGOFF AS BLDCMS USERS = 7 FORCED BY MAINT
VMFP2P2760I PUT2PROD processing completed successfully for SAVECMS
VMFP2P2760I PUT2PROD processing completed successfully
```

Your PTF should now be “put into production”. You may or may not have to reIPL the system, depending on the nature of the PTF applied. It is safest to reIPL via the SHUTDOWN REIPL command in order to completely test the changes:

```
shutdown reipl iplparms cons=sysc
SYSTEM SHUTDOWN STARTED
...
```

Your z/VM system should come back in a few minutes. You may wish to perform the steps in section 5.1.1, “Determining if a PTF has been applied” on page 64 to verify that this PTF has been applied.

5.2 Applying a Recommended Service Upgrade or RSU

Applying an RSU is very similar to applying a PTF described in the previous section. z/VM service can be preventive (RSU) or corrective (COR). Part 4, Service Procedure, in the manual Guide for Automated Installation and Service gives a complete description of applying service to z/VM, however it assumes you are starting with the RSU tape. Following is an example of upgrading to a z/VM 5.2 RSU with the medium being files, not tape.

The section that follows is a summary of applying service and also describes how to obtain the service via envelope files over the Internet.

You must first determine if your system needs service. Use the QUERY CLEVEL command:

```
q cplevel
z/VM Version 5 Release 2.0, service level 0000 (64-bit)
Generated at 10/23/05 11:53:04 EDT
IPL at 07/18/06 07:35:51 EDT
```

The service level “0000” means that no service has been applied. This is a vanilla z/VM 5.2 system. After a service level has been applied, the four digits are split in half, where the first half is the year and the second half is the service level for that year. For example, a service level of “0501” would mean the first service level for the year 2005.

The overall steps in applying a service level are as follow:

- Make the service available on the Internet via FTP
- Download the service to z/VM
5.2.1 Making the service available on the Internet via FTP

The PTF number for the most current RSU for z/VM 5.2.0 is UM97520. The PTF number for the most current RSU for z/VM 5.1.0 is UM97510. Point a Web browser to:

https://techsupport.services.ibm.com/server/login

1. If you have an IBM user ID and password, use that. If you do not, you can fill out the form to create an IBM ID and password. You should then be at the following Web site:

https://www.ibm.com/account/profile/us

2. Click on Support and Downloads at the top menu.
3. Click on Downloads and Drivers on the left frame.
4. Under Category, select zSeries (mainframe)
5. Under Operating Systems, select z/VM. This should take you to a page entitled Support for VM.
6. Click on Download selective fixes by PTF. You may be prompted for your IBM ID and password.
7. In the text box Enter PTF numbers below [e.g: U412345, U467890], enter UM97520 for the latest z/VM 5.2 service level, UM97510 for the latest z/VM 5.1 service level, or the appropriate PTF number. All other defaults should be correct.
8. Click Continue
9. In the Verify Order page, click Submit. You should get a message similar to the following:

Your order has been submitted for processing. Email will be sent to nospam@us.ibm.com.

COER NUMBER is <390473266>. This number is used to submit your request. You will receive a confirmation email that contains your ORDER NUMBER.

5.2.2 Downloading the service to z/VM

You should receive two e-mails. The first e-mail has your order number. The second e-mail has instructions on how to download the service files. Make sure you have access to these. Following is an example.

TEXT = Data sent via "INET". To retrieve your service:
TEXT = FTP to: ptf.boulder.ibm.com
TEXT = Log on using userid "owte8a" and password "h2q9nep9"
TEXT = Enter the following FTP commands:
TEXT = cd /390268476/c568411202
TEXT = ascii
TEXT = get ftp8476.txt
TEXT = binary f 1024
TEXT = get rlst8476.bin
TEXT = get rptf0176.bin
TEXT = get rptf0276.bin
TEXT = get rptf0376.bin

1. Logon to MAINT.
2. The MAINT 500 disk should have a lot of free space, so it is a good minidisk on which to download the files. By default the FTP client saves files on the A disk, so access the 500 disk as A:

```bash
==> acc 500 a
```
3. Link to the TCPMAINT 592 disk to get access to the FTP client command

```bash
vmlink tcpmaint 592
```

DMSVML2060I TCPMAINT 592 linked as 0120 file mode Z

4. Use the FTP client to get the RSU envelopes off the Internet. The envelope files can be large so this may take some time. It is recommended that you rename the file type from BIN to SERVLINK via FTP because this is the file type that the SERVICE command expects. As you are downloading the files, note the file sizes. Following is an example.

```bash
ftp ptf.boulder.ibm.com
ftp> (owte8a)
ftp> (h2q9nep9)
ftp> cd /390268476/c568411202
ftp> ascii
ftp> get ftp8476.txt
ftp> binary f 1024
ftp> get rlst8476.bin rlst8476.servlink
```

... 10240 bytes transferred in 0.523 seconds. Transfer rate 19.58 Kbytes/sec

```bash
ftp> get rptf0176.bin rptf0176.servlink
```

... 36944896 bytes transferred in 191.632 seconds. Transfer rate 192.79 Kbytes/sec.

```bash
ftp> get rptf0276.bin rptf0276.servlink
```

... 26028032 bytes transferred in 132.353 seconds. Transfer rate 196.66 Kbytes/sec.

```bash
ftp> get rptf0376.bin rptf0376.servlink
```

... 52193280 bytes transferred in 269.094 seconds. Transfer rate 193.96 Kbytes/sec.

```bash
ftp> quit
```

You should now have the service or envelope files on your z/VM system.

5. The envelope files arrive in a compressed format to speed downloads. In order to use them they must first be uncompressed with the DETERSE command. Use the (REPLACE parameter to uncompress them in place and save disk space:

```bash
deterse rlst8476 servlink a = = = (replace
```

```bash
deterse rptf0176 servlink a = = = (replace
```

```bash
deterse rptf0276 servlink a = = = (replace
```

```bash
deterse rptf0376 servlink a = = = (replace
```

6. Use the BROWSE command to read the RSU information. Compare the byte count that you recorded earlier with the values in this file.

```bash
browse ftp8476.txt
```

VM RSU Package Information

This file contains byte counts of files to receive and instructions for preparing the files for installation. The byte counts listed below should match the byte counts of the files when they are received using FTP.

FILE BYTE COUNTS

The rlst8476.bin byte count is: 10240.
The rptf176.bin byte count is: 36944896.
The rptf276.bin byte count is: 26028032.
The rptf376.bin byte count is: 52193280.

...
5.2.3 Receiving, applying, and building the service

You must receive, apply, and build the service. Then it can be put into production.

In the past, this was a cumbersome procedure. For example, to receive, apply and build the CP component, the following steps were needed:

```
vmfmrdsk zvm cp apply (setup
vmfsetup zvm cp
vmfpsu zvm cp
vmfins install ppf zvm cp (nomemo env {filename} nolink override no
vmfapply ppf zvm cp (setup
vmfbld ppf zvm cp (status
vmfbld ppf zvm cp (serviced
```

Then the same steps were needed for many other components. The process is much easier now with the SERVICE command.

1. To prepare to use the SERVICE command, you must have a 256MB virtual machine and you must have the minidisk with a lot of free space - that is what the MAINT 500 minidisk is for. Increase the size of the MAINT virtual machine with the DEFINE STORAGE command:

```
=> def stor 256M
STORAGE = 256M
Storage cleared - system reset.
=> ipl cms
IPL CMS
z/VM V5.2.0 2006-01-24 13:26
=> Enter
```

2. The SERVICE command will write to the current A disk, so you again want to access 500 as A:

```
=> acc 500 a
DMSACC724I 500 replaces A (191)
```

3. Use the SERVICE ALL command specifying the envelope files you downloaded. Many, many screens of output will scroll by and the screens will automatically be cleared. Important messages will be saved to the A (500) disk. This process may take many minutes or tens or tens of minutes. Following is an example:

```
=> service all rptf0176 rptf0276 rptf0376
... VMFSET2760I VMFSETUP processing completed successfully VMFSRV2760I SERVICE processing completed successfully for GCS BUILD VMFSUT2760I VMFSUTB processing started VMFSUT2760I VMFSUTB processing completed successfully VMFSRV2760I SERVICE processing completed with warnings Ready(00004); T=185.66/191.79 11:56:47
```

A return code of 0 is ideal. Note in the last Ready line that this command returned a code of 4. In general a return code of 4 is acceptable. That means that only warnings were issued. A return code of 8 or greater generally means that errors were encountered.

4. The output files written to the A disk are of the form $VMF* $MSGNUM:

```
=> file $VMF* $MSGLOG
$VMFP2P $MSGLOG A1 V 80 1520 28 11/10/05 13:35:43
$VMFBLD $MSGLOG A1 V 80 639 9 11/10/05 13:28:42
$VMFMRD $MSGLOG A1 V 80 499 7 11/10/05 13:28:39
$VMFSRV $MSGLOG A1 V 80 1369 25 11/10/05 11:56:47
$VMFAPP $MSGLOG A1 V 80 682 9 11/10/05 11:54:07
$VMFINS $MSGLOG A1 V 80 381 6 11/10/05 11:54:05
```
5. Invoke the `VMFVIEW SERVICE` command to review the results of the previous `SERVICE` command. Following is an example:

```plaintext
=> vmfview service
************************************************************************
****            SERVICE               USERID: MAINT                ****
************************************************************************
****            Date: 11/10/05            Time: 11:43:15            ****
************************************************************************
CK:VMFSUI2104I PTF UM30896 contains user information. Review the :UMEMO
CK: section in file UM30896 $PTFPART
CK:VMFSUI2104I PTF UM31044 contains user information. Review the :UMEMO
CK: section in file UM31044 $PTFPART
CK:VMFSUI2104I PTF UM31233 contains user information. Review the :UMEMO
CK: section in file UM31233 $PTFPART
CK:VMFSUI2104I PTF UM31275 contains user information. Review the :UMEMO
CK: section in file UM31275 $PTFPART
WN: VMFBDC2250W The following VMHCD objects have been built on BUILD0 300
WN: (I) and should be copied to your workstation:
WN: VMFSRV1221W The CP Stand-Alone Dump Utility must be rebuilt. Follow
WN: the instructions in the z/VM Service Guide.

Ideally there will be no output which means the service applied perfectly. In this example, the above the following messages are generated. The first four VMFSUI2104I messages are informational. The VMFBDC2250W message is pertinent if you are using the VM HCD tool. The VMFSRV1221W is pertinent if you are using the CP Stand-alone Dump Utility.

You should see that the service was installed successfully.

5.2.4 Putting the service into production

This section describes how to use the `PUT2PROD` command to put the service into production.

**Important:** If you run `PUT2PROD` from a 3270 emulator session, you may lose your connection as the TCPIP service machine may be recycled. Therefore you may want to run this command from a console.

1. Use the `PUT2PROD` command to put the service into production

```plaintext
=> put2prod
RDR FILE 0016 SENT FROM MAINT CON WAS 0016 RECS 0004 CPY 001 T NOHOLD NOKEEP
VMFP2P2760I PUT2PROD processing started
VMFP2P2760I PUT2PROD processing started for VMSES
VMFSET2760I VMFSETUP processing started for SERVP2P VMSES2P2P
...
USER DSC LOGOFF AS BLDCMS USERS = 7 FORCED BY MAINT
VMFP2P2760I PUT2PROD processing completed successfully for SAVECMS
VMFP2P2760I PUT2PROD processing completed successfully
```

Even though the service has been “put into production”, the `QUERY CPLEVEL` command should still return the current service level; in this example 0000. This is because the new CP load module (nucleus) has not been invoked:

```plaintext
=> q cplevel
z/VM Version 5 Release 2.0, service level 0000 (64-bit)
```
... 
To invoke the new CP load module, use the **SHUTDOWN REIPL** command. When your system comes back up, it should be at the new CP service level, in this example 0601:

```
 => shutdown reipl iplparms cons=sysc
 ...
 => q cplevel
 z/VM Version 5 Release 2.0, **service level 0601** (64-bit)
  ```

This shows that the new CP load module is now being used.

You should now be done installing and configuring z/VM. A great attribute of z/VM is that it normally hums along with little maintenance required. It is now time to change your focus to Linux.
Chapter 6. Configuring an NFS server

“Anyone who has never made a mistake has never tried anything new.”
— Albert Einstein

It is possible to install Linux onto the mainframe from physical CDs, however, installation over the network from another server using the Network File System (NFS) is recommended. To accomplish this, it is recommended that you set up a PC Linux system. This server will supply both the SLES9 distribution and the files associated with this book.

It must have at least 12 GB of free disk space for one install tree. It will require about 24 GB if you want both an s390 (31-bit) and an s390x (64-bit) trees. It can be a Linux PC, but it can also be a UNIX box (Sun Solaris, Hewlett Packard HP-UX, IBM AIX or other). The steps in this chapter explain how to configure a PC Linux box as the NFS server.

You can also choose to use a Windows workstation via SMB, but this option is not addressed in this book. Often more problems are encountered when using a Windows workstation to serve the SLES9 install tree so this option is not recommended. If you have no other choice, refer to Section 5.2, “Using a Microsoft Windows Workstation” in the manual SUSE LINUX Enterprise Server ARCHITECTURE SPECIFIC INFORMATION. This manual is included on the SuSE CDs.

To get started with Linux on zSeries using this book, you must perform the following tasks:

- “Downloading files associated with this book” on page 75
- “Setting up a SLES9 install tree” on page 76
- “Enabling the NFS server on SLES9” on page 82

6.1 Downloading files associated with this book

This book has many files associated with it that will be needed to set your system up quickly. You can download the tar file on the Web at:

http://linuxvm.org/present/misc/virt-cookbook-2.tgz
The tar file: virt-cookbook-2.tgz is about 55 KB. Download the file and untar it. The following example shows this being done from the directory /nfs/:

```bash
mkdir /nfs
cd /nfs
... download or copy the file virt-cookbook-2.tgz ...
tar xzf virt-cookbook-2.tgz
```

List the files in the new directory virt-cookbook-2/:

```bash
ls virt-cookbook-2/
 .. README.txt linux-controller linux-master nfs-server virt-cookbook-2.pdf vm
```

You now have downloaded and untarred the files associated with this book.

### 6.2 Setting up a SLES9 install tree

You may have a licensed version of SLES9 on physical CDs or you may choose to try an evaluation copy. There is an evaluation copy on the Web starting at the following URL:

http://www.novell.com/products/linuxenterpriseserver/eval.html

Follow the link named SUSE Linux Enterprise Server 9 for IBM zSeries & IBM s/390 Series and create an account to download the ISO images.

#### 6.2.1 SLES9 ISO image file names and sizes

Following are the file names for the SLES9 31-bit ISO images.

<table>
<thead>
<tr>
<th>CD number</th>
<th>File name</th>
<th>File size in bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLES-9-s390-RC5a-CD1.iso</td>
<td>320,485,376</td>
</tr>
<tr>
<td>2</td>
<td>SLES-9-s390-RC5-CD2.iso</td>
<td>541,788,160</td>
</tr>
<tr>
<td>3</td>
<td>SLES-9-s390-RC5-CD3.iso</td>
<td>437,792,768</td>
</tr>
<tr>
<td>4</td>
<td>SLES-9-s390-RC5-CD4.iso</td>
<td>498,302,976</td>
</tr>
<tr>
<td>5</td>
<td>SLES-9-s390-RC5-CD5.iso</td>
<td>680,095,744</td>
</tr>
<tr>
<td>6</td>
<td>SLES-9-s390-RC5-CD6.iso</td>
<td>664,590,336</td>
</tr>
</tbody>
</table>

Following are the file names for the SLES9 64-bit ISO images.

<table>
<thead>
<tr>
<th>CD number</th>
<th>File name</th>
<th>File size in bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLES-9-s390x-RC5a-CD1.iso</td>
<td>327,061,504</td>
</tr>
<tr>
<td>2</td>
<td>SLES-9-s390x-RC5-CD2.iso</td>
<td>604,880,896</td>
</tr>
<tr>
<td>3</td>
<td>SLES-9-s390x-RC5-CD3.iso</td>
<td>466,620,416</td>
</tr>
<tr>
<td>4</td>
<td>SLES-9-s390x-RC5-CD4.iso</td>
<td>509,405,184</td>
</tr>
<tr>
<td>5</td>
<td>SLES-9-s390x-RC5-CD5.iso</td>
<td>673,800,192</td>
</tr>
<tr>
<td>6</td>
<td>SLES-9-s390x-RC5-CD6.iso</td>
<td>664,592,384</td>
</tr>
</tbody>
</table>
6.2.2 SLES9 Service Pack CDs

You may also have service pack CDs. Service packs are added to the base SLES9 install, however, they do not have to be added to previous service packs. For example, if you want to get to a SLES9 SP3 level, you would use the base CDs and the SP3 CDs, but not the SP1 nor SP2 CDs. However, if you are already at SLES9 + SP2, then you can upgrade to SP3. In general it is recommended that you use the latest service pack, however, you may want a specific service pack. Therefore, all three service packs are addressed in this section. The file names and sizes of service pack CDs are listed in the tables that follow.

SLES9 SP3 CDs

SLES9 SP3 became available in December of 2005. Following are the CDs for the s390 and s390x distributions:

<table>
<thead>
<tr>
<th>CD number</th>
<th>File name</th>
<th>File size in bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLES-9-SP-3-s390-GM-CD1a.iso</td>
<td>544,542,720 (545,089,536 - CD1a)</td>
</tr>
<tr>
<td>2</td>
<td>SLES-9-SP-3-s390-GM-CD2.iso</td>
<td>617,662,464 (617,631,744 - 2nd CD2)</td>
</tr>
<tr>
<td>3</td>
<td>SLES-9-SP-3-s390-GM-CD3.iso</td>
<td>663,846,912</td>
</tr>
</tbody>
</table>


**Attention:** After the original SP3 CDs were released in 2005, others were released in 2006 and it is not entirely clear which are the latest and which are the correct file names. On a mirror of the SuSE maintweb site, there appears to be a new CD2 dated Jan. 26, 2006 with the same file name, and a new CD1 dated Feb. 16 with a file name of CD1a instead of CD1.

The following append to the linux-390 list server from a novell.com e-mail address seems to be the most authoritative:

```plaintext
> It looks to me like the latest SP3 CD images for 64-bit are labeled as
> follows:
>
> SLES-9-SP-3-s390x-GM-CD1a.iso -- e74f074fc81c1d1bb12ff59df2541bb
> SLES-9-SP-3-s390x-GM-CD2.iso -- 9ebbd79d41e46ee3cf00b4e699f7319
> SLES-9-SP-3-s390x-RC4a-CD3.iso -- 34d6f7fc16bd5b6fabb403276300ad

Yes, these are the correct images for 64-bit mode. Unfortunately, the files are named a bit inconsistently. BTW, for 31-bit mode:

SLES-9-SP-3-s390-GM-CD1a.iso b76076a7ee7c8e83d468234f41aca09
SLES-9-SP-3-s390-GM-CD2.iso c6d1c69d1192605331fa22d3030a5bc
SLES-9-SP-3-s390-RC4a-CD3.iso 68df79bba5b0aedff29a330d09d7a817

Regards, Joerg Reuter

For this reason, the `mksles9root.sh` script has been modified to accept either the file names in the above append, or if they are not found, the file names in the previous table.
SLES9 SP2 CDs
SLES9 SP2 became available in July of 2005. Following are the CDs for the s390 and s390x distributions:

<table>
<thead>
<tr>
<th>CD number</th>
<th>File name</th>
<th>File size in bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLES-9-SP-2-s390-GM-CD1.iso</td>
<td>559,288,320</td>
</tr>
<tr>
<td>2</td>
<td>SLES-9-SP-2-s390-GM-CD2.iso</td>
<td>569,640,960</td>
</tr>
<tr>
<td>3</td>
<td>SLES-9-SP-2-s390-GM-CD3.iso</td>
<td>576,258,048</td>
</tr>
<tr>
<td>1</td>
<td>SLES-9-SP-2-s390x-GM-CD1.iso</td>
<td>612,798,464</td>
</tr>
<tr>
<td>2</td>
<td>SLES-9-SP-2-s390x-GM-CD2.iso</td>
<td>609,878,016</td>
</tr>
<tr>
<td>3</td>
<td>SLES-9-SP-2-s390x-GM-CD3.iso</td>
<td>573,409,280</td>
</tr>
</tbody>
</table>

SLES9 SP1 CDs
SLES9 SP1 became available in January of 2005. Following are the CDs for the s390 and s390x distributions:

<table>
<thead>
<tr>
<th>CD number</th>
<th>File name</th>
<th>File size in bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLES-9-SP-1-s390-RC5-CD1.iso</td>
<td>581,201,920</td>
</tr>
<tr>
<td>2</td>
<td>SLES-9-SP-1-s390-RC5-CD2.iso</td>
<td>642,019,328</td>
</tr>
<tr>
<td>1</td>
<td>SLES-9-SP-1-s390x-RC5-CD1.iso</td>
<td>713,717,760</td>
</tr>
<tr>
<td>2</td>
<td>SLES-9-SP-1-s390x-RC5-CD2.iso</td>
<td>689,106,944</td>
</tr>
</tbody>
</table>

6.2.3 Starting from physical CDs
If you are starting with physical CDs, you must first convert them to ISO images. This can be accomplished via the Linux `dd` command which basically does a byte-for-byte copy of the CD contents.

Put the first CD in the drive. It is often available as the file `/dev/cdrom`. If there is no such file on your system, you will have to determine which file (such as `/dev/hdc`) is the device file for the CD drive. Before copying the CDs, it is recommended you create two directories to keep the 31-bit and 64-bit distributions separate:

```
# cd /nfs
# mkdir sles9 sles9x
```

The sections that follow assume you will be installing a 64-bit SLES9 SP3 system so file names typically contain “sles9x” and often “sp3”. If you will be installing a 31-bit system, omit the “x” where appropriate. If you will be installing no service pack or a service pack other than 3, specify the file names accordingly.

Now copy the contents of the first CD to an ISO image using the `dd` **if** (input file) and **of** (output file) parameters. The following example copies the first 64-bit SLES9 CD to the appropriately named file. (Note: the file names must be identical to those in the preceding tables for the `mksles9root.sh` script to succeed.) Sometimes, `/dev/cdrom` is automatically mounted over `/mnt/cdrom` when you put the CD in the drive. If so, you will need to unmount it via the `umount` command after copying the contents of the CD:
The CD should start spinning and this will take a couple of minutes to copy. Remove the CD and insert the next. Repeat the `dd` command for each of the physical CDs you have, using the file names shown in the preceding tables.

6.2.4 Verifying the ISO images

Before you create an install tree, you should verify the integrity of the ISO images. This is done via a file of checksum values and ISO file names. The checksums were calculated from the contents of the CD. After downloading or `dd`ing the ISO images, the checksums are calculated again and compared against the original values via the `md5sum` command and the checksum files. For convenience, the checksum files are included in the `nfs-server/` directory.

```
# ls /nfs/virt-cookbook-2/nfs-server/MD5SUMS.*
/nfs/virt-cookbook-2/nfs-server/MD5SUMS.sles9
/nfs/virt-cookbook-2/nfs-server/MD5SUMS.sles9x
/nfs/virt-cookbook-2/nfs-server/MD5SUMS.sles9sp1
/nfs/virt-cookbook-2/nfs-server/MD5SUMS.sles9xsp1
/nfs/virt-cookbook-2/nfs-server/MD5SUMS.sles9sp2
/nfs/virt-cookbook-2/nfs-server/MD5SUMS.sles9xsp2
/nfs/virt-cookbook-2/nfs-server/MD5SUMS.sles9sp3
/nfs/virt-cookbook-2/nfs-server/MD5SUMS.sles9xsp3
```

SLES9 MD5SUM files

For reference, the contents of the 64-bit and 31-bit SLES9 MD5SUM files follow.

31-bit MD5SUM values

```
/nfs/virt-cookbook-2/nfs-server/MD5SUMS.sles9
4f5ca784a148a0c431ee18c97840ce SLES-9-s390-RC5a-CD1.iso
b7f95b8150df0d2757fb184baee5d30 SLES-9-s390-RC5-CD2.iso
21d3e2eb31a3bbbdd0d1f08526d37f SLES-9-s390-RC5-CD3.iso
84993646e1fdd351df6403dbf05f7ed SLES-9-s390-RC5-CD4.iso
7655c871f9ae2915ef9644d211041e4 SLES-9-s390-RC5-CD5.iso
11bb0fc7e82a07b7ab28780478786b SLES-9-s390-RC5-C6.iso
```

```
/nfs/virt-cookbook-2/nfs-server/MD5SUMS.sles9sp1
a6c0e172ac0b5ffbe29de7eb8ca3d SLES-9-SP-1-s390-RC5-CD1.iso
b446d21dcc1b18694626979cccf3df9 SLES-9-SP-1-s390-RC5-CD2.iso
```

```
/nfs/virt-cookbook-2/nfs-server/MD5SUMS.sles9sp2
0a03c11f686b167e64f8b267c12e SLES-9-SP-2-s390-GM-CD1.iso
016bb027f69919347a7f1929ec03847 SLES-9-SP-2-s390-GM-CD2.iso
684ecebd9866af2f92d56e77b96d2bc5c SLES-9-SP-2-s390-GM-CD3.iso
```

```
/nfs/virt-cookbook-2/nfs-server/MD5SUMS.sles9sp3
476846b96e4f2a6bcb5a6a61296419e SLES-9-SP-3-s390-GM-CD1.iso
8d866f2f43fcb013211240b26a0682b SLES-9-SP-3-s390-GM-CD2.iso
68df79fbb0a0eddf29a323d9da817 SLES-9-SP-3-s390-GM-CD3.iso
```

64-bit MD5SUM values

```
/nfs/virt-cookbook-2/nfs-server/MD5SUMS.sles9x
b45dd5dbb47fad87f58f81b658dcb7f8 SLES-9-s390x-RC5a-CD1.iso
0ae7b9dbd629ed97230be67b22dc9b7 SLES-9-s390x-RC5-C2.iso
1a5b5f0d15be182d2b23da478725933 SLES-9-s390x-RC5-CD3.iso
```

Chapter 6. Configuring an NFS server 79
Use the `md5sum -c` command to verify the integrity of the ISO images. All should report OK.

The following example shows how to verify the six 64-bit SLES9 and three 64-bit SP3 ISO images:

```bash
# cd /nfs/sles9x
# md5sum -c /nfs/virt-cookbook-2/nfs-server/MD5SUMS.sles9x
SLES-9-s390x-RC5a-CD1.iso: OK
SLES-9-s390x-RC5-CD2.iso: OK
SLES-9-s390x-RC5-CD3.iso: OK
SLES-9-s390x-RC5-CD4.iso: OK
SLES-9-s390x-RC5-CD5.iso: OK
SLES-9-s390x-RC5-CD6.iso: OK
# md5sum -c /nfs/virt-cookbook-2/nfs-server/MD5SUMS.sles9xsp3
SLES-9-SP-3-s390x-GM-CD1.iso: OK
SLES-9-SP-3-s390x-GM-CD2.iso: OK
SLES-9-SP-3-s390x-GM-CD3.iso: OK
```

Any ISO images that do not report OK must be downloaded or copied again.

6.2.5 Creating the SLES9 install tree

Now that you have created and verified the appropriate ISO images, you can create a SLES9 install tree for either the 31-bit (s390) or 64-bit (s390x) distributions. The SuSE SLES9 manual documents how to create an install tree, however, the process can become cumbersome and is not documented in the clearest fashion when Service Packs are included. Further, there appears to be a bug in applying service packs 2 and 3 via the YaST => `Software` => `Patch CD Update` process whereby updated packages on CD2 cannot be read.

For convenience, and to work around the apparent `Patch CD Update` bug, a script `mksles9root.sh` has been made available. The source code for this script is in “The mksles9root.sh script” on page 259. It takes one argument which must be either `s390` to create a 31-bit tree or `s390x` for a 64-bit tree. The script will look for ISO images with the file names listed and create a directory tree that can be used for both installing and upgrading older SLES9 systems to SP2 or SP3.

The `mksles9root.sh` script must be run from the directory with the ISO files to create the SLES9 install tree. This step should take about five to eight minutes. The output for a 64-bit distribution when the SP3 ISO images are found is shown here:

```bash
# cd /nfs/sles9x
```
/nfs/virt-cookbook-2/nfs-server/mksles9root.sh s390x
Making a SLES9 install tree ...

SP3 ISO images found ...
The tree named sles9xsp3root/ will be SLES9 + SP3 ...
Making the directory structure ...
Copying SLES9 ISO images ...
 Mounting and copying SLES-9-s390x-RC5a-CD1.iso ...
 Mounting and copying SLES-9-s390x-RC5-CD2.iso ...
 Mounting and copying SLES-9-s390x-RC5-CD3.iso ...
 Mounting and copying SLES-9-s390x-RC5-CD4.iso ...
 Mounting and copying SLES-9-s390x-RC5-CD5.iso ...
 Mounting and copying SLES-9-s390x-RC5-CD6.iso ...
Copying SLES9 SP3 ISO images ...
 Mounting and copying SLES-9-SP-3-s390x-RC4a-CD1.iso ...
 Mounting and copying SLES-9-SP-3-s390x-RC4a-CD2.iso ...
 Mounting and copying SLES-9-SP-3-s390x-RC4a-CD3.iso ...
Removing temporary mount point ...
Making symbolic links ...
Creating yast/*order files ...
 Creating files for SLES9 + SP3...
Merging patches for service pack 3 ...
Hacking mediamap file for service pack 3 ...
The install tree is built under sles9xsp3root/

After the script is completed, the SLES9 install tree will be populated under a new directory which will be named one of the following 8 names:

```
sles9xroot/      SLES9 64-bit
sles9xsp3root/    SLES9 64-bit + SP3
sles9xsp2root/    SLES9 64-bit + SP2
sles9xsp1root/    SLES9 64-bit + SP1
sles9root/        SLES9 31-bit
sles9xsp3root/    SLES9 31-bit + SP3
sles9xsp2root/    SLES9 31-bit + SP2
sles9xsp1root/    SLES9 31-bit + SP1
```

The directory created from the previous example is sles9xsp3root/. You may choose to repeat this process and build both 31-bit and 64-bit trees. If so, be sure you have enough disk space. However, another alternative is to build one tree, move it over to zSeries Linux, delete it on the NFS server and repeat the process for the second distribution.

You should now have a directory, /nfs/, with three subdirectories as follows:

```
/nfs/
  |-- sles9/
  |   |-- sles9x/
  |       |-- sles9xsp3root/
  `-- virt-cookbook-2/
       |-- linux-controller
       `-- linux-master
            |-- nfs-server
                 `-- vm
```

You should have populated either /nfs/sles9/ for 31-bit or /nfs/sles9x/ for a 64-bit, or perhaps both. You should also have populated the virt-cookbook-2/ directory with files associated with this book. The next step is to enable the NFS server.
6.3 Enabling the NFS server on SLES9

The method of enabling an NFS server will differ depending upon the operating system. However, the steps are basically the same:

- Be sure you have NFS RPMs installed.
- Export the appropriate directories.
- Start the NFS server in the current run level.

Be sure the NFS server is installed. Typically the RPM is named nfs-utils. If this RPM is not installed, then install it now.

The directories to export via NFS are set in the /etc/exports configuration file. Make a backup copy of the file. Then edit the original copy and add the two directories to be exported:

```
# cd /etc
# cp exports exports.orig
# vi exports
   // add two lines at the bottom
/nfs/virt-cookbook-2 *(ro,sync)
/nfs/sles9x/sles9xsp3root *(ro,sync)
```

The *(ro,sync)* parameter specifies that any client with access to this server can get the NFS mount read-only. You may want to be more restrictive than any client (*) for security reasons. Type `man exports` for more details.

Be sure the NFS server is running in your run level. For a SLES Linux, the service name is nfsserver. This can be accomplished with the `chkconfig --list` command:

```
# chkconfig --list nfsserver
nfsserver                 0:off  1:off  2:off  3:on   4:off  5:on   6:off
```

This output shows that the NFS server is set up to run in the most common run levels: 3 and 5. If your NFS server is not set to start, you will need to set it to run with the `chkconfig` command and turn it on for the current run level with the `rcnfsserver start` command:

```
# chkconfig nfsserver on
# rcnfsserver start
Starting kernel based NFS server
```

For RHEL4: To start the NFS server on Red Hat RHEL4, the parameter to `chkconfig` is `nfs`, not `nfsserver`. Also, the `service` command is used to start and stop services rather than the `rc*` symbolic links:

```
# chkconfig nfs on
# chkconfig --list nfs
  nfs                     0:off  1:off  2:off  3:on   4:off  5:on   6:off
# service nfs start
Starting NFS services: [ OK ]
Starting NFS daemon:  [ OK ]
Starting NFS mountd:  [ OK ]
```

Your NFS server should now be running with the directory exported. It is recommended that you test this by mounting the exported directory locally. The following example shows that the `/mnt/` directory is empty. Then the newly exported `/nfs/` directory is mounted and the files are listed.

```
# ls /mnt
# mount -t nfs localhost:/nfs/sles9x/sles9xsp3root /mnt
# ls -F /mnt
```
This shows that the SLES9 install root directory is accessible. Now unmount it and test the `virt-cookbook-2/` directory:

```
# umount /mnt
# mount -t nfs localhost:/nfs/virt-cookbook-2 /mnt
# ls -F /mnt
linux-controller/ linux-master/ nfs-server/ README.txt virt-cookbook-2.pdf vm/
# umount /mnt
```

You should now be able to use this server as the source of your first mainframe Linux installation. Later you will be able to copy the install tree and keep in on zSeries Linux.
Chapter 7. Installing and configuring Linux

“The most incomprehensible thing about the world is that it is at all comprehensible.”
— Albert Einstein

Chapters 4, 5 and 6 must be completed before proceeding.

By now, you should have created a new z/VM user ID, LNXMAINT. Now it is time to create the first Linux user ID, SLES9X. This Linux ID is unique in that it will have two copies of Linux; think of it as a dual-boot Linux PC. You will install the following Linux images onto SLES9X:

Master image The copy of Linux that will be cloned. This should be as lean as possible so as to be a generic virtual server and to fit comfortably in one 3390-3 DASD.

Controller The copy of Linux that will normally be running and one that does the cloning.

In addition to being the cloner, the controller can have other functions:

► SLES9 install server - a tree of the RPMs and other files needed for installation
► NFS server - to export the install tree and possibly other data and directories
► Backup server - for incremental backup of key virtual server configuration files
► Time server - for time synchronization of all other Linux virtual servers

In this chapter, you will perform the following tasks:

► “Creating the user ID SLES9X” on page 86
► “Preparing SLES9 bootstrap files” on page 88
► “Installing the master image” on page 89
► “Configuring the master image” on page 97
► “Installing the controller” on page 108
► “Configuring the controller” on page 114
7.1 Creating the user ID SLES9X

In this section you will define the SLES9X user ID to z/VM.

1. Logon to MAINT and edit the USER DIRECT file:

   ```  
   ==> x user direct c  
   ```

 In the USER DIRECT file you can group statements that will be common to many user definitions in a construct called a profile. This profile can then become part of the user definitions via the INCLUDE statement. You used the existing profile TCPCMSU when you defined the LNXMAINT user.

2. Create a new profile named LNXDFLT. This will contain the user directory statements that will be common to all Linux user IDs. To save typing, you can use the "" prefix commands to duplicate the IBMDFLT profile that should be on lines 38-46:

   ```
   ""
   *  
   00039 PROFILE IBMDFLT  
   00040 SPOOL 000C 2540 READER *  
   00041 SPOOL 000D 2540 PUNCH A  
   00042 SPOOL 000E 1403 A  
   00043 CONSOLE 009 3215 T  
   00044 LINK MAINT 0190 0190 RR  
   00045 LINK MAINT 019D 019D RR  
   ""
   ```

3. Edit the duplicated profile and add some lines and insert the emboldened text:

   ```
   PROFILE LNXDFLT  
   IPL CMS  
   MACHINE ESA 4  
   CPU 00 BASE  
   CPU 01  
   NICDEF 600 TYPE QDIO LAN SYSTEM VSW1  
   SPOOL 000C 2540 READER *  
   SPOOL 000D 2540 PUNCH A  
   SPOOL 000E 1403 A  
   CONSOLE 009 3215 T  
   LINK MAINT 0190 0190 RR  
   LINK MAINT 019D 019D RR  
   LINK LNXMAINT 192 191 RR  
   LINK TCPMAINT 592 592 RR  
   ```

 Notes:
 - CMS will be IPLed when the user ID is logged onto
 - Machine will of type ESA with a maximum of 4 CPUs that can be defined
 - Defines the base CPU
 - Defines a second CPU - **don’t include this** if your LPAR has only a single IFL/CP
 - Defines a virtual NIC connected to the VSWITCH starting at virtual address 600
 - Provides read access to LNXMAINT 192 disk as the user’s 191 disk
 - Provides read access to TCPMAINT 592 disk, so that the user has access to TCPIP services such as FTP

4. Go to the bottom of the file and add the definition for a new user ID named SLES9X. This user ID is given class B privilege, aside from the typical class G, in order to run the FLASHCOPY command and class E privilege to run the QUERY NSS command. Be sure to replace the volume labels (MMA711-MMA716 in this example) with the labels of your DASD:

   ```
   USER SLES9X LNX4VM 256M 1G BEG  
   INCLUDE LNXDFLT  
   ```
OPTION LNKNOPAS APPLMON
MDISK 100 3390 0001 3038 <MMA711> MR LNX4VM LNX4VM LNX4VM
MDISK 102 3390 3039 0300 <MMA711> MR LNX4VM LNX4VM LNX4VM
MINOPT NOMDC
MDISK 200 3390 0001 3338 <MMA712> MR LNX4VM LNX4VM LNX4VM
MDISK 203 3390 0321 3018 <MMA713> MR LNX4VM LNX4VM LNX4VM
MDISK 204 3390 0001 3338 <MMA714> MR LNX4VM LNX4VM LNX4VM
MDISK 205 3390 0001 3338 <MMA715> MR LNX4VM LNX4VM LNX4VM
MDISK 206 3390 0001 3338 <MMA716> MR LNX4VM LNX4VM LNX4VM
MDISK 207 3390 0001 3338 <MMA717> MR LNX4VM LNX4VM LNX4VM

This Linux user ID will have the following minidisks:

100 The root file system of the master image - this is the copy that will be cloned.
101 This is a VDISK swap space created by **SNAPGEN** upon logging on. It is NOT defined in USER DIRECT, but defined in the user's **PROFILE EXEC** so that when the user ID logs on the VDISK is created.
102 A secondary 300 cylinder minidisk swap space.
200 The root file system of the Linux controller. This will serve as the administration point for all your Linux virtual servers.
203 A 3018 cylinder minidisk for a file system to be mounted over /backup/ for rsync backup purposes.
204-207 Minidisks used to create a logical volume mounted over /nfs/ for making the SLES9 64-bit installation tree and the files associated with this book available via NFS.

5. Go back to the top of the file and search for string USER $ALLOC$. Add cylinder 0 of each of the six new volumes to this dummy user ID so they don’t show up as gaps.

```bash
====> top
====> /user $alloc$
USER $ALLOC$ NOLOG
MDISK A01 3390 000 001 <MVA700> R
MDISK A02 3390 000 001 <MVA703> R
MDISK A03 3390 000 001 <MVA704> R
MDISK A04 3390 000 001 <MMA711> R
MDISK A05 3390 000 001 <MMA712> R
MDISK A06 3390 000 001 <MMA713> R
MDISK A07 3390 000 001 <MMA714> R
MDISK A08 3390 000 001 <MMA715> R
MDISK A09 3390 000 001 <MMA716> R
MDISK A0A 3390 000 001 <MMA717> R
...
====> file
```

6. Run **DISKMAP** to check for overlaps and gaps. You should only see the single 501 cylinder gap.

```bash
====> diskmap user
====> x user diskmap
====> all /gap//overlap/
------------------------ 4 line(s) not displayed ------------------------
 0   500   501   GAP
------------------------ 322 line(s) not displayed ------------------------
====> quit
```

7. When the disk layout is correct run **DIRECTXA** to bring the changes online:

```bash
====> directxa user
```
You have now defined the user ID that will be both the master Linux image and the controller.

7.2 Preparing SLES9 bootstrap files

To IPL a SLES9 installation system, three bootstrap files must be prepared, punched to and IPLed from the reader (virtual address 00C). These files are a kernel, a parameter file and an initial RAMdisk. Think of these files as a PC Linux boot floppy or CD. Also, a small REXX EXEC is commonly used to clean out the reader, punch the three files and IPL the reader. The SLES9X parameter file and SLES9X EXEC were already moved to LNXMAINT in 4.7.5, “Copying files associated with this book to LNXMAINT” on page 52. Therefore, only the kernel and RAMdisk need to be copied.

1. Start an SSH session as root on the NFS server.

2. Use the ftp command to copy the SLES9X kernel and initial RAMdisk to LNXMAINT’s D disk. These files must have a record format of fixed 80 byte records. This format can be set with the site fix 80 FTP subcommand (if this subcommand fails, try quote site fix 80). Following is an example:

```
# cd /nfs/sles9x/sles9xsp3root/boot>
# ftp <129.40.178.120>
220-FTPSERVE IBM VM Level 520 at LAT120.PBM.IHOST.COM, 15:46:31 EST WEDNESDAY 2004-12-08
220 Connection will close if idle for more than 5 minutes.
Name (129.40.178.120:root): lnxmaint
331 Send password please.
Password:
ftp> cd lnxmaint.192
230 Working directory is LNXMAINT 192
ftp> bin
200 Representation type is IMAGE.
ftp> site fix 80
200 Site command was accepted.
ftp> put vmrdr.ikr SLES9X.KERNEL
local: vmrdr.ikr remote: SLES9X.KERNEL
...
ftp> put initrd SLES9X.INITRD
local: initrd remote: SLES9X.INITRD
...
ftp> quit
```

3. Go back to your 3270 session. Logoff of MAINT and logon to LNXMAINT.

4. The files SLES9X EXEC and SLES9X PARMLFILE should exist on the LNXMAINT 192 disk (D) as they were copied in 4.7.5, “Copying files associated with this book to LNXMAINT” on page 52. Use the FILELIST command to verify that they were copied in Fixed 80 byte record format. You should see the following files (the number of records may vary):

```
=== file list sles9x * d
LNXMAINT FILELIST AO V 169 Trunc=169 Size=4 Line=1 Col=1 Alt=0
Cmd Filename Filetype Fm Format Lrec1 Records Blocks Date Time
SLES9X INITRD D1 F 80 162128 3167 1/25/06 12:11:59
SLES9X KERNEL D1 F 80 59299 784 1/25/06 12:08:45
SLES9X EXEC D1 V 74 9 1 1/24/06 14:48:15
SLES9X PARMLFILE D1 V 62 8 1 1/24/06 14:48:15
```

5. Quit by pressing F3.
6. Verify that the file SLES9X EXEC has the correct information. Note the kernel and RAMdisk have hard coded file names, but the file name of the parameter file will be the user ID (userid() function) of the user running the EXEC:

```plaintext
==> type sles9x exec d
/* EXEC to punch SLES9 install system to reader and IPL from it */
'CP SPOOL PUN *
'CP CLOSE RDR'
'PUR RDR ALL'
'PUN SLES9X KERNEL *(NOH
'PUN userid() 'PARMFILE *(NOH
'PUN SLES9X INITRD *(NOH
'CH RDR ALL KEEP'
' IPL DOC CLEAR'
```

7. Edit the file SLES9X PARMFILE. The fields you should change are in **bold**. Refer to the worksheet in section 2.5.3, “Linux resources worksheet” on page 16.

```plaintext
==> x sles9x parmfile d

Before:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ramdisk_size</td>
<td>65536 root=/dev/ram1 ro init=/linuxrc TERM=dumb</td>
</tr>
<tr>
<td>INST_PASSWORD</td>
<td>xxxxxx</td>
</tr>
<tr>
<td>AUTOINSTALL</td>
<td>yes</td>
</tr>
<tr>
<td>IP_ADDR</td>
<td>n.n.n.n</td>
</tr>
<tr>
<td>IP_GATEWAY</td>
<td>n.n.n.n</td>
</tr>
<tr>
<td>IP_MTU</td>
<td>1500</td>
</tr>
<tr>
<td>IP_NETMASK</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>IP_BROADCAST</td>
<td>129.40.178.255</td>
</tr>
<tr>
<td>IP_INTERFACE</td>
<td>qeth</td>
</tr>
<tr>
<td>READ_DEVNO</td>
<td>600</td>
</tr>
<tr>
<td>WRITE_DEVNO</td>
<td>601</td>
</tr>
<tr>
<td>INST_INFO</td>
<td>nfs INST_IP_ADDR=n.n.n.n</td>
</tr>
<tr>
<td>INST_IP_DIR</td>
<td>/nfs/sles9x/sles9xsp3root root INST_SCREEN=VNC INST_IP_ADDR=129.40.46.206 INST_IP_DIR=/nfs/sles9x/sles9xsp3root root INST_SCREEN=VNC VNC_PASSWORD=xxxxxx</td>
</tr>
</tbody>
</table>

After:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ramdisk_size</td>
<td>65536 root=/dev/ram1 ro init=/linuxrc TERM=dumb</td>
</tr>
<tr>
<td>INST_PASSWORD</td>
<td>lnx4vm</td>
</tr>
<tr>
<td>AUTOINSTALL</td>
<td>yes</td>
</tr>
<tr>
<td>IP_ADDR</td>
<td>129.40.178.130</td>
</tr>
<tr>
<td>IP_GATEWAY</td>
<td>lnx4vm.com</td>
</tr>
<tr>
<td>IP_MTU</td>
<td>1500</td>
</tr>
<tr>
<td>IP_NETMASK</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>IP_BROADCAST</td>
<td>129.40.178.255</td>
</tr>
<tr>
<td>IP_INTERFACE</td>
<td>qeth</td>
</tr>
<tr>
<td>READ_DEVNO</td>
<td>600</td>
</tr>
<tr>
<td>WRITE_DEVNO</td>
<td>601</td>
</tr>
<tr>
<td>INST_INFO</td>
<td>nfs INST_IP_ADDR=129.40.46.206</td>
</tr>
<tr>
<td>INST_IP_DIR</td>
<td>/nfs/sles9x/sles9xsp3root root INST_SCREEN=VNC INST_IP_ADDR=129.40.46.206 INST_IP_DIR=/nfs/sles9x/sles9xsp3root root INST_SCREEN=VNC INST_IP_DIR=/nfs/sles9x/sles9xsp3root root INST_SCREEN=VNC VNC_PASSWORD=lnx4vm</td>
</tr>
</tbody>
</table>

8. Save your changes with the FILE subcommand.

Now you are ready to start the master image installation.

### 7.3 Installing the master image

The master image will be installed onto the SLES9X 100-102 disks.

You will pick up a PROFILE EXEC from LNXMAINT 192 that will be run when you logon to SLES9X. It will create a VDISK via the SWAPGEN EXEC to be used as an in-memory swap space and will prompt you to IPL Linux. is being picked up from the LNXMAINT 192 disk. Following are the contents of this EXEC:

```plaintext
==> type profile exec d
/* PROFILE EXEC for the z/VM and Linux Virtualization Cookbook */
'CP SET RUN ON'
'CP SET PF11 RETRIEVE FORWARD'
'CP SET PF12 RETRIEVE'
'ACC 592 C'
'SWAPGEN 101 524288' /* create a 256M VDISK disk swap space */
```
'PIPE CP QUERY' userid() '| var user'
parse value user with id , dsc .
if (id = 'SLES9' | id = 'SLES9X') then /* this is the controller */
   ipIDisk = 200
else /* this is a Linux appliance */
   ipIDisk = 100
if (dsc = 'DSC') then /* user is disconnected */
   'CP IPL' ipIDisk
else /* user is interactive -> prompt */
do
   say 'Do you want to IPL Linux from DASD' ipIDisk'? y/n'
   parse upper pull answer .
   if (answer = 'Y') then
      'CP IPL' ipIDisk
end /* else */

1. Logoff of LNXMAINT and logon to SLES9X. When you logon, you should see message indicating that a virtual NIC has been created at address 0600 and that a VDISK 101 has been created

00: NIC 0600 is created; devices 0600-0602 defined
00: z/VM Version 5 Release 2.0, Service Level 0401 (64-bit),

   DIAG swap disk defined at virtual address 101 (64989 4K pages of swap space)

LOGON SLES9X
00: NIC 0600 is created; devices 0600-0602 defined
00: z/VM Version 5 Release 2.0, Service Level 0501 (64-bit),
00: built on IBM Virtualization Technology
00: There is no logmsg data
00: FILES: NO RDR, NO PRT, NO PUN
00: LOGON AT 12:33:30 EST WEDNESDAY 01/25/06
   z/VM V5.2.0    2006-01-24 13:26

DMSACP723I A (191) R/O
DMSACP723I C (592) R/O
DIAG swap disk defined at virtual address 101 (64989 4K pages of swap space)

2. You are prompted to IPL Linux, but since you have not installed Linux yet, answer n:

   Do you want to IPL Linux from DASD 200? y/n
   => n

3. Before you install Linux, it is good to verify the resources. Verify that you have DASD (minidisks) at virtual addresses 100-102 with the QUERY VIRTUAL command (other Linux IDs without class B privilege will just use the QUERY command):

   => q v 100-102
00: DASD 0100 3390 MMA711 R/W       3038 CYL ON DASD A711 SUBCHANNEL = 0000
00: DASD 0101 9336 (VDSK) R/W     524288 BLK ON DASD VDSK SUBCHANNEL = 0017
00: DASD 0102 3390 MMA711 R/W        300 CYL ON DASD A711 SUBCHANNEL = 0001

4. Verify that you have a virtual OSA at addresses 600-602 with the QUERY VIRTUAL OSA command:

   => q v osa
00: OSA 0600 ON NIC 0600 UNIT 000 SUBCHANNEL = 0008
00: 0600 DEVTYPE OSA      CHPID 10 OSD
00: 0600 QDIO-ELIGIBLE QIOASSIST-ELIGIBLE
00: OSA 0601 ON NIC 0600 UNIT 001 SUBCHANNEL = 0009
00: 0601 DEVTYPE OSA      CHPID 10 OSD
00: 0601 QDIO-ELIGIBLE QIOASSIST-ELIGIBLE
00: OSA 0602 ON NIC 0600 UNIT 002 SUBCHANNEL = 000A
00: 0602 DEVTYPE OSA      CHPID 10 OSD
5. Use the `QUERY VIRTUAL STORAGE` command to show that you have a 256MB machine:

```plaintext
=> q v stor
00: STORAGE = 256M
```

6. This is adequate memory to run a SLES9X Linux image, however it is often too small to install Linux with. Temporarily modify the storage up to 512MB with the `DEFINE STORAGE` command. Then `IPL CMS` and again answer `n` to the question of IPLing Linux:

```plaintext
=> def stor 512m
00: STORAGE = 512M
00: Storage cleared - system reset.
=> ipl cms
z/VM V5.2.0 2005-12-22 09:36
DMSACP723I A (191) R/O
DMSACP723I C (592) R/O
DIAG swap disk defined at virtual address 101 (64989 4K pages of swap space)
Do you want to IPL Linux from DASD 200? y/n
n
```

7. Verify that you have a 512MB virtual machine:

```plaintext
=> q v stor
00: STORAGE = 512M
```

This change is for the duration of the user ID session. When you logoff and log back on this user ID, the storage will go back to 256MB.

### 7.3.1 Begin the SLES9 installation

Follow these steps to begin the installation of SLES9.

1. Run the `SLES9X EXEC`. You should see many screens of questions and answers scrolling by. If you had used the default parameter file shipped with SLES9, you would have had to answer all the networking questions manually. With the proper parameters set in `SLES9X PARMFILE`, the install process should proceed to where you have to use a browser to VNC client get into the YaST2 installation program:

```plaintext
=> sles9x
00: 0000003 FILES CHANGED
Linux version 2.6.5-7.97-s390 (geeko@buildhost) (gcc version 3.3.3 (SuSE Linux))
#1 SMP Fri Jul 2 14:21:59 UTC 2004
We are running under VM (64 bit mode)
This machine has an IEEE fpu
...```
You should see the message:

*** You can connect to 129.40.178.130, display :1 now with vncviewer
*** Or use a Java capable browser on http://129.40.178.130:5801/

2. From your workstation you can open a Java-enabled browser to access YaST2 at the specified URL. The logon prompt in Figure 7-1 shows VNC access through a Java-enabled browser.

In addition to a browser, you can also use a standalone VNC client if desired. If this is the case, the server to connect to would be \texttt{129.40.178.130:1} in this example.

![Figure 7-1 VNC viewer through a Java-enabled browser](image)

3. You can disconnect from the 3270 session and messages to the console will be lost. If you stay connected, you will have to clear the screen periodically (or the install process may be delayed waiting for the screen to clear itself).

4. Enter the URL in your browser and log in using the \texttt{VNC_PASSWORD} that was specified in \texttt{SLES9X_PARMFILE}.

Now the installation process should begin.

\textbf{Important:} If you get the following error that the gateway cannot be pinged:

\begin{verbatim}
HCPIP2833E IP address is already registered....
...
Warning: The gateway address 129.40.178.254 did not ping. Do you want to ignore this error and continue anyway? (Yes/No)
\end{verbatim}

This may be due to a bug in the OSA Express card. If so it may be due to a race condition. You can try working around this error by IPLing the system again from the reader with the command (you may have to try multiple times):

\begin{verbatim}
CP IPL 00C
\end{verbatim}

This bug was fixed with OSA microcode level 6.26. It is in MCL07 at driver 55 EC J13477 Driver 55 is for the z/890 and z/990. The OSD 626 code level was available on Feb. 16th 2005. Driver 3G is for the z/800 and z/900. The latest code level for the OSD code level 35A was available on March 2nd 2005.
7.3.2 Beginning YaST installation

The installation program that is running is `yast2`. Perform the following steps:

1. The SLES9 license agreement window should pop up. Click *I agree*.
2. Choose the language, *English*, (or your language) and click *Accept*.
3. The *YaST2 DASD Disk Management* window should appear: you will see all the DASD available to SLES9X.
 a. Use 100-102 for the master image.
 b. **Highlight each of the three channels** and click *Select or Deselect* to select them.
 c. You should see a check mark next to those you just selected. Activate them for the Linux you’re about to install. Click *Perform Action -> Activate* as shown in the left side of Figure 7-2 on page 93.
 d. Disks 100 and 102 must be formatted so that Linux can use them. Deselect disk 101, so that 100 and 102 remain selected. Now click *Perform Action -> Format* as shown on the right side of the figure.

4. A window asking for two Parallel Formatted Disks: click *OK*.
5. Click *Yes* to the question *Really format the following*?
6. A progress indicator window should appear displaying progress. This step can take 5-15 minutes depending on the type of channel and the speed of the disks.
7. When the formatting is complete, click *Next*.

Figure 7-2 DASD that are available to SLES9X
8. A window will appear asking for the type of installation: select **New installation** and Click **OK**.

9. This will bring you to the **Installation Settings** window. Click **Partitioning**. The **Expert Partitioner** window will appear as shown in Figure 7-3 on page 94.

10. Highlight `/dev/dasda1` and click **Edit**.

11. You should see a window similar to that shown in the left side of Figure 7-4.
 a. Click the **Format** radio button.
 b. Choose **Ext3** as the file system
 c. Select a mount point of `/`
 d. Click **OK**.
12. Similarly, highlight /dev/dasdc1 and click Edit as shown in the right side of Figure 7-4. Format this file system as Swap and click OK. You don’t have to format /dev/dasdb1 because it was properly formatted as a Linux swap space by the SWAPGEN EXEC, and thus should be recognized as a swap space.

13. Back in the Expert Partitioner window, you should see something similar to Figure 7-5. Click Next.
7.3.3 Continuing the YaST2 installation

Follow these steps to continue the YaST2 installation:

1. Return to the *Installation Settings* window, select **Software**.
2. The *Software Selection* window opens. Select **Minimum graphical system (without KDE)** and click **Accept**.
3. Back in the *Installation Settings* window, click **Timezone**.
4. In the *Clock and Time Zone Configuration* window, select your time zone and click **Accept**.
5. Back in the *Installation Settings* window, you may have to scroll down to click **Language**.
6. In the *Language Selection* window, select your language and click **Accept**.
7. You are now ready to begin laying down the RPMs onto your root file system. In the *Installation Settings* window, click **Accept**.
8. A warning window appears up to see if you really want to install Linux, click **Yes, install**.

A minimal SLES9 system will be installed onto DASD. This should take about 5-30 minutes depending on network speed and the performance of your NFS server.

If you are using a browser as a VNC client, upon completion, the browser will say "**Network error - remote side closed connection**". This is expected because the in-memory Linux system has shutdown.

7.3.4 Booting your new Linux system from disk

After the first part of installation completes, your Linux system will shutdown and you will need to return to your z/VM 3270 session. **IPL** the newly installed system from disk to continue installation. Issue the following command and your new kernel should boot from disk:

```
01: HCPGSP2629I The virtual machine is placed in CP mode due to a SIGP stop from CPU 00.
00: HCPGSP2630I The virtual machine is placed in CP mode due to a SIGP stop and store status from CPU 00.
==>
```ipl 100

00: Booting default (ipl)...

Linux version 2.6.5-7.97-s390 (geeko@buildhost) (gcc version 3.3.3 (SuSE Linux))
#1 SMP Fri Jul 2 14:21:59 UTC 2004
We are running under VM (31 bit mode)
This machine has an IEEE fpu
...
*** You can connect to 129.40.178.130, display :1 now with vncviewer
*** Or use a Java capable browser on http://129.40.178.130:5801/

(When YaST2 is finished, close your VNC viewer and return to this window.)
...

7.3.5 Completing YaST2 installation

Go back to the same browser you used for the first part of installation, and either click **Login Again** or click the browser’s **refresh** button until another VNC login screen appears, or bring up a new browser. If you are using a VNC client then open that application again.
1. **Log in** using the same VNC password (`LNX4VM` in this example) as the one used to first bring up YaST2. The first window you see will be for setting the root password. Enter your desired root password twice and click **Next**. *Don’t forget this password!!*

2. In the **Network Configuration** window all the values should be correct so just click **Next**.

3. In the **Test Internet Connection** window select **No, skip this test** and click **Next**.

4. The next window will be **Service Configuration**. Select the **Skip configuration** radio button and click **Next**.

5. In the **User Authentication Method** window accept the default of **Local (/etc/passwd)** and click **Next**.

6. The next window will be **Add a new local user**. You may choose to add a local user so as to have a user other than root on all cloned systems. When you are done, click **Next**.

7. In the **Writing the system configuration** window the **SuSEconfig** tool writes all your settings to disk.

8. The next window will be **Release Notes**. After reviewing the release notes, click **Next** and then **Finish** and you are done installing Linux!

Return to the 3270 session and you may have to clear the screen a few times. Your new Linux will finish its configuration, but you can again disconnect via the command:

```bash
==> # cp disc
```

From this point forward, it is recommended that you access your Linux systems via SSH. If you have a Windows desktop, but do not have an SSH client configured, see 3.1, “PuTTY: A free SSH client for Windows” on page 17.

Start an SSH session into the master image as root.

7.4 Configuring the master image

Now you want to customize the master image as much as possible before cloning. The following high level steps are recommended though you may add or omit some steps:

- “Applying service if necessary” on page 97
- “Copying files used on the master image” on page 100
- “Removing unnecessary RPMs” on page 101
- “Turning off unneeded services” on page 102
- “Configuring rsyncd” on page 102
- “Configuring sitar” on page 103
- “Setting the software clock accurately” on page 103
- “Setting system to halt on SIGNAL SHUTDOWN” on page 104
- “Turning off the hz_timer” on page 105
- “Hardening the system with Bastille Linux” on page 105
- “Configuring the VNC server” on page 105
- “Verifying the changes” on page 108

7.4.1 Applying service if necessary

There are two methods of applying service on SuSE SLES:

- Via an update CD (Service Pack)
- Via YaST Online Update (Y.O.U.)
SLES service packs can be applied to a running system, or they can be built into the install tree. The latter is addressed in 6.2, “Setting up a SLES9 install tree” on page 76. Applying a service pack to a running system is not addressed in this book, but it is documented in the Redbook *IBM Lotus Domino 6.5 for Linux on zSeries Implementation*, SG24-7021, on the Web at:

http://www.redbooks.ibm.com/abstracts/sg247021.html

The remainder of this section describes applying service via YaST Online Update (YOU).

If you have a SuSE Maintenance Web account then you can use it to retrieve the latest patches for SLES9. Because many of these patches contain security and bug fixes, it is recommended that you apply the patches for the master image so that it is up to date. Subsequently all the servers you clone after the master image will also be up to date.

1. Start an SSH session as root to the master Linux server
2. The Linux installation used *yast2* which is a graphical tool. However, regularly using graphical applications can require many more CPU cycles than their curses applications. For this reason, the curses-based *yast*, is recommended over the graphical *yast2*.

 Bring up *yast* so you can apply the latest patches:

   ```
   # yast
   ```

3. The YaST Control Center opens. From the curses menu Software should be selected on the left side. Use the Tab key to move to the right side and select Online Update. Press Enter.

```
+-----------------------------------------------------------------------------------+
|                                     YaST Control Center                           |
+-----------------------------------------------------------------------------------+
|                                      |                                      |
| Software                              | Online Update                       |
| Hardware                              | Install and Remove Software         |
| System                                | Change Source of Installation       |
| Network Devices                       | Installation into Directory         |
| Network Services                      | Patch CD Update                     |
| Security and Users                    | System Update                       |
| Misc                                  | YOU Server Configuration            |
```

4. The Online Update panel will display the default YaST Online Update server information. You will need access to the Internet to successfully resolve the default server of *sdb2.suse.de*. Leave the default settings and use the Tab key to move to Next and press Enter.

 Note: If you don’t have a correct DNS setup YaST will complain that it can’t reach the update server and never get to the Online Update panel. In this situation it is recommended that you fix your DNS settings. If you don’t have a DNS you should edit the file /etc/sysconfig/onlineupdate and change the setting YAST2_LOADFTPSERVER to “no”. Then YaST will not try to load the update server before getting to the Online Update panel. Once you get to the Online Update panel, enter the IP address of the server.
5. You should be prompted for your maintenance Web user ID and password. Enter them and use the Tab key to move to the Login button and press Enter:

6. A progress bar should be displayed as updates applicable to your system are retrieved. When it is complete you should see a list of patches available for your system. Notice that by default all the patches have a + mark on the left-most column, this is to indicate that they are all to be applied. If you don’t want to apply certain updates, simply highlight them one by one and enter - (a minus sign) so that they’re deselected. After you have done that, tab to OK and press Enter.

7. Another panel will appear providing progress information for applying the updates. Once in a while you might encounter a window prompting you for action, especially if it is a kernel
patch and would require a reboot or running `zipl`. Here is one such window, and since you already installed Linux you should select to Install Patch anyway:

```
+------------------------------------------------------------+
|Patch: patch-9548                                           |
|Summary: Security update for Linux kernel                    |
|This update can be used to install a new kernel.              |
|If you decide to use the kernel update, we recommend that    |
|your system upon completion of the YaST Online Update, as    |
|kernel modules may be needed which can only be loaded after |
|is rebooted.                                                 |
|If you are in the course of performing a new installation,   |
|deselect this kernel update in order to avoid problems with  |
|detection during the installation.                           |
++--------------------------------------------¦------------+¦
       [Patch Details >>][Install Patch][Skip Patch]        |
+------------------------------------------------------------+
```

8. When you are almost done you may receive a message stating the following:

```
After the kernel is updated, please run `zipl`
If you do, tab to OK and press Enter.
```

9. Tab to the Finish button and press Enter. The SuSEconfig tool will run and write the changes to disk. On the main menu, tab to Quit to end `yast`.

10. If you were asked to run `zipl`, do so now and then reboot.

```
# zipl
Using config file '/etc/zipl.conf'
Building bootstrap '/boot/zipl/bootmap'
Addingipl section 'ipl' (default)
Preparing boot device: dasda (0100).
Done.
# reboot
```

After you type `reboot` you will lose your SSH session. Wait a couple of minutes for the system to come back up Start another SSH session.

7.4.2 Copying files used on the master image

There are files associated with this book that should be copied from the NFS server to the master image. For convenience, they are in the correct hierarchy on the NFS server so all can be copied at once. They are the following:

```
/etc/Bastille/config
/etc/cron.daily/set-clock
/etc/cron.daily/run-sitar
/etc/ntp.conf.template
/etc/rsyncd.conf
```
Each of these files will be addressed in the sections that follow. Use the secure copy `scp -rp` command to recursively copy these files from your NFS server to the root of the file system. You will need to provide the root password of the NFS server.

```
# scp -rp <129.40.46.206>:/nfs/virt-cookbook-2/linux-master/* /
```

The authenticity of host '129.40.46.206 (129.40.46.206)' can't be established.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '129.40.46.206' (RSA) to the list of known hosts.

```
root@129.40.46.206's password:
ntp.conf.template                             100% 2057  2.0KB/s  00:00
rsyncd.conf                                   100%  247  0.1KB/s  00:00
config                                       100% 2238  2.2KB/s  00:00
set-clock                                     100%  49  0.1KB/s  00:00
run-sitar                                     100%  58  0.1KB/s  00:00
```

7.4.3 Removing unnecessary RPMs

For the master image it is desirable to have as lean a Linux image as possible from which to build on. It is recommended that the following RPMs be removed. You may choose to add to or omit some from the list.

- `eject` For CDs and tapes
- `ethtool` For examining and tuning Ethernet-based network interfaces
- `fribidi` A Free Implementation of the Unicode BiDi algorithm
- `fvwm2` A window manager
- `hfsutils` Is for Apple Macintosh computers
- `initviocons` For IBM iSeries machines
- `ntfsprogs` Utilities for the Windows NTFS filesystem
- `pmtools` A set of tools to display your BIOS ACPI tables
- `providers` A list of Internet service providers
- `unclutter` Hide the mouse cursor after inactivity
- `usbutils` Tools and libraries for USB devices
- `wol` Wake On Lan client
- `xfsprogs` Utilities for managing the XFS file system
- `zsh` A shell designed for interactive use

Start an SSH session to your new Linux server if you do not already have one. Issue the following `rpm` command:

```
# rpm -e eject fvwm2 hfsutils initviocons ntfsprogs pmtools providers unclutter \
   usbutils wol xfsprogs zsh
```

7.4.4 Adding additional RPMs

Add additional RPMs using the `yast` command with the `-i` option. YaST will conveniently install the packages specified and automatically resolve their dependencies. You may choose to add more or fewer RPMs.

- The `findutils-locate` package will be used to enable the `locate` and `updatedb` commands.
- The `bastille` package. Bastille Linux is a system hardening tool used to tighten security on your system.
- The `xntp` package. The Network Time Protocol daemon is needed for synchronizing the software clock.
- The `rsync` package will be used to backup each virtual server's `/etc/` subdirectory.
- The `sitar` package will be used to produce a report on the server's configuration.
The `wget` package will be used to get other packages off the Internet.

The `openmotif` package will be used by the VNC server as a usable window manager.

You may choose to add other RPMs, or may choose to omit some of the above. To add the RPMs described above, use the `yast -i` command:

```
# yast -i findutils-locate bastille xntp rsync sitar wget openmotif
```

You should see `yast` curses screens go by as the software is added.

7.4.5 Turning off unneeded services

There are a number of services which are started in a SLES9 minimum system. In order to keep the master image as lean as possible, some of these can be turned off:

- `nfsboot` Additional services needed with NFS
- `slpd` The Service Location Protocol daemon

Turn off the following services via the `chkconfig` command:

```
# chkconfig nfsboot off
# chkconfig slpd off
```

You may choose to leave these services on, or turn others off. You can review which services are now configured to start in run level 3 with the following command:

```
# chkconfig -l | grep 3:on
```

<table>
<thead>
<tr>
<th>Service</th>
<th>Run Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>coldplug</td>
<td>0:off</td>
</tr>
<tr>
<td>cron</td>
<td>0:off</td>
</tr>
<tr>
<td>fbset</td>
<td>0:off</td>
</tr>
<tr>
<td>hwscan</td>
<td>0:off</td>
</tr>
<tr>
<td>kbd</td>
<td>0:off</td>
</tr>
<tr>
<td>network</td>
<td>0:off</td>
</tr>
<tr>
<td>nfs</td>
<td>0:off</td>
</tr>
<tr>
<td>portmap</td>
<td>0:off</td>
</tr>
<tr>
<td>postfix</td>
<td>0:off</td>
</tr>
<tr>
<td>random</td>
<td>0:off</td>
</tr>
<tr>
<td>resmgr</td>
<td>0:off</td>
</tr>
<tr>
<td>sshd</td>
<td>0:off</td>
</tr>
<tr>
<td>syslog</td>
<td>0:off</td>
</tr>
</tbody>
</table>

7.4.6 Configuring rsyncd

It is important for Linux configuration files to be backed up. There are many ways to accomplish this and one of them is `rsync`. Rather than copying entire files as with the `scp -rp` command, `rsync` just copies the differences or deltas of changed files. For this reason it is an efficient tool for backups.

Use the `chkconfig` command to set rsync to start up:

```
# chkconfig rsync on
```

There are two files that can be configured: the main configuration file `/etc/rsyncd.conf` and a file to allow only the controller to connect, `/etc/rsyncd.secrets`. The file `/etc/rsyncd.conf` should have been copied when you copied all files from the NFS server. It will export the `/etc/` directory to the controller:

```
# cd /etc
# cat rsyncd.conf

gid = users
read only = yes
```
transfer logging = true
log format = %h %o %f %l %b
hosts allow = /etc/trusted.hosts
max connections = 1
log file = /var/log/rsync.log
timeout = 300

[etc]
 path = /etc
 read only = yes
 list = yes

The file /etc/trusted.hosts needs a single entry which is the TCP/IP address of the controller. This will allow only the controller to get an rsync session to the virtual servers.

Create this file with the vi editor:

```
    # vi trusted.hosts  // add one line - the TCP/IP address of the controller
    <129.40.178.130>
```

7.4.7 Configuring sitar

SITAR is a tool that creates documentation describing your system. It is an acronym for System InformaTion At Runtime. In addition to backing up the /etc/ configuration files, a document describing your system might be helpful. If sitar is run once a day and the output is put in a file in /etc/, then you will have useful information about your system backed up.

An HTML file, written to /etc/sitar.html, describing your system configuration can be created with the following command. And then you can view your system information in /etc/sitar.html.

```
    # sitar --format=html --outfile /etc/sitar.html
```

pcilib: Cannot open /sys/bus/pci/devices
pcilib: Cannot open /proc/bus/pci
lspci: Cannot find any working access method.

The errors stating that disks don’t contain a valid partition table should not be a problem. You can view the resulting HTML file, /etc/sitar.html with a browser.

You should have also copied the run-sitar in the directory /etc/cron.daily/ so that it is run every night.

```
    # cat /etc/cron.daily/run-sitar
    #!/bin/bash
    sitar --format=html --outfile=/etc/sitar.html
```

Because the output is sent to the /etc/ directory and because that directory is backed up nightly with rsync (if all the customization steps are completed successfully), you will have a copy of the sitar output backed up once a day.

7.4.8 Setting the software clock accurately

It is important to have the Linux software clock set properly. This is commonly accomplished by running the xntpd daemon against some accurate time sources. However, this is expensive in terms of CPU costs. A compromise between an extremely accurate clock (running xntpd) and using fewer CPU cycles (not running it) is to reset the clock once a day. This can be done with a script that runs the ntpd -q command from the /etc/cron.daily/ directory. NTP will be configured so the controller will be the external clock. In 7.6.8, “Turning on the NTP server” on page 117 the controller will be configured to point to external clocks on the Internet.
When you copied the files in 7.4.2, “Copying files used on the master image” on page 100, you should have copied the file /etc/ntp.conf.template. It has two lines commented out that are pointing to an “Undisciplined Local Clock”. It adds one line pointing to the external time reference (Note: for better accuracy, you should have a second external clock), however the IP address is n.n.n.n. Backup the original ntp.conf file and change the value n.n.n.n to be the IP address of the controller:

```bash
# cd /etc
# cp ntp.conf ntp.conf.orig
# mv ntp.conf.template ntp.conf
# vi ntp.conf   // change the line “server n.n.n.n” to point to controller
...  
## Undisciplined Local Clock. This is a fake driver intended for backup
## and when no outside source of synchronized time is available.
##
## server 127.127.1.0           # local clock (LCL)
## fudge   127.127.1.0 stratum 10 # LCL is unsynchronized
##
## Outside source of synchronized time
##
## server xx.xx.xx.xx           # IP address of server
server <129.40.178.130>
...
```

You should have also copied the file /etc/cron.daily/set-clock. This is a small script that will run once a day to reset the Linux software clock via the `ntpd -q` command:

```bash
# cd /etc/cron.daily
# cat set-clock
#!/bin/bash
# Adjust the clock
/usr/sbin/ntpd -q
```

Now you should have the configuration file /etc/ntp.conf pointing to the controller, and a `set-clock` script in the directory /etc/cron.daily/ that will run once a day to set the software clock accurately.

7.4.9 Setting system to halt on SIGNAL SHUTDOWN

By default, SLES9 SP3 reboots when a Ctrl-Alt-Del key sequence is trapped. This key sequence is simulated by z/VM when it issues a SIGNAL SHUTDOWN command. Rather than rebooting, you want your system to halt (shutdown).

Change this setting by changing `shutdown -r` to `shutdown -h` in the /etc/inittab file:

```bash
# cd /etc
# vi inittab   // change shutdown -r to shutdown -h
...  
# what to do when CTRL-ALT-DEL is pressed
ca::ctrlaltdel:/sbin/shutdown -h -t 4 now
...
```

This change will be picked up when the system is rebooted.

7.4.10 Turning off the hz_timer

By default, the Linux kernel wakes up 100 times per second to see if there is any work to be done. While this is fine for a PC running a single copy of Linux, it can consume CPU cycles as
the number of virtual servers goes up. A rule of thumb on zSeries is to turn off this timer unless the server has a heavy, constant workload.

Turning off the hz_timer can be accomplished by adding a `sysctl` command to the file `/etc/init.d/boot.local` which is run each time the virtual server is booted:

```
# vi /etc/init.d/boot.local  // add one line at the bottom
#!/bin/sh
...
# Here you should add things, that should happen directly after booting
# before we're going to the first run level.
sysctl -w kernel.hz_timer=0
```

Before shutting down, note that the hz_timer is on:

```
# cat /proc/sys/kernel/hz_timer
1
```

When the system is rebooted, the hz_timer, or `timer pop`, should be off

7.4.11 Hardening the system with Bastille Linux

Bastille Linux is a great tool to harden a Linux system. It tightens access control, stops unnecessary services from running, and tightens root access. The file `/etc/Bastille/config` should have been copied from the NFS server. You can look into this file to see the hardening settings.

The `bastille` flag `-b` specifies to use the configuration file. You will have to type `accept` to agree with the user agreement:

```
# bastille -b
Copyright (C) 1999-2002 Jay Beale
Copyright (C) 1999-2001 Peter Watkins
Copyright (C) 2000 Paul L. Allen
Copyright (C) 2001-2003 Hewlett Packard Company
...
You must accept the terms of this disclaimer to use Bastille. Type "accept" (without quotes) within 5 minutes to accept the terms of the above disclaimer
> accept
...
###############################################################################
Errors have occurred in the configuration.
Please view the following file for more details:
/var/log/Bastille/error-log
###############################################################################
```

The last message that errors have occurred should be benign - the code is looking for the file `/etc/grub.conf` which is not used on the s390[x] architecture. The master image should now be hardened.

7.4.12 Configuring the VNC server

Often applications require a graphical environment. The tightvnc package is a Virtual Network Computing (VNC) server. It allows for a graphical environment to be set up easily via the `vncserver` command. The openmotif package allows for the motif window manager (`mwm`) that is more usable than the default Tiny Window Manager (`twm`) that VNC uses by default.
When you first start the VNC server, you are prompted to set a password. After it is set, this will be the password that you will need to connect to it from a VNC client:

```
# vncserver
```

You will require a password to access your desktops.

Password: lnx4vm
Verify: lnx4vm
Would you like to enter a view-only password (y/n)? n

New 'X' desktop is pbc4553:1

Creating default startup script /root/.vnc/xstartup
Starting applications specified in /root/.vnc/xstartup
Log file is /root/.vnc/pbc4553:1.log

Now it is recommend, but not required to change the window manager from the Tiny Window Manger (twm) to openmotif (mwm). To do this, first stop the VNC server using the -kill :1 argument:

```
# vncserver -kill :1
Killing Xvnc process ID 2621C
```

Change the window manger from twm to mwm in the file /root/.vnc/xstartup:

```
# cd /root/.vnc/
# vi xstartup
#!/bin/sh

xrdb $HOME/.Xresources
xsetroot -solid grey
xterm -geometry 80x24+10+10 -ls -title "$VNCDESKTOP Desktop" &
mwm &
```

Remove the passwd file so the cloned system does not have the same password as you just entered.

```
# rm passwd
```

When a system is cloned, the password will be prompted for the first time that the VNC server is initialized. A sample session is shown in Figure 7-6.
7.4.13 Modifying zipl.conf

When a SLES9 system boots there are two ways it can determine which disks to bring online.
1. The default method is that the device addresses are built into the initial RAMdisk.
2. The disks to bring online can also be written to the zipl configuration file, /etc/zipl.conf
 after which the zipl command must be run.

It is recommended that you use the second method so it will be easier to determine which
minidisks are designed to be part of the system. Is is much easier to read a file
(/etc/zipl.conf) than to find where the disks are specified in the initial RAMdisk.

The dasd= parameter must be added to parameter line. When specifying it you must maintain
the ordering of the existing minidisks (/dev/dasda = 100, /dev/dasdb = 101 and /dev/dasdc =
102). Make a backup copy of the file and add the string dasd=100-102 to the parameter line:

```
# cd /etc
# cp zipl.conf zipl.conf.orig
# vi zipl.conf    // add the dasd= string
# Modified by YaST2. Last modification on Tue Jul 18 14:35:54 2006
```

```
[defaultboot]
default = ipl

[ipl]
target = /boot/zipl
image = /boot/image
ramdisk = /boot/initrd,0x1000000
parameters = "root=/dev/dasda1
dasd=100-102
dasdb=101
dasdc=102
term=dumb
elevator=cfq"

[dumpdasd]
...
```
Now, run the `zipl` command so the changes are written to the boot record:

```bash
# zipl
Using config file '/etc/zipl.conf'
Building bootmap in '/boot/zipl'
Adding IPL section 'ipl' (default)
Preparing boot device: dasda (0100).
Done.
```

7.4.14 Rebooting the system

Now reboot to test your changes:

```bash
# reboot
```

Broadcast message from root (pts/0) (Thu Nov 18 15:50:57 2004):

The system is going down for reboot NOW!

7.4.15 Verifying the changes

You are now done customizing the master Linux image. When the system comes back up you should verify the changes that you made.

1. **SSH back into the master image** and check a few settings.
2. Use the `df` command to display your file systems. Note that out of a 2GB root file system you are using about a third of it (your output may differ):

   ```bash
   # df -h
   Filesystem            Size  Used Avail Use% Mounted on
   /dev/dasda1           2.1G  763M  1.3G  36% /
   tmpfs                 248M  4.0K 248M  1% /dev/shm
   ``

3. Confirm that both of your swap spaces are operational:

   ```bash
 # swapon -s
 Filename Type Size Used Priority
 /dev/dasdb1 partition 259956 0 42
 /dev/dasdc1 partition 215896 0 42
 ``

4. Verify that the `hz_timer` is off:

   ```bash
   # cat /proc/sys/kernel/hz_timer
   0
   ``

5. Shutdown your master image from the SSH session. Next you will install the controller image.

   ```bash
 # shutdown -h now
 ``

Congratulations! You have now successfully installed the master image. This image will normally be shut down or quiesced. It is now time to install the controller Linux image which will normally be running.

7.5 Installing the controller

In this section you will install the controller Linux image.

1. **Logon to SLES9X** or resume your 3270 session. You should see messages that result from the master image being shut down.
2. At this point you could IPL CMS run the SLES9X EXEC to purge the reader, punch the bootstrap files and IPL from the reader, but you’d be purging and punching the same three files. You can save some time by simply IPLing from the reader at virtual address 00C with the #CP prefix. Think of it as booting your PC from a floppy disk:

```
... Power down.
01: HCPGSP2629I The virtual machine is placed in CP mode due to a SIGP stop fro
  CPU 00.
00: HCPGSP2630I The virtual machine is placed in CP mode due to a SIGP stop and
  store status from CPU 00.

  ==> #cp ipl 00c
  00: 0000003 FILES CHANGED
Linux version 2.6.5-7.97-s390 (geeko@buildhost) (gcc version 3.3.3 (SuSE Linux))
  #1 SMP Fri Jul 2 14:21:59 UTC 2004
  We are running under VM (31 bit mode)
...```

3. **Install Linux again** as described in 7.3.2, “Beginning YaST installation” on page 93 with the following differences.

   a. When you get to the **DASD Disk Management window**, settings are a bit different.
      i. Select all nine read/write disks
      ii. Click **Activate** as shown on the left side of Figure 7-7 on page 110. The DASD will
          be activated quickly.
      iii. Deselect **100, 101** and **102** so that **200-207** are selected.
      iv. Click **Format** as shown on the right side of the figure. **Do not format 100** as this will
          undo all the work you just did on the master image. The DASD will be formatted in
          parallel and will take a number of minutes.
      v. Click **Next** when the formatting is complete.
b. A window will appear asking for the type of installation: select **New installation** and Click **OK**.

c. Click **Partitioning** and the **Expert Partitioner** window will appear. It is recommended that you format the DASD as follows:

**Table 7-1  Controller disk partitioning**

<table>
<thead>
<tr>
<th>minidisk</th>
<th>Linux device</th>
<th>Format</th>
<th>Mount Point</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>/dev/dasdal</td>
<td>No</td>
<td>/sles9master</td>
<td>master image - <strong>don’t format!</strong></td>
</tr>
<tr>
<td>101</td>
<td>/dev/dasdb1</td>
<td>No</td>
<td>swap</td>
<td>Should be detected as a swap space</td>
</tr>
<tr>
<td>102</td>
<td>/dev/dasdc1</td>
<td>No</td>
<td>swap</td>
<td>Should be detected as a swap space</td>
</tr>
<tr>
<td>200</td>
<td>/dev/dasdd1</td>
<td>As ext3</td>
<td>/</td>
<td>Controller root file system</td>
</tr>
<tr>
<td>203</td>
<td>/dev/dasdel</td>
<td>As ext3</td>
<td>/backup</td>
<td>For rsync backup</td>
</tr>
</tbody>
</table>

i. Select a mount point of /sles9master for /dev/dasdal (**Note**: it is important that the directory is named /sles9master/ as it is hard coded into the clone.sh script)

ii. You should be able to skip /dev/dasdb1 and /dev/dasdc1 as they should be recognized as swap spaces.
iii. Format and select mount points for /dev/dasdd1 and /dev/dasde1 per Table 7-1 - the devices should now look similar to Figure 7-8 on page 111.

![Figure 7-8  Expert Partitioner before LVM](image)

iv. For /dev/dasdf1-/dev/dasdi1 (four devices) you will create a logical volume. Click LVM in the Expert Partitioning window as is shown in Figure 7-8.

d. The window Create a Volume Group will appear as is shown on the left side of Figure 7-9 on page 112. Click OK to accept a volume group name of system and a 4MB physical extent size.

e. The window Logical Volume Manager -- Physical Volume Setup will appear as shown on the right side of Figure 7-9 on page 112. The device /dev/dasdf1 should be selected. Click Add Volume. Select each of the other three volumes and click Add Volume. The volume group should now have 9.1GB of space. Click Next.
f. The window **Logical Volume Manager -- Logical Volumes** will appear as shown in the left side of Figure 7-10. This shows the 9.1GB of free space with which logical volumes can be created. Click **Add** to create a logical volume.

g. The window **Create a Logical Volume** will appear as shown in the right side of Figure 7-10.

i. Select a logical volume name - in this example **nfs** is chosen.

ii. Click the button **max** to dedicate all of the space to this logical volume.

iii. **Format** the file system as **ext2** (a journalled file system such as ext3 is probably not necessary as this file system will seldom be written to)

iv. Specify the mount point. In this example the directory `/nfs` is chosen.

v. Click **OK** to create the logical volume.
Figure 7-10 Creating a logical volume

- Click **Next** in the *Logical Volume Manager -- Logical Volumes* window.
- Click **Next** in the *Expert Partitioner* window. When you are completed, the partitions should be similar or identical to those shown in Figure 7-11.

Figure 7-11 Installation settings - partitions defined
4. Complete the remainder of the installation as you did for the master image described in 7.3.3, “Continuing the YaST2 installation” on page 96, **but do not** go onto 7.3.4, “Booting your new Linux system from disk” on page 96.

5. After the initial system is shutdown you must IPL from minidisk 200 (not 100 which is the master image).

   01: HCPGSP2629I The virtual machine is placed in CP mode due to a SIGP stop from CPU 00.
   00: HCPGSP2630I The virtual machine is placed in CP mode due to a SIGP stop and store status from CPU 00.
   => #CP IPL 200
   ...

6. Complete the installation as described in 7.3.5, “Completing YaST2 installation” on page 96. When your system is completely installed, you can go **DISCONNECT** from the 3270 session using the **#CP** prefix.

   => #cp disc

### 7.5.1 Verifying the installation

**Start a new SSH session to the controller.** You may see a warning from PuTTY about a “POTENTIAL SECURITY BREACH”. This is expected because a new set of SSH keys were generated for the same IP address the second time you installed. Click **Yes** to begin the session.

Verify some settings via the **mount** and **swapon** commands. You should see the following file systems mounted and the two swap spaces:

```
mount
/dev/dasdd1 on / type ext3 (rw,acl,user_xattr)
proc on /proc type proc (rw)
tmpfs on /dev/shm type tmpfs (rw)
devpts on /dev/pts type devpts (rw,mode=0620,gid=5)
/dev/dasde1 on /backup type ext3 (rw,acl,user_xattr)
/dev/mapper/system-nfs on /nfs type ext2 (rw,acl,user_xattr)
/dev/dasda1 on /sles9master type ext3 (rw)
```

```
swapon -s
Filename Type Size Used Priority
/dev/dasdb1 partition 259956 0 42
/dev/dasdc1 partition 215896 0 42
```

### 7.6 Configuring the controller

Now that your controller is installed, it must be configured. The following steps are involved:

- “Applying service if necessary” on page 115
- “Copying files to the controller” on page 115
- “Removing unnecessary RPMs” on page 115
- “Adding additional RPMs” on page 116
- “Installing the cmsfs package” on page 116
- “Turning off an unneeded service” on page 117
- “Turning on the NFS server” on page 117
- “Turning on the NTP server” on page 117
- “Enabling the vmcp module” on page 118
- “Setting system to halt on SIGNAL SHUTDOWN” on page 119
7.6.1 Applying service if necessary

This is the same step done for the master image, so refer to 7.4.1, “Applying service if necessary” on page 97. If you do apply service remember to run `mkinitrd`, `zipl` and `reboot` if these steps are necessary.

7.6.2 Copying files to the controller

The following files associated with this book should be copied to the controller. Use the `scp -rp` command to recursively copy these files from your NFS server:

```
scp -rp <129.40.46.206>:/nfs/virt-cookbook-2/linux-controller/* /
```

The authenticity of host '129.40.46.206 (129.40.46.206)' can't be established.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '129.40.46.206' (RSA) to the list of known hosts.

root@129.40.46.206's password:

```
ntp.conf.template 100% 2082 2.0KB/s 00:00
config 100% 2238 2.2KB/s 00:00
TCPMAINT.FTPcommands 100% 98 0.1KB/s 00:00
LNXMAINT.FTPcommands 100% 149 0.2KB/s 00:00
backup_linux 100% 1528 1.5KB/s 00:00
backup_vm 100% 1563 1.5KB/s 00:00
MAINT.FTPcommands 100% 88 0.1KB/s 00:00
AUTOLOG1.FTPcommands 100% 45 0.0KB/s 00:00
getVMinfo 100% 1556 1.5KB/s 00:00
clone.sh 100% 16KB 15.8KB/s 00:00
clone.hcp.sh 100% 16KB 15.6KB/s 00:00
cmsfs-1.1-8c.s390.rpm 100% 26KB 25.6KB/s 00:00
```

The files copied will be addressed in the sections that follow. Here is a brief description of each file:

- `/backup/linux/` An empty directory for Linux backups
- `/backup/vm/` A directory for z/VM configuration file backups
- `/usr/local/sbin/clone.sh` The clone script
- `/usr/src/packages/RPMS/s390/cmsfs-1.1-8c.s390.rpm` The CMS file system RPM
- `/etc/Bastille/config` A Bastille configuration file
- `/etc/ntp.conf.template` An NTP configuration file
- `/etc/cron.daily/backup_linux` A script to backup virtual servers
- `/etc/cron.daily/backup_vm` A script to backup important z/VM files
- `/etc/cron.daily/*.FTPcommands` Scripts to backup important z/VM files
- `/etc/ntp.conf.template` An NTP configuration file

7.6.3 Removing unnecessary RPMs

It is recommended to remove the following RPMs as you did on the master image:

- `/etc/cron.daily/backup_linux`
- `/etc/cron.daily/backup_vm`
- `/etc/cron.daily/*.FTPcommands`
- `/etc/ntp.conf.template`
# rpm -e eject fvwm2 hfsutils initviocons nftsprogs pmtools providers unclutter usbutils wol xfsprogs zsh

You may choose to remove more or fewer RPMs.

### 7.6.4 Adding additional RPMs

It is recommended that the same packages as you did on the master image. Again use the `yast -i` command to install these packages:

```
yast -i findutils-locate bastille xntp rsync sitar wget openmotif nfs-utils
```

You may choose to add more or fewer RPMs.

### 7.6.5 Installing the cmsfs package

The `clone.sh` script requires the `cmsfs` package by Rick Troth in order read CMS files. When you copied files from the NFS server, you should have copied the RPM to the file `/usr/src/packages/RPMS/s390/cmsfs-1.1-8c.s390.rpm`. To install it, run the following:

```
cd /usr/src/packages/RPMS/s390
rpm -i cmsfs-1.1-8c.s390.rpm
```

To test that the `cmsfs` package is properly installed, see if you can read SLES9X’s parameter file. First you need to bring the 191 disk online via the `chccwdev -e` command. Then view the DASD that the system knows about via the `lsdasd` command:

```
chccwdev -e 191
Setting device 0.0.0191 online
Done
lsdasd
0.0.0100(ECKD) at (94:0) is dasda : active at blocksize: 4096, 54000 blocks, 2136 MB
0.0.0101(FBA) at (94: 4) is dasdb : active at blocksize: 512, 524288 blocks, 256 MB
0.0.0102(ECKD) at (94: 8) is dasdc : active at blocksize: 4096, 54000 blocks, 210 MB
0.0.0120(ECKD) at (94: 12) is dasdd : active at blocksize: 4096, 546840 blocks, 2136 MB
0.0.0123(ECKD) at (94:16) is dasde : active at blocksize: 4096, 540540 blocks, 2111 MB
0.0.0124(ECKD) at (94:20) is dasdf : active at blocksize: 4096, 600840 blocks, 2347 MB
0.0.0125(ECKD) at (94:24) is dasdg : active at blocksize: 4096, 600840 blocks, 2347 MB
0.0.0126(ECKD) at (94:24) is dasdh : active at blocksize: 4096, 600840 blocks, 2347 MB
0.0.0127(ECKD) at (94: 28) is dasdj : active at blocksize: 4096, 54000 blocks, 210 MB
```

Then use the CMFFS utilities. `cmsfslst` lists files on a minidisk and `cmsfscat` types the contents of a file:

```
cmsfslst -d /dev/dasdj
FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS DATE TIME
DIRECTOR PO F 64 13 1 1/25/2006 14:57:53
ALLOCMAP PO F 4096 2 2 1/25/2006 15:57:53
CHPW52 XEDIT B1 V 70 180 3 1/24/2006 14:48:15
CPFORMAT EXEC B1 V 79 231 3 1/24/2006 14:48:15
LABELS20 EXEC D1 V 73 112 2 1/24/2006 15:27:13
LABELS20 XEDIT D1 V 71 19 1 1/24/2006 15:17:05
PROFILE EXEC B1 V 71 21 1 1/24/2006 14:48:15
SLES9X EXEC B1 V 74 9 1 1/24/2006 14:48:15
SLES9X INITRD B1 F 80 162128 3167 1/25/2006 12:11:59
SLES9X KERNEL B1 F 80 59299 784 1/25/2006 12:08:45
SLES9X PARMFILE D1 V 73 8 1 1/25/2006 12:42:50
SWAPGEN EXEC B1 V 72 358 5 1/24/2006 14:48:15
cmsfscat -d /dev/dasdj -a sles9x.parmfile
ramdisk_size=65536 root=/dev/ram1 ro init=/linuxrc TERM=dumb
```
7.6.6 Turning off an unneeded service

There are a number of services which are started in a SLES9 minimum system. In order to keep the controller as lean as possible, it is recommended that slpd, the Service location protocol daemon, be turned off services via the `chkconfig` command:

```bash
chkconfig slpd off
```

7.6.7 Turning on the NFS server

The NFS server will be used to export the SLES9 install tree. Both the nfslock and the nfsserver services are needed. Turn on these two services with the `chkconfig` command:

```bash
chkconfig nfslock on
chkconfig nfsserver on
```

When you restart the controller, the NFS lock daemon and server will be started.

7.6.8 Turning on the NTP server

It is desirable to have all the system clocks on your Linux images be the same. This can be accomplished by setting up a time server on the controller, and have the master image and therefore all the virtual servers synchronize their times against the controller. The controller’s time can be set accurately by having it synchronize against public time servers on the Internet. If you don’t want your controller to communicate with the outside world then don’t set up the controller to sync with a public time server. If you do want to access an external public time server, then make sure your firewall allows traffic through between the controller and the public time servers on the well-known NTP port, 123.

The standard open source time server on Linux is the Network Time Protocol (NTP) daemon. The controller’s NTP daemon needs to synchronize its time with public NTP servers.

Look for servers with an access policy of OpenAccess. You can see a list of stratum-2 public servers on the Web at:

http://ntp.isc.org/bin/view/Servers/StratumTwoTimeServers

Test to see that the server is indeed accessible by running `ntpdate`. In the following example, two servers are used:

```bash
ntpdate sundial.columbia.edu
20 Jan 14:21:58 ntpdate[16263]: adjust time server 128.59.59.177 offset -0.004494 sec
ntpdate clock.nyc.he.net
20 Jan 14:22:14 ntpdate[16264]: adjust time server 209.51.161.238 offset 0.008174 sec
```

The `xntpd` configuration file is `/etc/ntp.conf`. In the file `ntp.conf.template`, the two lines specifying the local clock settings in the default configuration file are commented out and the two external time sources (`sundial.columbia.edu` and `clock.nyc.he.net`) are added. It is recommended that you backup the original file and copy this file to the real `ntp.conf`

```bash
cd /etc
cp ntp.conf ntp.conf.orig
```
mv ntp.conf.template ntp.conf

Verify that the following changes have been made to your new ntp.conf file:

...  
## Undisciplined Local Clock. This is a fake driver intended for backup  
## and when no outside source of synchronized time is available.  
##  
## server 127.127.1.0            # local clock (LCL)  
## fudge  127.127.1.0 stratum 10 # LCL is unsynchronized  
##  
## Outside source of synchronized time  
##  
## server xx.xx.xx.xx            # IP address of server  
## server sundial.columbia.edu   
## server clock.nyc.he.net  
...  

Start the xntpd server on the controller with the rcxntpd command:

rcxntpd start

Try to get initial time via NTP from sundial.columbia.edu clock.nyc.he.net done
Starting network time protocol daemon (NTPD) done

chkconfig xntpd on

If you immediately run ntptrace, you might see that your time server is stratum 16 which means that the clock is not set accurately:

ntptrace
localhost: stratum 16, offset 0.000000, synch distance 0.000000

After you start ntpd, you will have to wait some time for the clock to be adjusted. Use the ntpq command with the peers subcommand to show the two NTP servers that were set in the /etc/ntp.conf file:

ntpq
ntpq> peers
remote       refid      st t when poll reach   delay   offset  jitter
------------- ------------- ------- ------ -------- -------- -------- --------
hickory.cc.colu 128.59.39.48  2 u   48   64    1   5.548   -0.449   0.001
209.51.161.238  .CDMA.           1 u   47   64    1   16.922   -0.493   0.001
ntpq> quit

After a few minutes, the ntptrace command should show that your system is now a stratum 2 server:

ntptrace
localhost: stratum 2, offset -0.002555, synch distance 0.006114
avi-lis.gw.lightning.net: stratum 1, offset -0.000191, synch distance 0.000000, refid 'CDMA'

7.6.9 Enabling the vmcp module

The vmcp module/command allows z/VM CP commands to be issued from Linux. It is critical to the functioning of the clone.sh script. This module was first shipped in SLES9 SP3.
To enable it, edit the file `/etc/sysconfig/kernel` and add `vmcp` to the variable `MODULES_LOADED_ON_BOOT`:

```bash
cd /etc/sysconfig
vi kernel // add vmcp to MODULES_LOADED_ON_BOOT
Path: System/Kernel
Description:
Type: string
Command: /sbin/mkinitrd
#
This variable contains the list of modules to be added to the initial
ramdisk by calling the script "mk_initrd"
(like drivers for scsi-controllers, for lvm or reiserfs)
#
INITRD_MODULES="jbd ext3"
Type: string
ServiceRestart: boot.loadmodules
#
This variable contains the list of modules to be loaded
once the main filesystem is active
#
MODULES_LOADED_ON_BOOT="vmcp"
```

Save the file and you should be able to issue CP commands via the `vmcp` after your system is rebooted.

---

**Important:** If you are working with a distribution older than SLES9 SP3, you will not have the `vmcp` module/command. If so, you will need to use the `cpint` package written by Neale Ferguson. It allows you to use the `hcp` command to invoke z/VM CP commands. To install it, issue the following command:

```bash
yast -i cpint
cd /usr/local/sbin
mv clone.sh clone.vmcp.sh
mv clone.vmcp.sh clone.sh
```

---

To enable it, edit the file `/etc/sysconfig/kernel` and add `vmcp` to the variable `MODULES_LOADED_ON_BOOT`:

```bash
cd /etc/sysconfig
vi kernel // add vmcp to MODULES_LOADED_ON_BOOT
Path: System/Kernel
Description:
Type: string
Command: /sbin/mkinitrd
#
This variable contains the list of modules to be added to the initial
ramdisk by calling the script "mk_initrd"
(like drivers for scsi-controllers, for lvm or reiserfs)
#
INITRD_MODULES="jbd ext3"
Type: string
ServiceRestart: boot.loadmodules
#
This variable contains the list of modules to be loaded
once the main filesystem is active
#
MODULES_LOADED_ON_BOOT="vmcp"
```

Save the file and you should be able to issue CP commands via the `vmcp` after your system is rebooted.

## 7.6.10 Setting system to halt on SIGNAL SHUTDOWN

Again, SLES9 SP3 reboots when a Ctrl-Alt-Del key sequence is trapped. This key sequence is simulated by z/VM when it issues a `SIGNAL SHUTDOWN` command. Rather than rebooting, you want your system to halt (shutdown). Change this setting by changing `shutdown -r` to `shutdown -h` in the `/etc/inittab` file:

```bash
cd /etc
vi inittab // change shutdown -r to shutdown -h
#
what to do when CTRL-ALT-DEL is pressed
ca::ctrlaltdel:/sbin/shutdown -h -t 4 now
```

This change will be picked up when the system is rebooted.
7.6.11 Turning off the hz_timer

From the existing SSH session, turn the hz_timer off so the controller doesn’t consume unnecessary CPU cycles:

```
vi /etc/init.d/boot.local // add one line at the bottom
#!/bin/sh
...
Here you should add things, that should happen directly after booting
before we're going to the first run level.
sysct1 -w kernel.hz_timer=0
```

7.6.12 Configure SSH keys

SSH sessions are typically authenticated via passwords typed in from the keyboard. With SSH key-based authentication sessions can be authenticated via public and private keys so that no password is needed. To accomplish this, the following must be true:

- The SSH server system must have the client’s public key.
- The SSH client must send its private key.
- The keys must match.

SSH key-based authentication can be set up from the controller (client) to the virtual servers. If the master image has a copy of controller’s public key in the file /root/.ssh/authorized_keys, and the controller has a symbolic link to its private key in the file /root/.ssh/id_dsa, then key based authentication will work to the cloned virtual servers.

Copy the controller’s public key to the master image’s authorized_keys file:

```
cd /etc/ssh
cp ssh_host_dsa_key.pub /sles9master/root/.ssh/authorized_keys
```

Make a symbolic link from /root/.ssh/id_dsa to the controller’s private key:

```
cd /root/.ssh
ln -s /etc/ssh/ssh_host_dsa_key id_dsa
```

7.6.13 Hardening the controller

Run Bastille Linux to harden the controller so that it is more secure. Again you should have copied the file /etc/Bastille/config.

Run the `bastille -b` command and type `accept` to agree with the user agreement:

```
bastille -b
Copyright (C) 1999-2002 Jay Beale
Copyright (C) 1999-2001 Peter Watkins
Copyright (C) 2000 Paul L. Allen
Copyright (C) 2001-2003 Hewlett Packard Company
...
You must accept the terms of this disclaimer to use Bastille. Type "accept" (without quotes) within 5 minutes to accept the terms of the above disclaimer
> accept
...
```

When the bastille command completes, your system should be hardened according to the settings in the file /etc/Bastille/config. Again, you should not be concerned if there are error messages.
7.6.14 Rebooting the system
You should now reboot the system to test the changes:

```bash
reboot
```

After your system comes back in a couple of minutes, start a new SSH session to the controller.

7.6.15 Verifying the changes
You are now done customizing the controller Linux image. **SSH back into the controller** and check a few settings. Test the `vmcp` command with a CP command such as **QUERY NAMES**:

```bash
vmcp q n
FT PSERVE - DSC , DTC VSW2 - DSC , DTC VSW1 - DSC , TCPIP - DSC
OPERSYMP - DSC , DISKACNT - DSC , EREP - DSC , OPERATOR - DSC
SLES9X -L0004
VSM - TCPIP
```

Confirm that both of your swap spaces are operational:

```bash
swapon -s
Filename Type Size Used Priority
/dev/dasdb1 partition 259956 0 42
/dev/dasdc1 partition 215896 0 42
```

Verify that the `hz_timer` is off:

```bash
cat /proc/sys/kernel/hz_timer
0
```

Verify the NFS server is running:

```bash
rcnfsserver status
Checking for kernel based NFS server: running
```

Congratulations! You have installed and configured Linux twice onto the SLES9X user ID. You are now ready to configure NFS on the controller.
Configuring NFS on controller

*Imagination is more important than knowledge.*
--Albert Einstein

The SLES9X user ID is now customized with both a master image and a controller. The controller should have a 9GB logical volume ext2 file system mounted over /nfs/. It can now be configured to replace the NFS (PC) server to make the SLES9 install tree and the files associated with this book available via NFS.

The following steps are involved in configuring NFS on the controller:
- “Copying files from NFS server to controller” on page 123
- “Configuring the NFS server” on page 124
- “Changing the YaST install tree location” on page 125

### 8.1 Copying files from NFS server to controller
In this section you will copy the SLES9 install tree and the files associated with this book from the NFS server to the controller’s logical volume file system mounted over the directory /nfs/.

#### 8.1.1 Copying the SLES9 install tree
This section assumes you have already set up the SLES9 install tree on another server as described in 6.2, “Setting up a SLES9 install tree” on page 76. You can copy the tree recursively then configure the NFS server to export it.

**Open or continue an SSH session on the controller.** Copy the entire SLES9 install tree recursively using the `scp -rp` command. You will need to type the root password of the NFS server:

```
cd /nfs
ls
.
.. lost+found
```

This shows that the file system is empty except for the `lost+found/` directory which is where a file system stores damaged files.
Recursively copy the SLES9 install tree from the NFS server to the /nfs/ directory:

```
scp -rp <129.40.46.206>:/nfs/sles9x/sles9xsp3root /nfs
```

This step should take about 10-30 minutes depending on network and disk speed. Look at the newly copied directory.

```
ls
. .. lost+found sles9sp3root
du -sh sles9sp3root/
7.1G sles9xsp3root/
```

This shows that it occupies about 7 GB on disk.

### 8.1.2 Copying the files associated with this book

Now recursively copy the files associated with this book that were untarred to /nfs/ on the NFS server:

```
scp -rp <129.40.46.206>:/nfs/virt-cookbook-2 /nfs
```

These two directories should use up more than four fifths of the 9GB in the /nfs/ logical volume as shown by the `df -h` command:

```
df -h | grep nfs
/dev/mapper/system-nfs 9.0G 7.1G 1.5G 83% /nfs
```

### 8.2 Configuring the NFS server

Set up the NFS server to export the two directories that you just copied. Add two lines to the `/etc/exports` file as follows:

```
cd /etc
vi exports // add a line at the bottom
See the exports(5) manpage for a description of the syntax of this file.
This file contains a list of all directories that are to be exported to
other computers via NFS (Network File System).
This file used by rpc.nfsd and rpc.mountd. See their manpages for details
on how make changes in this file effective.
/nfs/virt-cookbook-2 *(ro,sync)
/nfs/sles9xsp3root *(ro,sync)
```
The NFS server was set to start when you configured the controller. Double-check that it is running with the `rcnfsserver` command:

```
rcnfsserver status
Checking for kernel based NFS server: running
```

You can now force the `/etc/exports` file to be reread with the command `exportfs -a`:

```
exportfs -a
```

The NFS server should now be running and customized. Test that you can mount the file systems locally over an empty directory such as `/mnt/` using the DNS name `localhost`, with the following `mount` commands:

```
ls /mnt
mount localhost:/nfs/virt-cookbook-2 /mnt
ls -F /mnt
./ ../ README.txt linux-controller/ linux-master/ nfs-server/ virt-cookbook-2.pdf
vm/
umount /mnt
mount localhost:/nfs/sles9xsp3root /mnt
ls -F /mnt
./ boot/ control.xml driverupdate media.1/ sles9/ yast/
../ content core9/ linux/ s390x/ sp3-9/
umount /mnt
```

This shows that you can mount the NFS-exported directories locally.

### 8.3 Changing the YaST install tree location

When you installed both the master image and the controller, you set the location of the SLES9 install tree to the PC NFS server. Now that you have configured an NFS server on the controller, you can reset this location on both the master image and the controller. After doing this you will no longer need the NFS server as you will be able to use the controller to serve the SLES9 install tree and the files associated with this book.

The steps in this section are as follow:

- “Changing source of installation on master image” on page 125
- “Changing source of installation on controller” on page 127
- “Changing source of installation in parameter file” on page 128

#### 8.3.1 Changing source of installation on master image

There is a bit of a paradox in getting the master image to point to the controller for its source of installation. You have to shutdown the controller to bring up the master image, but if the controller is shut down, `yast` will not be able to find the NFS-exported directory.

To work around this issue, you can use the `chroot` command which creates a shell with a new root. After `chroot`ing you will be working on the running controller, but you will be able to modify the master image because that becomes your new root file system. This technique can be used to perform other modifications to the master image, such as adding RPMs (however, this technique does not work for all commands).

1. Enter the `chroot` command to the `/sles9master/` directory and it will be as though you have booted the master image:

```
chroot /sles9master/
```
2. Now you are in a shell as if you were logged into the master image. Enter the `yast` command to change the source of installation.

```
yast
```

3. Use the Tab key to move to the right side of the YaST Control Center. Use the Down Arrow key twice to select *Change Source of Installation*. Press *Enter*.

```
+--+
| YaST Control Center |
+--+
| Software |
| Hardware |
| System |
| Network Devices |
| Network Services |
| Security and Users |
| Misc |
`+--+
| Online Update |
| Install and Remove Software |
| Installation into Directory |
| Patch CD Update |
| System Update |
| YOU Server Configuration |
| |
| |
[Help] [Quit]
```

4. You will be presented with the *Software Source Media* panel shown below. You should see three install sources: Service Pack 3, SLES9 and CORE9. These are the sources used to install the master image.

   a. Use the Tab key to move to *Edit* button and press Enter.

   b. Choose the default *Replace*... button.

   c. This will bring up a small menu entitled *NFS Server and Directory*. Change the TCP/IP address (or DNS name) to that of the controller. Change the directory to:

   ```
nfs/sles9xsp3root/sles9/CD1
```

   **Note:** For a 31-bit system, the three directories will be:

   ```
nfs/sles9sp3root/sles9/CD1
nfs/sles9sp3root/core9/CD1
nfs/sles9sp3root/sp3-9/CD1
```

   d. Use Tab key to move to *OK* and press Enter.

   e. Repeat this process for the other one or two entries (**Note**: the entries move up as you change them, so you will only have to choose *Edit* one or two more times). Change the remaining two directories to:

   ```
nfs/sles9xsp3root/core9/CD1
nfs/sles9xsp3root/sp3-9/CD1
```

   f. When you have the desired installation sources, select *Finish*. 
5. From the **yast** main menu select **Quit**.
6. Use the **exit** command to leave the **chroot** ed system.

```bash
exit
```

Now any Linux virtual server that is cloned should point to the controller for its source of RPMs.

### 8.3.2 Changing source of installation on controller

Perform the same tasks for the controller, but rather than using NFS as the protocol, just point to the local directories. To do this, you must add 3 new installation sources then delete the existing 3. Invoke **yast** and perform the following steps:

1. Choose **Software** => **Change Source of Installation** on the **YaST Control Center**.
2. On the **Software Source Media** panel, choose **Add**.
3. Choose **Local Directory** as shown in the top half of the following example.
4. Set the directory to:

```bash
/nfs/sles9xsp3root/sles9/CD1
```
5. Repeat steps 2-4 and add an two more entries for:

```bash
/nfs/sles9xsp3root/core9/CD1
/nfs/sles9xsp3root/sp3-9/CD1
```
6. You should now have six entries: three old entries at the top with **nfs**: prefixes and three new entries below with a **dir**: prefixes. Now delete the three old entries:
a. Tab to **Delete** and press **Enter**

b. Verify by accepting **Yes**.

c. Delete the other two entries. When you are done, the entries should be the same or similar to those shown in the bottom half of the example.

7. Tab to **Finish** and press **Enter**.

---

8.3.3 Changing source of installation in parameter file

There is one more place that the source of the installation has to be changed and that is the parameter file on the LNXMAINT 192 disk. Logon to LNXMAINT and edit the SLES9X PARMFILE. Change the value of the `INST_IP_ADDR` and `INST_IP_DIR` variables. In the following example it is set to 129.40.178.130:

```plaintext
ramdisk_size=65536 root=/dev/ram1 ro init=/linuxrc TERM=dumb
INST_PASSWORD=lnx4vm IP_ADDR=129.40.178.130 AUTOINSTALL=yes
IP_HOST=lam130.pbm.ihost.com IP_GATEWAY=129.40.178.254
IP_INTERFACE=qeth IP_MTU=1500 IP_NETMASK=255.255.255.0
IP_BROADCAST=129.40.178.255 READ_DEVNO=600 WRITE_DEVNO=601
DATA_DEVNO=602 PORTNAME=dontcare IP_DNS=129.40.106.1
INST_INFO=nfs INST_IP_ADDR=<129.40.178.130>
INST_IP_DIR=/nfs/sles9xsp3root INST_SCREEN=VNC VNC_PASSWORD=lnx4vm
```

Changing this value is somewhat of a paradox. The parameter file sets both the install server IP address and the Linux IP address to the same value. This will never work as you cannot install onto a system that is also the installation server. However, the sections that follow have you copy this parameter file, so this way it will be copied with the correct value.

If for some reason you do have to reinstall onto SLES9, you will have to set up another source of installation (perhaps the PC NFS server again), and change this value back to point to it.

---

8.4 Creating a SLES9 31-bit controller

At this point now you should have completed the following:

- Installed and customized z/VM 5.2
Set up an NFS server on a PC Linux (or other) box

Installed Linux twice on the SLES9X user ID: once for the master image and once for the controller

Copied the install trees and files associated with this book from the PC Linux server to the controller.

You should now be ready for cloning in the next chapter.

However, you may choose to repeat the entire process starting with Chapter 7., “Installing and configuring Linux” on page 85 but creating a 31-bit controller. Doing so would allow you to clone either 31-bit or 64-bit Linux virtual servers. If you choose to do so, follow the same steps but remove the “X” from the many places where it signifies a 64-bit distribution (e.g. SLES9X becomes SLE9, /nfs/sles9xsp3root/ becomes /nfs/sles9sp3root/).

Following is an example of a user directory definition for the new ID, named SLES9. This example uses seven more 3390-3s at device addresses A70A-A710:

```
* USER SLES9X LNX4VM 256M 1G BEG
 INCLUDE LNXDFLT
 OPTION LNKNOPAS APPLMON
 MDISK 100 3390 0001 3038 <MMA711> MR LNX4VM LNX4VM LNX4VM
 MDISK 102 3390 3039 0300 <MMA711> MR LNX4VM LNX4VM LNX4VM
 MINIOPT NOMDC
 MDISK 200 3390 0001 3338 <MMA712> MR LNX4VM LNX4VM LNX4VM
 MDISK 203 3390 0321 3018 <MMA713> MR LNX4VM LNX4VM LNX4VM
 MDISK 204 3390 0001 3338 <MMA714> MR LNX4VM LNX4VM LNX4VM
 MDISK 205 3390 0001 3338 <MMA715> MR LNX4VM LNX4VM LNX4VM
 MDISK 206 3390 0001 3338 <MMA716> MR LNX4VM LNX4VM LNX4VM
 MDISK 207 3390 0001 3338 <MMA717> MR LNX4VM LNX4VM LNX4VM
*
```

```
* USER SLES9 LNX4VM 256M 1G BEG
 INCLUDE LNXDFLT
 OPTION LNKNOPAS APPLMON
 MDISK 100 3390 0001 3038 <MMA70A> MR LNX4VM LNX4VM LNX4VM
 MDISK 102 3390 3039 0300 <MMA70A> MR LNX4VM LNX4VM LNX4VM
 MINIOPT NOMDC
 MDISK 200 3390 0001 3338 <MMA70B> MR LNX4VM LNX4VM LNX4VM
 MDISK 203 3390 0001 3338 <MMA70C> MR LNX4VM LNX4VM LNX4VM
 MDISK 204 3390 0001 3338 <MMA70D> MR LNX4VM LNX4VM LNX4VM
 MDISK 205 3390 0001 3338 <MMA70E> MR LNX4VM LNX4VM LNX4VM
 MDISK 206 3390 0001 3338 <MMA70F> MR LNX4VM LNX4VM LNX4VM
 MDISK 207 3390 0001 3338 <MMA710> MR LNX4VM LNX4VM LNX4VM
```

Remember to add the new disks to the $ALLOC$ dummy user ID, so gaps are not reported.

8.5 Retire the PC NFS server

You have now copied all files related to this project from a PC (or other platform) server to zSeries. You should be in a position to retire your PC NFS server.
Configure Linux for cloning

It has become appallingly obvious that our technology has exceeded our humanity.
--Albert Einstein

The SLES9 user ID is now customized with both a master image and a controller. The controller should now be running. In this chapter, you will perform the following steps:

- “Defining a new user ID for a virtual server” on page 131
- “Cloning a virtual server manually” on page 134
- “Cloning a virtual server automatically” on page 137
- “Cloning six more virtual servers” on page 140

9.1 Defining a new user ID for a virtual server

In this section you will define a new user ID, LINUX01, in z/VM and clone the master image to it.

1. Logon to MAINT and edit the USER DIRECT file to add more Linux ID’s.

   => x user direct c

2. Go to the bottom of the file and add the following 5 lines. In this example the user ID will be LINUX01 with a password of LNX4VM. A single 3390-3 DASD is used for a 3038 cylinder (about 2GB) root file system and a 300 cylinder (about 210MB) swap space. In this example it is at device address A718 which was formatted and given a label of MMA718 earlier:

   USER LINUX01 LNX4VM 256M 1G G
   INCLUDE LNXDFLT
   OPTION APPLMON
   MDISK 100 3390 0001 3038 <MMA718> MR LNX4VM LNX4VM LNX4VM
   MDISK 102 3390 3039 0300 <MMA718> MR LNX4VM LNX4VM LNX4VM
   MINIPT NOMDC

3. Add the new volume to the $ALLOC$ user ID so cylinder 0 won’t show up in the disk map as a gap. Save your changes with the FILE subcommand:

   ===> top
   ===> /alloc

© Copyright IBM Corp. 2006. All rights reserved.
USER $ALLOC$ NOLOG
MDISK A01 3390 000 001 MVA700 R

...  
MDISK A0B 3390 000 001 <MMA718> R  
====> file

4. Again check for gaps and overlaps. You can use the ALL subcommand with the logical OR operator "،“ to check for both strings. You should see only one 501 cylinder gap.

```
=> diskmap user
=> x user diskmap
====> all /gap/[/overlap/
------------------------- 4 line(s) not displayed -------------------------
0 500 501 GAP
------------------------- 368 line(s) not displayed -------------------------
====> quit
```

5. Bring the changes online with the DIRECTXA command:

```
=> directxa user
```

z/VM USER DIRECTORY CREATION PROGRAM - VERSION 5 RELEASE 2.0
EOJ DIRECTORY UPDATED AND ON LINE

The new Linux user ID has now been defined.

9.1.1 Adding LINUX01 to AUTOLOG1's PROFILE EXEC

The new Linux ID you defined needs access to the VSWITCH. A SET VSWITCH command with the GRANT parameter can be added to AUTOLOG1’s PROFILE EXEC to do this. Also, an XAUTOLOG statement can be added if the user ID is automatically logged on at z/VM IPL time:

Link and access the AUTOLOG1 191 disk read/write and edit the file PROFILE EXEC. Add LINUX01 to the sections that grant access to the VSWITCH and that XAUTOLOG the Linux user IDs:

```
=> link autolog1 191 1191 mr
=> acc 1191 f
=> x profile exec f // add two lines
/*****************************/
/* AutoLog1 Profile Exec */
/*****************************/
'cp xautolog tcip' /* start up TCPIP */
'CP XAUTOLOG DTCVSW1' /* start VSWITCH controller 1 */
'CP XAUTOLOG DTCVSW2' /* start VSWITCH controller 2 */
'cp set pf12 ret' /* set the retrieve key */
'cp set mdc stor 0m 128m' /* Limit minidisk cache in CSTOR */
'cp set mdc xstore 0m 0m' /* Disable minidisk cache in XSTOR */
'cp set smr storebuf 300% 250% 200%' /* Overcommit memory */
'cp set signal shutdown 180' /* Allow guests 3 min to shut down */
/* Grant access to VSWITCH for each Linux user */
'cp set vswitch vsw1 grant sles9x'
'cp set vswitch vsw1 grant linux01'
/* XAUTOLOG each Linux user that should be started */
'cp xautolog sles9x'
'cp xautolog linux01'
'cp logoff' /* logoff when done */
====> file
```
These changes will not take effect until the next IPL, so you must grant this user ID access to the VSWITCH for this z/VM session. This is done as follows:

```bash
==> set vswitch vsw1 grant linux01
Command complete
```

### 9.1.2 Creating a parameter file for the new LINUX ID

For each Linux guest you want to clone, you need to create a parameter file. This file specifies many of the installation parameters. It will be used both when cloning to this user ID and when installing SLES9 manually.

1. Logon to LNXMAINT.
2. Copy an existing parameter file and edit the new file to apply to the new Linux.

```bash
==> copy sles9x parmfile d linux01 parmfile d
==> x linux01 parmfile d
```

3. Edit the new parameter file as you did for SLES9 (see 7.2, “Preparing SLES9 bootstrap files” on page 88). If the new Linux is going to be on the same network as the controller you will likely only have to change two variables: the IP address and the DNS name. In this example the IP address is set to 129.40.178.121 and the DNS name to `lat121.pbm.ihost.com`:

```
ramdisk_size=65536 root=/dev/ram1 ro init=/linuxrc TERM=dumb
INST_PASSWORD=lnx4vm
IP_ADDR=129.40.178.121 AUTOINSTALL=yes
IP_HOST=lat121.pbm.ihost.com
IP_GATEWAY=129.40.178.254
IP_BROADCAST=129.40.178.255
IP_INTERFACE=qeth
IP_MTU=1500
IP_NETMASK=255.255.255.0
IP_BROADCAST=129.40.178.255
READ_DEVNO=600 WRITE_DEVNO=601
DATA_DEVNO=602 PORTNAME=dontcare IP_DNS=129.40.106.1
INST_INFO=nfs INST_IP_ADDR=129.40.178.130
INST_IP_DIR=/nfs/sles9x/sles9xsp3root INST_SCREEN=VNC
VNC_PASSWORD=lnx4vm
```

4. Logoff of LNXMAINT.
5. Logon to LINUX01.
6. Answer **N** to the question “Do you want to IPL Linux from DASD 100”. Verify that the new Linux user ID has a NIC at addresses 600-602:

```
LOGON LINUX01
00: NIC 0600 is created; devices 0600-0602 defined
00: z/VM Version 5 Release 2.0, Service Level 0501 (64-bit),
00: built on IBM Virtualization Technology
...
```

7. Verify that the minidisks at addresses 100 and 102 and the VDISK at address 101 are read/write:

```bash
==> q da
00: DASD 0100 3390 MMA718 R/W 3038 CYL ON DASD E34B SUBCHANNEL = 0000
00: DASD 0101 9336 (VDSK) R/W 524288 BLK ON DASD VDSK SUBCHANNEL = 000E
00: DASD 0102 3390 MMA718 R/W 300 CYL ON DASD E34B SUBCHANNEL = 0001
00: DASD 0190 3390 520RES R/O 107 CYL ON DASD A700 SUBCHANNEL = 0009
00: DASD 0191 3390 MMA70C R/O 300 CYL ON DASD A70C SUBCHANNEL = 000C
...
```

8. Logoff LINUX01.

You should now be ready to clone to this new user ID.
9.2 Cloning a virtual server manually

Before using the shell script `clone.sh` to clone a server, it is recommended that you clone a server manually to better understand the process.

There are many ways to clone Linux under z/VM. The steps in this section are just one way to do it. The following assumptions are made based on what you have done so far:

- The source Linux image has a single root file system on minidisk 100 and a swap space on minidisk 102.
- The target user ID, LINUX01 in this example, has identically sized mindisks 100 and 102.
- The `vmcp` command is available to issue z/VM CP commands.
- The z/VM `FLASHCOPY` command can be used but if you don’t have that support, the Linux `dd` command will work.

Given these assumptions, one set of steps that can be used to clone a system is as follows:

1. Link the target disks read/write.
2. Copy the source to the target disk via `FLASHCOPY` or the Linux `dd` command.
3. Mount the newly copied root file system.
4. Modify the networking information on the target system.
5. Detach the target disk.
6. IPL the target system.
7. Modify the SSH keys on the target system.

**Link the target disks read/write**

**Start an SSH session** to the controller as root.

The target root file system, LINUX01 100, is linked multi-read (read/write if no other user ID has write access) as virtual device 1100 via the CP `LINK` command. Also, the target swap space is linked as virtual device 1102:

```
vmcp link linux01 100 1100 mr
vmcp link linux01 102 1102 mr
```

**Copy the source to the target disk via `FLASHCOPY`**

The two disks are copied via the CP `FLASHCOPY` command:

```
vmcp flashcopy 100 0 end to 1100 0 end
Command started: FLASHCOPY 100 0 END TO 1100 0 END
vmcp flashcopy 102 0 end to 1102 0 end
Command started: FLASHCOPY 102 0 END TO 1102 0 END
```
Mount the newly copied root file system

Enable the new minidisk at virtual device address 1100:

# chccwde -e 1100
Setting device 0.0.1100 online
Done

# chccwde -e 1102
Setting device 0.0.1102 online
Done

# lsdasd
0.0.0100(ECKD) at (94: 0) is dasa: active at blocksize 4096, 546840 blocks, 2136 MB
0.0.0101(FBA ) at (94: 4) is dasdb: active at blocksize 512, 524288 blocks, 256 MB
0.0.0102(ECKD) at (94: 8) is dasdc: active at blocksize 4096, 54000 blocks, 210 MB
0.0.0200(ECKD) at (94:12) is dasdd: active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0203(ECKD) at (94:16) is dasde: active at blocksize 4096, 542880 blocks, 2120 MB
0.0.0204(ECKD) at (94:20) is dasdf: active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0205(ECKD) at (94:24) is dasdg: active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0206(ECKD) at (94:28) is dasdh: active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0207(ECKD) at (94:32) is dasdi: active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0191(ECKD) at (94:36) is dasdj: active at blocksize 4096, 54000 blocks, 210 MB
0.0.0110(ECKD) at (94:40) is dasdk: active at blocksize 4096, 546840 blocks, 2136 MB
0.0.0112(ECKD) at (94:44) is dasdl: active at blocksize 4096, 54000 blocks, 210 MB

In this example the source devices are /dev/dasda and /dev/dasdc, while the target devices are /dev/dasdk and /dev/dasdl. Copy the disks via the dd command using a block size of 4K (4096) bytes:

# dd if=/dev/dasda of=/dev/dasdk bs=4096
546840+0 records in
546840+0 records out

# dd if=/dev/dasdc of=/dev/dasdl bs=4096
54000+0 records in
54000+0 records out

Attention: If you do not have FLASHCOPY support, you can use the Linux dd command. You must first enable the disks 1100 and 1102 via the chccwde -e command, then determine the device nodes via the lsdasd command:

# chccwde -e 1100
Setting device 0.0.1100 online
Done

# chccwde -e 1102
Setting device 0.0.1102 online
Done

# lsdasd
0.0.0100(ECKD) at (94: 0) is dasa: active at blocksize 4096, 546840 blocks, 2136 MB
0.0.0101(FBA ) at (94: 4) is dasdb: active at blocksize 512, 524288 blocks, 256 MB
0.0.0102(ECKD) at (94: 8) is dasdc: active at blocksize 4096, 54000 blocks, 210 MB
0.0.0200(ECKD) at (94:12) is dasdd: active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0203(ECKD) at (94:16) is dasde: active at blocksize 4096, 542880 blocks, 2120 MB
0.0.0204(ECKD) at (94:20) is dasdf: active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0205(ECKD) at (94:24) is dasdg: active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0206(ECKD) at (94:28) is dasdh: active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0207(ECKD) at (94:32) is dasdi: active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0191(ECKD) at (94:36) is dasdj: active at blocksize 4096, 54000 blocks, 210 MB
0.0.0110(ECKD) at (94:40) is dasdk: active at blocksize 4096, 546840 blocks, 2136 MB
0.0.0112(ECKD) at (94:44) is dasdl: active at blocksize 4096, 54000 blocks, 210 MB
In this case, the device node is /dev/dasdk. Because there is only one partition in the root file system, it will be /dev/dasdk1. Mount it over a newly created mount point /mnt/linux01:

```
mkdir /mnt/linux01
mount /dev/dasdk1 /mnt/linux01
```

Observe that this appears to be a root file system:

```
ls /mnt/linux01/
. bin dev home lib64 media opt root srv tmp var
.. boot etc lib lost+found mnt proc sbin sys usr
```

Modify networking information on the target system

In this example, the only two pieces of networking information that are modified are the IP address (from 129.40.178.130 to 129.40.178.121) and the host name (from lat130 to lat121). The host name is changed in the file /etc/HOSTNAME:

```
cd /mnt/linux01/etc
vi HOSTNAME
lat121.pbm.ihost.com
```

The IP address is changed in the file /etc/sysconfig/network/ifcfg-qeth-bus-ccw-0.0.0600:

```
cd /mnt/linux01/etc/sysconfig/network/
ls ifcfg-*
 ifcfg-lo ifcfg-qeth-bus-ccw-0.0.0600
vi ifcfg-qeth-bus-ccw-0.0.0600
BOOTPROTO="static"
UNIQUE=""
STARTMODE="onboot"
IPADDR="129.40.178.121"
MTU="1500"
NETMASK="255.255.255.0"
NETWORK="129.40.178.0"
BROADCAST="129.40.178.255"
```

Detach the target disks

Change to the default directory, use the `sync` command to flush the disks and the `umount` command to unmount the modified root file system:

```
cd
sync
umount /mnt/linux01
```

Detach the two target minidisks via the CP `DETACH` command:

```
vmcp det 1102
DASD 1102 DETACHED
vmcp det 1100
DASD 1100 DETACHED
```

IPL the target system

You should now be ready IPL the manually cloned system. Logon to a 3270 session as LINUX01. CMS will IPL and the `PROFILE EXEC` will ask you if you want to IPL from minidisk 100:

```
LOGON LINUX01
00: NIC 0600 is created; devices 0600-0602 defined
00: z/VM Version 5 Release 2.0, Service Level 0501 (64-bit),
00: built on IBM Virtualization Technology
00: There is no logmsg data
```
Your new system should come up cleanly using the modified IP address and host name.

**Modify the SSH keys on the target system**

**Start an SSH session** to the new clone as root.

The SSH keys that were copied are identical to those of the master image. Manually create three new ones with the `ssh-keygen` command:

```bash
cd /etc/ssh
ssh-keygen -t rsa -N "" -q -f ssh_host_rsa_key
ssh_host_rsa_key already exists.
Overwrite (y/n)? y
ssh-keygen -t dsa -N "" -q -f ssh_host_dsa_key
ssh_host_dsa_key already exists.
Overwrite (y/n)? y
ssh-keygen -t rsa1 -N "" -q -f ssh_host_key
ssh_host_key already exists.
Overwrite (y/n)? y
```

Congratulations! You have now cloned a Linux system manually. You can look around the new system. It should be identical to the master image except for the IP address and host name.

Next you will learn how to do it automatically. You will use the LINUX01 user ID again. To clone, the target user ID must be logged off. You could shut the new system down cleanly, but because you will be cloning again, it does not matter. Go to the 3270 session and log off the LINUX01 user ID:

```
=> # cp log
```

### 9.3 Cloning a virtual server automatically

Now that you have cloned a server manually and better understand the steps, you can use the `clone.sh` script to clone automatically.

Start an SSH session to the controller. The `clone.sh` script should be in your PATH in the directory `/usr/local/sbin/`. You can verify this with the `which` command:

```bash
which clone.sh
/usr/local/sbin/clone.sh
```

The script takes one parameter which is the Linux user ID that the master image will be cloned to. That user ID must be logged off. It reads the parameter file on the LNXMAINT 192 disk (the controller’s 191 disk) to obtain information necessary to give the new Linux virtual
server an identity. It calls CP FLASHCOPY via the vmcp module/command to try to copy the 102 (minidisk swap) then the 100 (master image) disks. If FLASHCOPY fails, the script falls back to copying the disks via the Linux dasdfmt and dd commands. The script then boots the new Linux via the XAUTOLOG command. It also creates an empty backup directory under /backup/linux/ and adds the server’s public key is added to the controller’s known_hosts file.

It should take less than a minute to clone with FLASHCOPY support and 3-20 minutes without it. Following is an example of cloning to the LINUX01 user ID with FLASHCOPY support. The output is divided into sections.

```
clone.sh linux01
clone.sh linux01
Invoking CP command: QUERY LINUX01
Setting device 0.0.0191 offline
Done
Setting device 0.0.0191 online
Done
LINUX01 PARMFILE D1 V 65 8 1/31/2006 10:01:06

WARNING!!: this will copy 100 and 102 disks to LINUX01 100 and 102
New host name will be: lat44.pbm.ihost.com
New TCP/IP address will be: 129.40.178.121
Other network data is retrieved from LINUX01 PARMFILE on 191 disk
Are you sure you want to overwrite these disks (y/n): y
```

In the section of output above, the script makes sure the user ID to be cloned to exists and is logged off. It then searches for the correct PARMFILE and obtains the necessary networking information. It then asks if you are sure you want to overwrite the disks on the target user ID.

```
Copying 0102 swap space to LINUX01 ...
Invoking CP command: QUERY VIRTUAL 1102
Invoking CP command: LINK LINUX01 0102 1102 MR
Invoking CP command: FLASHCOPY 0102 0 END 1102 0 END
Invoking CP command: DETACH 1102
Copying disk via FLASHCOPY succeeded ...
Sleeping 20 seconds for FLASHCOPY to catch up ...
Copying 0100 root file system to LINUX01 ...
Invoking CP command: QUERY VIRTUAL 1100
Invoking CP command: LINK LINUX01 0100 1100 MR
Invoking CP command: FLASHCOPY 0100 0 END 1100 0 END
Invoking CP command: DETACH 1100
Copying disk via FLASHCOPY succeeded ...
```

In the section above the script copies the 102 minidisk (swap space) to the LINUX01 102 disk which gets linked as virtual address 1102. It then sleeps for 20 seconds for FLASHCOPY to catch up (testing has shown that FLASHCOPY cannot perform a second copy to the same volume until the first is done). Then the master image root file system is copied to the LINUX01 100 minidisk. In both cases, FLASHCOPY succeeds. Should it fail, the code will fall back to the dasdfmt and dd commands to perform the copies.

```
Mounting newly cloned image over /mnt/sles9cloned ...
Invoking CP command: LINK LINUX01 100 1100 MR
Setting device 0.0.1100 online
Done
Mounting /dev/dasdk1 over /mnt/sles9cloned ...
Modifying cloned image under /mnt/sles9cloned ...
Regenerating SSH keys in /mnt/sles9cloned/etc/ssh/ ...
Adding 129.40.178.121 to known_hosts file
Setting device 0.0.1100 offline
Done
Invoking CP command: DETACH 1100
```
In the section above, the newly cloned file system (LINUX01 100) is linked, activated and mounted over a temporary directory /mnt/sles9cloned/. Then the networking information is modified in files such as /etc/sysconfig/network/ifcfg-qeth-bus-ccw-0.0.0600 and /etc/HOSTNAME. Then the SSH keys are regenerated so they are unique for the new virtual server. Then the server's public key is added to the controller's /root/.ssh/known_hosts file. Finally the new disk is set offline and detached.

Invoking CP command: XAUTOLOG LINUX01
Command accepted
Creating a directory under /backup/linux
Successfully cloned /sles9master to LINUX01
You should be able to ping 129.40.178.121 within one minute

In the final section, the target user ID is logged on via XAUTOLOG. Because the PROFILE EXEC detects that the ID is logged on in a disconnected mode, Linux is IPLed from minidisk 100. A directory with the user ID and IP address in the name is created under /backup/linux/. The new clone should be on the network in about 30-45 seconds.

Note: If the clone.sh script fails you can also add the -v flag for some more diagnostics. Also, check that:
- The target user ID has been granted access to the VSWITCH
- The parameter file is copied and set correctly on LNXMAINT 192

A block diagram of this process can be viewed as follows.

The left side of the figure shows the controller which is on the SLES9X 200 disk. It has the master image mounted over the directory /sles9master/, which is the SLES9 100 disk. Both the controller and the master image use the same minidisk-based swap space, /dev/dasdb1, which is the SLES9 102 disk. Note that the VDISK-based swap space, SLES9 101, is created in memory, so it does not need to be copied.
The script /usr/local/sbin/clone.sh is invoked and it uses either CP FLASHCOPY or the Linux dd command to copy the 100 and 102 minidisks to the target z/VM user ID. The script then mounts the newly copied 100 disk and modifies the networking information to use those values found in the parameter file on the LNXMAINT 192 disk. The script then invokes the CP XAUTOLOG command to log that user ID on. Because the user ID is logged on disconnected, the common PROFILE EXEC from the LNXMAINT 192 disk IPLs from virtual device address 100 and the newly cloned Linux system is brought to life.

9.4 Cloning six more virtual servers

So far you have installed Linux manually twice on SLES9 to create a master image and a controller. You have created a new user ID LINUX01 and cloned it. Now it is time to clone six more times to have one system for each of the virtual servers described in the remaining chapters.

The following steps are involved:

- “Formatting and label six new DASD” on page 140
- “Defining six more user IDs” on page 141
- “Testing logging on to a new user ID” on page 144
- “Creating six new parameter files” on page 143
- “Granting user IDs access to VSWITCH” on page 143

9.4.1 Formatting and label six new DASD

Decide which DASD will be used for the six new user IDs by referring to 2.5.2, “z/VM DASD worksheet” on page 15.

Logon to MAINT. In this example the devices are A719-A71E. Query the devices that you want to assign as PERM space:

```bash
==> q <a719-a71e>
DASD A719 LAA719 , DASD A71A LAA71A , DASD A71B LAA71B , DASD A71C LAA71C
DASD A71D LAA71D , DASD A71E LAA71E
==> det a719-a71e system
DASD A719 DETACHED SYSTEM
DASD A71A DETACHED SYSTEM
...
```

Attach the six DASD to MAINT. When attaching volumes to your own user ID, the * parameter can be used.

```bash
==> att <a719-a71e> *
A719-A71E ATTACHED TO MAINT
```

Now format the DASD for PERM or minidisk space with the CPFORMAT command that is associated with this book.

```bash
==> cpformat <a719-a71e> as perm
```

Label the following DASD:

```bash
TargetID Tdev OwnerID Odev Dtype Vol-ID Rdev StartLoc Size
MAINT A719 MAINT A719 3390 LAA719 A719 0 3339
TargetID Tdev OwnerID Odev Dtype Vol-ID Rdev StartLoc Size
MAINT A71A MAINT A71A 3390 LAA71A A71A 0 3339
TargetID Tdev OwnerID Odev Dtype Vol-ID Rdev StartLoc Size
MAINT A71B MAINT A71B 3390 LAA71B A71B 0 3339
TargetID Tdev OwnerID Odev Dtype Vol-ID Rdev StartLoc Size
```
Chapter 9. Configure Linux for cloning

9.4.2 Defining six more user IDs

Define six more user IDs for Linux virtual servers in the USER DIRECT file named LINUX02 - LINUX07. You will need to use the DASD volumes you just formatted: one for each virtual server. You can repeat the definition of LINUX01 six times with the block copy ""6 prefix command. For example:

```bash
=> x user direct
====> /user linux01
...
""6 *
01846 USER LINUX01 LNX4VM 256M 1G G
01847 INCLUDE LNXDFLT
01848 OPTION APPLMON
01849 MDISK 100 3390 0001 3038 MMA718 MR LNX4VM LNX4VM LNX4VM
01850 MDISK 102 3390 3039 0300 MMA718 MR LNX4VM LNX4VM LNX4VM
""6 MINIOPT NOMDC
```

This will create six more copies of the LINUX01. Modify them to have a user ID of LINUX02 - LINUX07, and give each new ID the proper 3390-3 identified by label (MMA719-MMA71E in this example):
Go to the top of the file and find the definition for the user $ALLOC$. Add dummy definitions for cylinder 0 of each of the new volumes and save the changes:

```plaintext
====> top
====> /alloc
USER $ALLOC$ NOLOG
 MDISK A01 3390 000 001 520RES R
...
 MDISK A09 3390 000 001 MMA718 R
 MDISK A0A 3390 000 001 MMA719 R
 MDISK A0B 3390 000 001 MMA71A R
 MDISK A0C 3390 000 001 MMA71B R
 MDISK A0D 3390 000 001 MMA71C R
 MDISK A0E 3390 000 001 MMA71D R
 MDISK A0F 3390 000 001 MMA71E R
...
====> file
```

Check for overlaps and the single gap. Quit out of the USER DISKMAP file:

```plaintext
==> diskmap user
==> x user diskmap
====> all /gap/|/overlap/
-------------------------- 4 line(s) not displayed --------------------------
0 500 501 GAP
-------------------------- 368 line(s) not displayed --------------------------
====> quit
```

Bring the changes online with the DIRECTXA USER command:

```plaintext
==> directxa user
z/VM USER DIRECTORY CREATION PROGRAM - VERSION 5 RELEASE 1.0
EOJ DIRECTORY UPDATED AND ON LINE
```

You have now created six new user IDs that can be cloned to.
9.4.3 Creating six new parameter files

A new parameter must be created for each of the user IDs with the proper networking information. Link and access the LNXMAINT 192 disk read/write and create six new parameter files:

```plaintext
=> link lnxmaint 192 1192 mr
=> acc 1192 f
=> copy linux01 parmfile f linux02 = =
=> copy linux01 parmfile f linux03 = =
=> copy linux01 parmfile f linux04 = =
=> copy linux01 parmfile f linux05 = =
=> copy linux01 parmfile f linux06 = =
=> copy linux01 parmfile f linux07 = =
```

Edit each of the six files replacing the appropriate network values. For example, in the LINUX02 PARMFILE, only the TCP/IP address and DNS name need to be modified as all other network and other values are the same:

```plaintext
=> x linux02 parmfile f
ramdisk_size=65536 root=/dev/ram1 ro init=/linuxrc TERM=dumb
INST_PASSWORD=lnx4vm IP_ADDR=<129.40.178.122> AUTOINSTALL=yes
IP_HOST=<lat122.pbm.ihost.com> IP_GATEWAY=129.40.178.254
IP_INTERFACE=qeth IP_MTU=1500 IP_NETMASK=255.255.255.0
IP_BROADCAST=129.40.178.255 READ_DEVNO=600 WRITE_DEVNO=601
DATA_DEVNO=602 PORTNAME=dontcare IP_DNS=129.40.106.1
INST_INFO=nfs INST_IP_ADDR=129.40.178.130
INST_IP_DIR=/mnt/sles9root INST_SCREEN=VNC VNC_PASSWORD=lnx4vm
====> file
=> x linux03 parmfile f
```

When you are finished, release and detach the LNXMAINT 192 disk.

```plaintext
=> rel f (det
DASD 1192 DETACHED
```

9.4.4 Granting user IDs access to VSWITCH

Modify the PROFILE EXEC on AUTOLOG1 191 to grant access to the VSWITCH for the six new user IDs and add XAUTOLOG commands so they will booted when the z/VM system IPLs.

Link and access the AUTOLOG1 191 disk so the file can be modified from MAINT:

```plaintext
=> link autolog1 191 1191 mr
=> acc 1191 f
```

Edit the PROFILE EXEC:

```plaintext
=> x profile exec f
... /* Grant access to VSWITCH for each Linux user */
'CP SET VSWITCH VSW1 GRANT SLES9'
'CP SET VSWITCH VSW1 GRANT LINUX01'
'CP SET VSWITCH VSW1 GRANT LINUX02'
'CP SET VSWITCH VSW1 GRANT LINUX03'
'CP SET VSWITCH VSW1 GRANT LINUX04'
'CP SET VSWITCH VSW1 GRANT LINUX05'
'CP SET VSWITCH VSW1 GRANT LINUX06'
'CP SET VSWITCH VSW1 GRANT LINUX07'
/* XAUTOLOG each Linux user that should be started */
```
It is easiest to grant access to the new user IDs for the current z/VM session with the `SET VSWITCH` command:

```plaintext
==> set vswitch vsw1 grant linux02
Command complete
==> set vswitch vsw1 grant linux03
Command complete
==> set vswitch vsw1 grant linux04
Command complete
==> set vswitch vsw1 grant linux05
Command complete
==> set vswitch vsw1 grant linux06
Command complete
==> set vswitch vsw1 grant linux07
Command complete
```

Verify that the user IDs have access with the `QUERY VSWITCH ACCESSLIST` command:

```plaintext
==> query vswitch vsw1 acc
VSWITCH SYSTEM VSW1 Type: VSWITCH Connected: 4 Maxconn: INFINITE
 PERSISTENT RESTRICTED NONROUTER Accounting: OFF
 VLAN Unaware
 State: Ready
 IPTimeout: 5 QueueStorage: 8
 Portname: UNASSIGNED RDEV: 3004 Controller: DTCVSW1 VDEV: 3004
 Portname: UNASSIGNED RDEV: 3008 Controller: DTCVSW2 VDEV: 3008 BACKUP
 Authorized userids:
 SLES9X LINUX01 LINUX02 LINUX03 LINUX04 LINUX05 LINUX06 LINUX07 SYSTEM
```

### 9.4.5 Testing logging on to a new user ID

You should now be able to logon to a new user ID and verify the integrity of the definitions. **Logon to LINUX02** and you should first notice that a NIC is created:

```plaintext
LOGON LINUX07
00: NIC 0600 is created; devices 0600-0602 defined
...
```

If you forgot to grant access to the VSWITCH you will see an error message. Verify that you have OSA devices at addresses 600-602, and read/write DASD devices at addresses 100-102:

```plaintext
==> q osa
00: OSA 0600 ON NIC 0600 UNIT 000 SUBCHANNEL = 0002
00: 0600 QDIO-ELIGIBLE QIOASSIST-ELIGIBLE
...
==> q da
00: DASD 0100 3390 MMA719 R/W 3038 CYL ON DASD E34F SUBCHANNEL = 0000
00: DASD 0101 9336 (VDSK) R/W 524288 BLK ON DASD VDSK SUBCHANNEL = 0011
```
Logoff of LINUX02.

Congratulations, you have cloned one Linux virtual server and defined six more user IDs that should now be ready for cloning to. You will clone to these user IDs in the chapters that follow.

9.5 Reviewing system status

You can step back now and view your system from a DASD point of view as shown in Figure 9-2. If you have followed all sections in this book you should have used 24 3390-3 volumes: 10 for your z/VM system, 7 for the Linux controller and master image and one for each of the seven virtual servers.

You can also view the system from an administrator’s and end user point of view as shown by the horizontal lines and the italicized text on the right side of the figure. The z/VM and Linux system administration roles may be performed by the same person, but these roles can also be done by different administrators. The Linux end users may not care that their servers are virtual machines and may be oblivious to the fact that they might have been cloned in a matter of minutes.
Chapter 10. Cloning open source virtual servers

The secret to creativity is knowing how to hide your sources.
--Albert Einstein

This chapter describes how to clone and customize the following Linux virtual servers:

- “Creating a virtual Web server” on page 147
- “Creating a virtual LDAP server” on page 151
- “Creating a virtual file and print server” on page 159
- “Creating a virtual application development server” on page 162

10.1 Creating a virtual Web server

The example in this section uses the LINUX01 user ID to create a virtual Web server. You should have a vanilla virtual server cloned to the user ID LINUX01 as described in Chapter 9, “Configure Linux for cloning” on page 131.

10.1.1 Installing Apache RPMs

SSH into the IP address of the new LINUX01 server. Install the following Apache RPMs via the yast -i command:

```bash
yast -i apache2-prefork apache2 apache2-doc apache2-example-pages
```

You will see yast menus go by as the Apache RPMs are installed. When it is complete you can confirm the RPMs have been added via the rpm -qa command:

```bash
rpm -qa | grep apache
apache2-2.0.49-27.8
apache2-example-pages-2.0.49-27.8
apache2-prefork-2.0.49-27.8
apache2-doc-2.0.49-27.8
```
10.1.2 Testing Apache

Start the Apache Web server to verify it is installed successfully. You must start Apache as root, but it will then launch child processes as a less privileged user to listen for and handle requests.

```
rcapache2 start
Starting httpd2 (prefork) done
```

To verify that Apache is installed correctly, after it's been started, point a Web browser to the server and see the Apache test page. In your Web browser, put in the host name or IP address of your Web server as the URL. For example, the virtual server running on LINUX01 has a DNS name of lat121.pbm.ihost.com:

```
http://lat121.pbm.ihost.com
```

You should see a test page similar to the following:

If you get an error in starting Apache, look in the log file `/var/log/apache2/error-log` for clues. If Apache started successfully but you can’t reach the test page from a browser, try accessing it using the IP address rather than the DNS name.

10.1.3 Configuring SSL for Apache

Secure Sockets Layer (SSL) is used to encrypt data between the client (browser) and the server. In order for the client to know you are a legitimate Web server, you will first need to create a server certificate. Then, with your certificate in hand, you can setup Apache to provide secure communications with SSL.

**Creating a server certificate**

It is recommended that you first create a self-signed certificate to test that your SSL configuration is correct. Then for production purposes you may wish to purchase a certificate signed by a trusted Certificate Authority (CA).

Use OpenSSL to create the certificate. This process includes:

1. Creating a public/private key pair
2. Creating a certificate request.
3. Creating a server certificate

4. Use the `openssl` command to generate an RSA key pair. The `-rand` switch is used to provide OpenSSL with randomized data to ensure that generated keys are unique and unpredictable. Substitute `<file1:file2:file3>` with paths to large, random files on your system.

```
cd ~
openssl genrsa -rand <file1:file2:file3> -out <lat121.key> 1024
43208 semi-random bytes loaded
Generating RSA private key, 1024 bit long modulus
..
e is 65537 (0x10001)
```

5. Create a certificate request. This is needed to create a self-signed certificate or to obtain a CA-signed certificate. The creation process will ask you questions about your business. Answer them as appropriate:

```
openssl req -new -key <lat121.key> -out <lat121.csr>
You are about to be asked to enter information that will be incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:<US>
State or Province Name (full name) [Some-State]:<NY>
Locality Name (eg, city) []:<Poughkeepsie>
Organization Name (eg, company) [Internet Widgits Pty Ltd]:<IHOST>
Organizational Unit Name (eg, section) []:<PBM>
Common Name (eg, YOUR name) []:<Admin>
Email Address []:<admin@pbm.ihost.com>
Please enter the following 'extra' attributes to be sent with your certificate request
A challenge password []:<a3tfgm>
An optional company name []:<IHOST>
```

6. To obtain a server certificate, you can either create a self-signed certificate, or obtain a trusted CA-signed certificate. Trusted Certificate Authorities include GeoTrust, VeriSign and Thawte. Submit your certificate signing request (the `.csr` file you just created) to one of them for processing (See 10.1.5, “Apache resources” on page 151 for their URLs). To create your own self-signed certificate, run the following command:

```
openssl x509 -req -days 30 -in <lat121.csr> -signkey <lat121.key> -out <lat121.crt>
Signature ok
subject=/C=US/ST=NY/L=Poughkeepsie/O=IHOST/OU=PBM/CN=Admin/emailAddress=admin@ihost.pbm.com
Getting Private key
```

7. Move the SSL files into the appropriate directories under Apache:

```
mv <lat121.key> /etc/apache2/ssl.key
mv <lat121.crt> /etc/apache2/ssl.crt
```

**Setting up virtual hosts**

Because SSL-protected Web pages run on a different port than the non-protected Web pages, you should consider them separate Web servers. A common way of serving an SSL-enabled Web site is to create a virtual host on the Web server. Apache’s Virtual Host capability allows you to have multiple Web servers on one machine. The main configuration
file `/etc/apache2/httpd.conf` reads virtual hosts information from included configuration files in the directory `/etc/apache2/vhosts.d/`. To create a virtual host configuration file, copy the template file `vhost-ssl.template` to your own configuration file and customize it with the paths to SSL logs and your SSL certificate and key. The lines that need to be modified are in bold:

```
cd /etc/apache2/vhosts.d
cp vhost-ssl.template ssl.conf
vi ssl.conf

<VirtualHost _default_:443>
 # General setup for the virtual host
 DocumentRoot "/srv/www/htdocs"
 #ServerName www.example.com:443
 #ServerAdmin webmaster@example.com
 ErrorLog /var/log/apache2/ssl_error_log
 TransferLog /var/log/apache2/ssl_access_log

 # Server Certificate:
 # Point SSLCertificateFile at a PEM encoded certificate. If
 # the certificate is encrypted, then you will be prompted for a
 # pass phrase. Note that a kill -HUP will prompt again. Keep
 # in mind that if you have both an RSA and a DSA certificate you
 # can configure both in parallel (to also allow the use of DSA
 # ciphers, etc.)
 SSLCertificateFile /etc/apache2/ssl.crt/<lat121.crt>
 #SSLCertificateFile /etc/apache2/ssl.crt/server-dsa.crt

 # Server Private Key:
 # If the key is not combined with the certificate, use this
 # directive to point at the key file. Keep in mind that if
 # you've both a RSA and a DSA private key you can configure
 # both in parallel (to also allow the use of DSA ciphers, etc.)
 SSLCertificateKeyFile /etc/apache2/ssl.key/<lat121.key>
 #SSLCertificateKeyFile /etc/apache2/ssl.key/server-dsa.key
```

Edit the configuration file for the Apache startup script, `/etc/sysconfig/apache2`, to add a start time flag to let Apache know to enable SSL:

```
vi /etc/sysconfig/apache2

APACHE_SERVER_FLAGS="SSL"
```

If Apache is already running, you need to restart it to take the changes:

```
rcpapache2 restart
Syntax OK
Shutting down httpd2 (waiting for all children to terminate) done
Starting httpd2 (prefork) done
```

Test the SSL-enables Web server by pointing a browser to:

```
https://<lat131.pbm.ihost.com>
```

If you are using a self-signed certificate, then you will see a warning before your browser downloads the page. It is simply telling you that it is not signed by a trusted CA, click Yes to proceed:
Chapter 10. Cloning open source virtual servers

10.1.4 Populating your Web site

You can begin to put your Web pages in the directory /srv/www/htdocs/, which is the default Web root. For security and customization purposes, you might want to change the default Web root to point to another directory. The easiest way to do this is to copy /etc/apache2/default-server.conf to your own configuration file, i.e. /etc/apache2/my-server.conf.

Make the changes in /etc/apache2/my-server.conf, and then edit /etc/apache2/httpd.conf to use my-server.conf.

10.1.5 Apache resources

The following Web sites contain additional information on Apache:

http://www.samspublishing.com/articles/article.asp?p=30115&seqNum=4
http://www.sitepoint.com/article/securing-apache-2-server-ssl
http://www.securityfocus.com/infocus/1786

10.2 Creating a virtual LDAP server

The Lightweight Directory Access Protocol (LDAP) is commonly implemented via the OpenLDAP package which comes standard with most Linux distributions. Among other directory functions, OpenLDAP allows for centralized login authentication and user and group ID resolution.

In this section you will install Linux manually and set up login authentication to the new virtual LDAP server. Then you will go back to the virtual Web server you just created and point it to the new LDAP server.
Then you may want to configure the master image so that it is pointing to this virtual server. If you do so, all Linux images that are cloned will be able to use this virtual LDAP server.

The steps in this section are as follow:

- “Manually installing a Linux virtual server” on page 152
- “Configuring the virtual LDAP server” on page 155
- “Investigating the new virtual server” on page 155
- “Adding a new user” on page 155
- “Setting another virtual server to use LDAP server” on page 156
- “Pointing the master image to the virtual LDAP server” on page 158

**10.2.1 Manually installing a Linux virtual server**

For OpenLDAP to work properly, you must have a working DNS server and the DNS name and IP address values set in the LINUX02 PARMFILE must be associated.

It is recommended that you manually install Linux to create a virtual LDAP server rather than cloning a virtual server. The reason for this is because of the LDAP and certificate configuration module which is invoked in the second half of a manual install. When installing both the master image and controller, it was recommended that you skip the Service Configuration window. When installing the virtual LDAP server, this YaST configuration module will be used - it makes setting up OpenLDAP much easier.

Open a 3270 session to LINUX02 to install Linux manually. If Linux is running you can kill the current system with the command `#CP IPL CMS`. You should be prompted to IPL Linux - answer n to the question:

```
LOGON LINUX02
...
Do you want to IPL Linux from DASD 100? y/n
n
```

Invoke the SLES9X EXEC to begin a manual install of a 64-bit system

```
=> sles9x
...
```

Complete the first half of the install as described in 7.3.1, “Begin the SLES9 installation” on page 91. If you have cloned to LINUX02 you can safely skip the formatting of disks 100 and 102 after you activate them. The first half of the install will be the same.

From a 3270 session you will **IPL 100** to complete the second half of the installation which is described in 7.3.5, “Completing YaST2 installation” on page 96, however there will be some differences:

1. Set the root password.
2. Accept the default values in the Network Configuration panel.
3. On the Test Internet Connection panel, select **No, Skip This Test**.
4. Do not skip the Service Configuration panel. Accept the default of the Use Default Configuration radio button and click OpenLDAP server as shown in Figure 10-3.
5. You will see a warning message starting with Changing anything in this dialog ... Click OK.

6. This should bring you to the Configure LDAP Server panel as shown in Figure 10-4 on page 153. Click the Enable Server radio button. Uncheck the Register at an SLP Daemon check box at the bottom and click Next.
7. This will bring you back to the Service Configuration panel. Click Next.

8. You should see a certificate being created.

9. This will take you to a message box stating To configure the LDAP server the OpenLDAP package must be installed. Click Continue and the appropriate RPMs will be installed.

**Important:** If you see the error “Could not create database”, this is not good. This appears to be a result of using the Back button during the process described. If you get this, it is probably easiest to begin the install again, as LDAP server is in an unknown state.

10. In the User Authentication Method panel accept the default of LDAP and click Next.

11. You will again see a message that the pam_ldap and nss_ldap packages must be installed. Click Continue and the appropriate RPMs will be installed.

12. In the LDAP Client Configuration panel, accept the defaults and click Next.

13. In the Add a new LDAP user panel, add one new LDAP user. An example is shown in Figure 10-5 on page 154 of adding the user mikem. Click Next when you are ready.

![Add a New LDAP User panel](image)

**Figure 10-5** Add New LDAP User panel

14. Accept the defaults on the last two panels of the installation panels and click Finish.

15. Go back to your 3270 session and clear the screen. Your VNC session will end and your new system will complete booting.

You should now have a vanilla 64-bit SLES9 system with an LDAP server installed and initially configured.
10.2.2 Configuring the virtual LDAP server

Because you did not clone this server from the master image, you did not pick up the configuration that you did to it. Go back to section 7.4, “Configuring the master image” on page 97 and repeat the steps that you performed on the master image.

10.2.3 Investigating the new virtual server

Your new system should come back in a minute or two. **Start an SSH session as root to your new virtual server.**

Verify that LDAP is running:

```
rcldap status
Checking for service ldap: running
```

The user that was added (**mikem** in this example) should exist. Look for it the entry in the `/etc/passwd` file:

```
id <mikem>
uid=1000(mikem) gid=100(users) groups=100(users)
grep <mikem> /etc/passwd
```

The `grep` command gives no output. Why is this? Because the user was not added to the local file system. Rather, it was added to the OpenLDAP database. Confirm this via the `ldapsearch` `-x` command searching for the entry with `uid=mikem` in this example:

```
ldapsearch -x uid=<mikem>
... # mikem, people, pbm.ihost.com
dn: uid=mikem,ou=people,dc=pbm,dc=ihost,dc=com
...
```

This shows that the user named **mikem** has been added to the LDAP server.

10.2.4 Adding a new user

The first LDAP user was added during Linux installation. There are a number of different ways to adding LDAP users. It can be done with the `ldapadd` command and a manually edited LDIF file, or it can be done with a graphical LDAP browser such as `gq`. But perhaps `yast` in curses mode is a good compromise between these two.

1. Invoke `yast`:

```
yast
```

```
+---------------------------+---------------------------+
| YaST Control Center |
+---------------------------+---------------------------+
|Software |CA Management |
|Hardware |Edit and create groups |
|System |Edit and create users |
|Network Devices |Firewall |
|Network Services |Import Common Server Certificate|
|Security and Users |Security settings |
|Misc |VPN |
+---------------------------+---------------------------+
```
2. On the main panel, choose **Security and Users** then **Edit and create users** on the right side.

3. You will be prompted for the LDAP (root) password. Enter the password, Tab to **OK** and press **Enter**.

4. You will see the **Edit and Create Users** panel. Tab to **Add** and press **Enter**.

5. You will see the User Data panel. Enter the information for the new user, tab to **Create** and press **Enter**.

6. In the **User and Group Administration** panel tab to **Finish** and press **Enter**. The user will be added to the LDAP server.

7. In the **YaST Control Center**, tab to **Quit** and press **Enter**.

Now you should be able to SSH into the LDAP virtual server with the new user's credentials.

### 10.2.5 Setting another virtual server to use LDAP server

Now that you have a virtual LDAP server, you may want to point the other virtual servers to it so you will have a centralized user database. If you have been following along in this book you have created a Web server running on the LINUX01 user ID. To point it to an LDAP server is fairly easy: you will need to install some RPMs and do some configuration. In this section you will perform the following steps:

- “Testing that the LDAP client is not working” on page 156
- “Adding two LDAP RPMs” on page 156
- “Using YaST to modify the LDAP authentication client” on page 156
- “Modifying the OpenLDAP client configuration file” on page 157
- “Testing the LDAP client” on page 158

#### Testing that the LDAP client is not working

Before you start, try a couple of commands to show that LDAP is not working. Get an SSH session to the virtual Web server running on the user ID LINUX01. Use the LDAP user ID that you added earlier to the virtual LDAP server. In this example it is mikem.

```bash
ldapsearch -x uid=<mikem>
ldap_bind: Can't contact LDAP server (-1)
id <mikem>
```

The `ldapsearch` command cannot resolve the LDAP user because it cannot contact the LDAP server. Similarly, the `id` command gives no output for the same reason.

#### Adding two LDAP RPMs

Use the `yast -i` command to add the RPMs `pam_ldap` and `nss_ldap`:

```bash
yast -i pam_ldap nss_ldap
```

You should see the packages being added in YaST curses screens. When the process is complete verify that the two packages were added with the following `rpm` command:

```bash
rpm -qa | grep _ldap
pam_ldap-169-28.1
nss_ldap-215-59.5
```

#### Using YaST to modify the LDAP authentication client

The `yast` system administration interface can be used to configure the LDAP authentication client. Select **Network Services** on the left side of the main screen, then LDAP Client:

```bash
yast
```
On the panel that follows, use the Tab key to move to Use LDAP and press the space bar to select that choice:

That is all. Use the Tab key to move to Next and press Enter, then do the same for the Quit button on the main window. The changes will be made.

Modifying the OpenLDAP client configuration file

The previous step modifies the /etc/ldap.conf and /etc/nsswitch.conf files which are sufficient for LDAP client authentication, however, it does not modify the /etc/openldap/ldap.conf file which is used for the ldap* commands.

You don't need to make a backup as there is already a copy in the file ldap.conf.default. You can verify this with the diff command. If the files are identical there will be no output.

```bash
cd /etc/openldap
ls ldap.*
ldap.conf ldap.conf.default
diff ldap.conf ldap.conf.default
```

You may want to rename the file to follow the naming convention:

```bash
mv ldap.conf.default ldap.conf.orig
```
Modify the OpenLDAP client configuration file. This is the file that the `ldap*` commands read. Set the BASE variable to the suffix of the LDAP tree (`dc=pbm, dc=ihost, dc=com` in this example), and set the URI variable to the LDAP server TCP/IP address (`129.40.178.122` in this example):

```
vi ldap.conf // modify the BASE (LDAP tree suffix) and the URI (LDAP server)
#
LDAP Defaults
#
#
See ldap.conf(5) for details
This file should be world readable but not world writable.

BASE <dc=pbm, dc=ihost, dc=com>
URI <ldap://129.40.178.122>
```

### Testing the LDAP client

Save the file. Now try the `id` and `ldapsearch` commands again. This time they should both succeed:

```
id mikem
uid=1000(mikem) gid=100(users)
groups=100(users),14(uucp),16(dialout),17(audio),33(video)
ldapsearch -x uid=mikem
extended LDIF
#
LDAPv3
base <> with scope sub
filter: uid=mikem
requesting: ALL
#
#
mikem, people, pbm.ihost.com
dn: uid=mikem,ou=people,dc=pbm,dc=ihost,dc=com
...
```

You should also be able to start an SSH session to the virtual Web server using the LDAP user.

### 10.2.6 Pointing the master image to the virtual LDAP server

You may want to point the master Linux image to this virtual LDAP server. To do so, you could shut down the controller, bring up master image (via `IPL 100`), point it to the new LDAP server the same way you just did. However, an easier way is to use the `chroot` command. Start an SSH session to the controller.

```
chroot /sles9master/
```

Now perform the same steps as you did on the virtual Web server (section 10.2.5, “Setting another virtual server to use LDAP server” on page 156). When you are done, exit form the `chrooted` session:

```
exit
```

Now clone a virtual server and test logging in as an LDAP user. If this succeeds, all virtual servers cloned will be able to authenticate login sessions to the LDAP user and group directory.
10.3 Creating a virtual file and print server

Samba allows Windows clients to map Linux file systems as shared drives. Samba can also act as a middle-man between Windows clients and a Linux print server. The recommended Linux print server is CUPS - the Common UNIX Printing System. This section does not describe the configuration of CUPS but it does describe how the necessary RPMs are installed.

The steps in this section are as follow:

- “Cloning a Linux virtual server” on page 159
- “Installing necessary RPMs” on page 159
- “Running Bastille” on page 160
- “Configuring Samba configuration file” on page 160
- “Adding a Samba user” on page 160
- “Starting Samba at boot time” on page 161
- “Testing your changes” on page 161

10.3.1 Cloning a Linux virtual server

From the controller, clone a basic virtual server. In this example the user ID LINUX03 is used.

```
clone.sh linux03
...
```

SSH in to the new virtual server.

10.3.2 Installing necessary RPMs

Add the following RPMs via the `yast -i` command:

```
yast -i samba yast2-samba-server samba-doc samba-pdb samba-vscan samba-winbind cups \\
cups-drivers ghostscript-serv
```

You will see a number of YaST curses screens flash by as the RPMs are added to the system.

Confirm that the RPMs were added:

```
rpm -qa | grep “samba|cups”
cups-libs-1.1.20-108.15
samba-doc-3.0.9-2.1.5
samba-pdb-3.0.9-2.1.5
samba-vscan-0.3.5-11.7.5
yast2-samba-client-2.9.17-1.3
samba-client-3.0.9-2.1.5
cups-client-1.1.20-108.15
samba-3.0.9-2.1.5
samba-winbind-3.0.9-2.1.5
yast2-samba-server-2.9.28-1.7
cups-drivers-1.1.20-66.6
cups-1.1.20-108.15
```

When completed you should still have about 1.4GB free (your values may differ):

```
df -h
Filesystem Size Used Avail Use% Mounted on
/dev/dasda1 2.1G 656M 1.4G 33% /
tmpfs 124M 0 124M 0% /dev/shm
```
10.3.3 Running Bastille

When Bastille was run after the master image was installed, one of the settings deactivated Samba. You must undo this change, by modifying the Bastille configuration file, /etc/Bastille/config and running bastille again. Edit the file with vi, search for the string Samba with the subcommand /Samba and set the value of MiscellaneousDaemons.remotefs from Y to N:

```
cd /etc/Bastille/
cp config config.orig
vi config // Search for Samba (/Samba) and change Y to N
Q: Would you like to deactivate NFS and Samba? [Y]
MiscellaneousDaemons.remotefs="N"
```

Then run bastille with the -b flag which instructs it to get answers from the configuration file.

```
bastille -b
 Bastille has disabled keyboard interrupts.
...
...
##
Errors have occurred in the configuration.
Please view the following file for more details:
 /var/log/Bastille/error-log
##
```

Don’t be concerned with the last error message. It is related to the file /etc/grub.conf which does not exist on zSeries Linux.

10.3.4 Configuring Samba configuration file

The one configuration file for Samba is /etc/samba/smb.conf. It is easy to add an SMB share that will be made available by the Samba server. A good test directory is /usr/share/doc/ as it has much good Linux documentation. The following example will create a file share named sharedoc:

```
cd /etc/samba
cp smb.conf smb.conf.orig
vi smb.conf // add three lines at the bottom of the file:
...
[sharedoc]
 comment = SLES9 on zSeries documentation
 path = /usr/share/doc/
```

This will cause an SMB share named sharedoc consisting of the contents of /usr/share/doc to be created when Samba is started.

10.3.5 Adding a Samba user

The default method that Samba uses to determine users’ credentials is to look in the /etc/samba/smbpasswd file. That user must first exist in the Linux file system (/etc/passwd, /etc/shadow, etc). To create a new Samba user, the smbpasswd -a command is used. The following example shows adding the user mikem first to Linux then to the smbpasswd file.

```
id mikem
id: mikem: No such user
useradd mikem
passwd mikem
Changing password for mikem.
```
New password:
Re-enter new password:
Password changed
# mkdir /home/mikem
# chown mikem.users /home/mikem
# smbpasswd -a mikem
New SMB password:
Retype new SMB password:
Added user mikem.

You can see that the last smbpasswd command added mikem to the file smbpasswd:

    # cat smbpasswd
...  
mikem:1001:F32652690ACBE94E2DF489AB080E4:DF43568E4E68049E43A6B09EBB041A6:[U]:LCT-41F8EB94:

This method of maintaining Samba users, groups and passwords is good for a small number of users. For a larger number of users, merging Samba and LDAP is recommended. It is not a simple as pointing the virtual file and print server at the virtual LDAP server as described in 10.2.5, “Setting another virtual server to use LDAP server” on page 156, because the Samba schema must first be added to LDAP. Details are outside the scope of this book, but there are related presentations, Directory Serving Solutions Using OpenLDAP and File Serving Solutions Using Samba-3 on the Web at:

http://linuxvm.org/present/

10.3.6 Starting Samba at boot time

Samba consists of two daemons nmbd and smbd. They can be started for the current session with the rcnmbd and rcsmbd commands:

    # rcnmb start
    Starting Samba NMB daemon
done
    # rcsmb start
    Starting Samba SMB daemon
done

The following chkconfig commands will set these daemons to start at boot time:

    # chkconfig nmb on
    # chkconfig smb on

Samba should now be running and configured to start at boot time.

10.3.7 Testing your changes

You can verify that the Samba daemons are running via the status parameter to the rcsmb and rcnmb commands:

    # rcnmb status
    Checking for Samba NMB daemon
    running
    # rcsmb status
    Checking for Samba SMB daemon
    running

You can test getting a Samba share from a Windows desktop. Go to any Windows Explorer window (such as My Computer) and select Tools -> Map Network Drive. Use the Universal Naming Convention (UNC) to specify the Samba server and share name as shown in the
upper left corner of Figure 10-6 on page 162. In this example the UNC is \129.40.178.133\sharedoc. Then click Finish. If all the steps were correct, you should see the files in a new Explorer window as shown in the bottom right corner of the figure.

![Map Network Drive](image)

**Figure 10-6** Mapping a network drive to the Samba server

You should now have Samba configured and running with one new share available.

### 10.3.8 Configuring printing

Configuring printing is more complex and is beyond the scope of this section. For many more details see the Redpaper *Printing with Linux on zSeries Using CUPS and Samba*, REDP-3863.

### 10.4 Creating a virtual application development server

Most Linux distributions come with a basic set of application development tools, making Linux one of the most versatile development systems. These basic tools are ideal for projects of any size.

There are three main areas of development in Linux:

- Linux kernel development (C) for the Linux operating system itself, such as subsystems, device drivers, memory management.
- Application development (C/C++ and Java) for software to be used on Linux.
- Web development for applications to be run on the Web, such as stock trade applications or E-mail applications.

The development languages used in implementation range from scripting languages such as Python or Tcl, to compiled languages such as C/C++ and Java. There are software available
on Linux to help form a development system for developers to create integrated applications. MySQL and Apache are among them. A popular open source Web platform is LAMP, which stands for the open source software and programming languages used to make up the platform: Linux, Apache, MySQL, Python or PHP. Other times, it is just as useful to know about Linux development tools when you want to build an application from source code downloaded from www.sourceforge.net.

10.4.1 Cloning a Linux virtual server

From the controller clone a basic virtual server to LINUX04.

```
clone.sh linux04
...
```

SSH in to the new virtual server.

10.4.2 Scripting Languages

Scripts are good for quickly automating a process or writing your own commands. They are also used for being the backbone of robust applications. There are numerous scripting languages used in Linux application development, here are overviews of the most popular and general ones, obtained from their package descriptions.

- **Python**: Python is an interpreted, object-oriented programming language, and is often compared to Tcl, Perl, Scheme, or Java. You can find an overview of Python in the documentation and tutorials included in the python-doc (HTML) or python-doc-pdf (PDF) packages. To install the python interpreter, execute the command:

  ```
 # yast -i python
  ```

- **Perl**: Practical Extraction and Report Language. Perl is optimized for scanning arbitrary text files, extracting information from those text files, and printing reports based on that information. It is also good for many system management tasks. Perl is intended to be practical (easy to use, efficient, and complete) rather than beautiful (tiny, elegant, and minimal). To install perl, execute the command:

  ```
 # yast -i perl
  ```

- **tcl**: the "Tool Command Language", is a very simple programming language. Tcl provides basic language features such as variables, procedures, and control. It runs on almost any modern OS, such as Unix, Macintosh, and Windows 95/98/NT computers. The key feature of Tcl is its extensibility. Tcl was originally developed as a reusable command language for experimental Computer Aided Design (CAD) tools. The interpreter was implemented as a C library which could be linked to any application. It is very easy to add new functionality to the Tcl interpreter, so it is an ideal, reusable "macro language" that can be integrated into many applications. One of Tcl's best loved features is the ease with which one can add new commands (known as extensions). New commands can range from something as simple as a new format for producing output, to extensions such as Tk which provide graphically oriented programming paradigms. Another very popular extension is Expect which can be used to automate console-based interactive applications. To install tcl, execute the command

  ```
 # yast -i tcl
  ```

- **PHP**: PHP (recursive acronym for “PHP: Hypertext Preprocessor”) is a widely-used Open Source general-purpose scripting language that is especially suited for Web development and can be embedded into HTML. PHP development is focused on server-side scripting, but you can do much more with it. To install PHP, execute the command:

  ```
 # yast -i php
  ```
10.4.3 C/C++ development tools

Most Linux distributions come with the C/C++ compiler, gcc. This is also known as the GNU compiler collection because it can compile other languages such as Fortran but it’s most frequently used to compile C and C++ code. In the minimal SLES9 installation, none of the development packages are installed. In order to use gcc, you must install it using yast:

```bash
yast -i gcc
rpm -qa | grep gcc
gcc-3.3.3-43.24
```

gcc does preprocessing, compilation, assembly and linking for files with extensions .c, .cpp, and numerous others (see the gcc manual page). Most C/C++ programs will require preprocessing, compilation and assembly first to create object files, then linking combines all the object files into an executable file.

For security reasons, you shouldn’t use root for application development. You should either get another session as a non-root user or from root su to a non-root user. In this example, the non-root user developer1 is used. The files readfile.c and writefile.c are compiled into the executable files:

```bash
su - <developer1>
$ gcc -O -Wall -I/usr/local/include -o readfile.o -c readfile.c
$ gcc -O -Wall -I/usr/local/include -o writefile.o -c writefile.c
$ gcc -o fileoperations readfile.o writefile.o
```

The -O option is to generate optimized code, -Wall is used to display all warnings. The option -I is used to include header files needed by the source and -c is to tell gcc not to run the linker. The last command links the two object files into one executable file. For debugging using gdb, you can generate symbolic information using the -g option:

```bash
$ gcc -g -O -Wall -I/usr/local/include -o readfile.o readfile.c
$ gcc -g -O -Wall -I/usr/local/include -o writefile.o writefile.c
$ gcc -g -o fileoperations readfile.o writefile.o
```

The GNU debugger, or gdb, is a very popular and robust debugger for C/C++ programs. You can step through your program (that has been successfully compiled) to see where it is failing. Install it using yast:

```bash
yast -i gdb
```

There is a good tutorial on getting started with gdb:

http://www.unknownroad.com/rtfm/gdbtut/gdbuse.html

Keep in mind that you can also set breakpoints at functions in the code. Refer to the manual page of gdb for more information: man gdb.

To make a large program more manageable, developers usually create a makefile that specifies instructions on how to compile a program. Then use the GNU make tool to use the makefile to make a working program. For more information on makefiles, see

http://vertigo.hsrl.rutgers.edu/ug/make_help.html

To install make, issue the command:

```bash
yast -i make
```

10.4.4 Java development tools

SLES9 comes with IBM Java Standard Development Kit (SDK) which is needed if you want to develop Java applications. You need a Java Runtime Environment (JRE) if you only want to
run Java applications. Make sure you have the right Java package, if not or you're not sure which one you need, just install the SDK:

```
yast -i IBMJava2-SDK
```

Again, you should do application development as a non-root user. Open another SSH session and log in as a non-root user, or from the current session, su to a non-root user. Java programs are compiled using javac. Here's an example:

```
su - <developer1>
$ javac HelloWorld.java
$ java HelloWorld
Hello World!
```

The resulting file is HelloWorld.class which can be run if there is a main method defined in HelloWorld.java. For Java applets, run with appletviewer. If you are using methods from other classes that aren't in the same package, you can reference them using the -classpath option. For debugging information, use the -g option.

If your executable program has multiple class files, you can save the user time by making an executable .jar file. All you need to do is specify which class has the executable main method. This way the user just need one .jar file, instead of numerous class files.

First create a manifest file that specifies where the main method is by adding a simple one-liner. You must specify the package name as well:

```
$ vi mainClass
Main-Class: myHello.HelloWorld
```

Now use the jar command to create the executable jar file that knows where the main method is. All of the needed files are in the directory myHello, and are in the package myHello. The jar command (similar to tar) packages the directory contents into one file with the cmf flags. After packaging, check the contents with the tf flags:

```
$ jar cmf mainClass myHello.jar myHello
$ jar tf myHello.jar
META-INF/
META-INF/MANIFEST.MF
myHello/
myHello/HelloWorld.java
myHello/HelloWorld.class
myHello/PrintScreen.java
myHello/PrintScreen.class
```

Run the .jar file by invoking java with the -jar option.

```
$ java -jar myHello.jar
Hello World!
```

A good Java debugger is jdb, it comes with IBMJava2-SDK and can be run similar to gdb. A good tutorial is on the Web at:

```
http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/jdb.html
```

You can use the GNU make to build from Java makefiles or the more recent and popular Ant. Ant uses XML technology. Here's a great guide to get you started with either tool:

```
```

Your application development server is now ready to use.
10.4.5 Additional resources

The following Web sites are resources for additional information on application development topics:

**Scripting languages**
- [http://www.perl.com/](http://www.perl.com/)
- [http://www.python.org/](http://www.python.org/)

**C/C++**
- [http://vertigo.hsrl.rutgers.edu/ug/make_help.html](http://vertigo.hsrl.rutgers.edu/ug/make_help.html)

**Java**
- [http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/jdb.html](http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/jdb.html)

**Linux kernel development**
- [http://www.kernel.org/pub/linux/docs/lkml/#blkd](http://www.kernel.org/pub/linux/docs/lkml/#blkd)

**Web development**
- [http://cgi.resourceindex.com/](http://cgi.resourceindex.com/)
- [http://www.perl.com/](http://www.perl.com/)

**Help with vi**
- [http://www.freeos.com/guides/lsst/misc.htm#commonvi](http://www.freeos.com/guides/lsst/misc.htm#commonvi)
Chapter 11. Cloning IBM middleware virtual servers

Any fool can make things bigger, more complex, and more violent. It takes a touch of genius, and a lot of courage, to move in the opposite direction.

--Albert Einstein

This chapter elaborates on basic cloning by describing how the following IBM middleware products can be cloned:

- WebSphere Application Server V6.0.2
- DB2 V8.2
- MQ Series V6.0

The typical method of setting up servers with these products is to install and configure the software on a server and maintain the data associated with the solution on the same server. When it is time to upgrade to a new release, each server must be upgraded individually. As the number of these types of servers increases, the task of upgrading them becomes more and more cumbersome.

The scenarios described in this chapter allow you to install the products’ executables (or binaries) each on a single virtual server and allow for production and test versions. Call these the master servers. Then other virtual servers can be created that link to master servers’ binaries read-only, while the application data is read-write. Call these the clones.

On the master servers, there are two disks designed to be shared. One is referred to as production and one as test. Initially the first working version of the software is installed and tested on the production disk. The clones are created and link to that disk. When a new version is available, it can be installed onto the master servers’ test disk. The clones can link to those disks to test the new version of the software, while maintaining their own data read/write. When that software is successfully tested, it can be promoted to the production disk (Alternatively, you could name the disks A and B and simply alternate between them).

In this fashion, new updated software can easily be tested on the cloned Linux images, and a working production version can easily be reverted back to if necessary.
11.1 Setting up to clone IBM middleware

To set up cloning of IBM middleware, three new user ID are created for each of the three software products. These are called the masters: the user ID WAS for WebSphere Application Server, DB2 for DB2 UDB and MQS for MQ Series. Two minidisks are allocated to each user ID, one for production with virtual addresses of 30x and one for test with virtual addresses of 40x.

The following table is a summary.

<table>
<thead>
<tr>
<th>Software</th>
<th>z/VM User ID</th>
<th>Minidisks (production, test)</th>
<th>Mount point</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebSphere</td>
<td>WAS</td>
<td>300 and 400</td>
<td>/opt/IBM/Websphere/</td>
</tr>
<tr>
<td>DB2</td>
<td>DB2</td>
<td>301 and 401</td>
<td>/opt/IBM/db2/</td>
</tr>
<tr>
<td>MQ Series</td>
<td>MQS</td>
<td>302 and 402</td>
<td>/opt/mqm/</td>
</tr>
</tbody>
</table>

Each product’s binaries will be installed into the corresponding master server, however, no instance data is created. WebSphere is installed without creating a profile. DB2 is installed without defining DB2 users or creating an instance. MQ Series is installed without defining the MQ Series user or creating a queue. Being separate file systems, each of products’ directories of binaries (executables), /opt/IBM/WebSphere, /opt/IBM/DB2 and /opt/mqm, can be linked read-only by the z/VM virtual machines that will become the clones. Following is a block diagram showing an example clone with all three products’ directories mounted.

Figure 11-1 Cloning IBM middleware block diagram

11.1.1 Cloning using the clone.sh script

The sections that follow describe how to install each of these products onto the master servers and then how to manually create a clone of each. After describing how to clone manually, there is a description of how to automate the cloning by customizing the master
image and by extending the function of the `clone.sh` script. One script is added to the master image's `/etc/init.d/` directory for each of the three products. This script is designed to run once when the clone first comes to life.

Following is a block diagram of the process, using the cloning of WebSphere to the LINUX05 user ID as an example:

![Figure 11-2 Steps in cloning](image)

The user ID LINUX05 is defined to be cloned to.

In box 1 the command `clone.sh --was linux05` is invoked from the controller. This clones a Linux image to LINUX05. Because the `--was` flag is included, additional code is run to cause the clone to link the WebSphere master minidisk (300 in this example). When the process is complete (in less than a minute with `FLASHCOPY` support), a new Linux image exists in the LINUX05 user ID.

In box 2, the new clone is brought to life. It enters the default run level of 5. The last service script to be run when entering the run level is `/etc/init.d/wasprofile`. This script creates a Websphere profile using the WebSphere `wasprofile.sh` command. After the profile is created under the directory `/opt/IBM/wasprofiles/` the symbolic link is removed so the script won’t be run again when entering run level 5.

Box 3 shows that the link is gone, but new instance data exists under the directory `/opt/IBM/wasprofiles/`.

### 11.1.2 Creating three new user IDs on z/VM

To start, three new user IDs must be created for the master servers.
11.1.3 Formatting the DASD

Attach and format the DASD. In this example, 6 3390-3s at addresses A71F-A25 are used. After the DASD is formatted, attach it to SYSTEM so it can be used for minidisks. If you don’t remember how to do this, see section 4.6.2, “Formatting DASD for minidisks” on page 45.

11.1.4 Defining the user IDs

Three new user IDs are added: WAS, DB2 and MQS. Each is given a 3390-3 volume for the root file system and swap disk. The WebSphere user ID is given an entire 3390-3 volume (3338 cylinders) for both the production and test software. The DB2 and MQ Series IDs are given half of 3390-3 volume (1669 cylinders) for the production and test software. The user IDs are given a default machine size of 512MB and a maximum of 1 GB.

* USER WAS LNX4VM 512M 1G G
  INCLUDE LNXDFLT
  OPTION APPLMON
  MDISK 100 3390 0001 3038 MMA71F MR LNX4VM LNX4VM LNX4VM
  MDISK 102 3390 3039 0300 MMA71F MR LNX4VM LNX4VM LNX4VM
  MINIOPT NOMDC
  MDISK 300 3390 0001 3338 MMA720 MR LNX4VM LNX4VM LNX4VM
  MDISK 400 3390 0001 3338 MMA721 MR LNX4VM LNX4VM LNX4VM

* USER DB2 LNX4VM 512M 1G G
  INCLUDE LNXDFLT
  OPTION APPLMON
  MDISK 100 3390 0001 3038 MMA722 MR LNX4VM LNX4VM LNX4VM
  MDISK 102 3390 3039 0300 MMA722 MR LNX4VM LNX4VM LNX4VM
  MINIOPT NOMDC
  MDISK 301 3390 0001 1669 MMA723 MR LNX4VM LNX4VM LNX4VM
  MDISK 401 3390 1670 1669 MMA723 MR LNX4VM LNX4VM LNX4VM

* USER MQS LNX4VM 512M 1G G
  INCLUDE LNXDFLT
  OPTION APPLMON
  MDISK 100 3390 0001 3038 MMA724 MR LNX4VM LNX4VM LNX4VM
  MDISK 102 3390 3039 0300 MMA724 MR LNX4VM LNX4VM LNX4VM
  MINIOPT NOMDC
  MDISK 302 3390 0001 1669 MMA725 MR LNX4VM LNX4VM LNX4VM
  MDISK 402 3390 1670 1669 MMA725 MR LNX4VM LNX4VM LNX4VM

To test cloning, target Linux user IDs link these disks read/only. This is accomplished via a LINK statements in the USER DIRECT file. In the following example the user ID LINUX05 is modified so it has read-only links to both production and test disks of WAS, DB2 and MQS. This gives the flexibility of being able to clone any or all of the three types of servers to this user ID. Two other user IDs, LINUX06 and LINUX07 are similarly modified:

USER LINUX05 LNX4VM 512M 1G EG
  INCLUDE LNXDFLT
  OPTION APPLMON
  MDISK 100 3390 0001 3038 MMA71C MR LNX4VM LNX4VM LNX4VM
  MDISK 102 3390 3039 0300 MMA71C MR LNX4VM LNX4VM LNX4VM
  MINIOPT NOMDC
  LINK WAS 300 300 RR
  LINK WAS 400 400 RR
  LINK DB2 301 301 RR
  LINK DB2 401 401 RR
  LINK MQS 302 302 RR
  LINK MQS 402 402 RR
Verify there are no new gaps or overlaps via the `DISKMAP` command and bring the changes online via the `DIRECTXA` command:

```bash
==> diskmap user
The minidisks with the END option specified in this directory will not be included in the following DISKMAP file.

File USER DISKMAP A has been created.
==> x user diskmap
... // search for new gaps or overlaps
==> directxa user
z/VM USER DIRECTORY CREATION PROGRAM - VERSION 5 RELEASE 2.0
EOJ DIRECTORY UPDATED AND ON LINE
HCPDIR494I User directory occupies 43 disk pages
```

### 11.1.5 Giving user IDs access to VSWITCH and creating PARMFILEs

Give the three new user IDs access to the VSWITCH. If you do not remember how to do this, see section 4.8.1, “Configuring the AUTOLOG1 PROFILE EXEC” on page 52.

You have now defined three user IDs that will be the master servers for the three IBM middleware products and have modified three user IDs so the software can be cloned to them.

### 11.2 Modifying the master image

Modifications can be made to the master image so all cloned Linux images will be changed. Two modifications are recommended to the master image:

- RPMs are added
- Empty directories are made for mount points

These changes can be made after the clones are created so as to keep the master image as lean as possible. However, these changes are relatively small and have some commonalities, so they are done just once here. After these updates, all Linux clones will receive these traits.

#### 11.2.1 Adding RPMs to the master image

Some RPMs are added to the master image as all three IBM middleware products described in this section require them. They require two Java and two compatibility library RPMs.

An SSH session as root is started on the controller. The master image is “entered” via the `chroot` command, the RPMs are added:

```bash
chroot /sles9master/
yast -i IBMJava2-JRE IBMJava2-SDK compat compat-32bit
...
```
11.2.2 Creating mount points

Each of the three software products will be mounted over a unique directory as listed in Table 11-1 on page 168. Create these mount points in the master image. The binaries for each of the middleware can be mounted read-only over these directories in the cloned Linux images:

```
mkdir -p /opt/IBM/WebSphere /opt/IBM/db2 /opt/mqm
```

Also create the directory `/opt/IBM/wasprofiles/`. This will be used for the read/write WebSphere profiles in the cloned Linux images:

```
mkdir /opt/IBM/wasprofiles
```

Synchronized the disks and exit the “chrooted” environment:

```
sync
exit
```

11.3 Setting up the WebSphere 6 master

WebSphere version 6 installation is a two step process: first a wizard drives the installation of a set of shared core product files. The second step is a profile creation wizard that creates a deployment manager profile, an application server profile or a custom profile. A profile is a separate data partition that includes the files that define a run-time environment for an application server.

A running application server process, be it deployment manager or an application server, can modify any of the files in its profile but only requires read access to the systems files (or binaries).

For these reasons, the binaries can be installed on the master server and the profile can be created on the clones. Thus the read-write and read-only parts of the application are separated.

11.3.1 Background on WebSphere V6.0

The following section is a background on WebSphere version 6.0:

“WebSphere Application Server for Linux on zSeries at the 6.0.2 level is now supported as both a 31-bit and 64-bit application server and are two separate packages/binaries.

In addition to providing a Fix Pack for 31-bit WAS on a 64-bit distribution of Linux on zSeries (either SLES 9 or RHEL 4), WAS 6.0.2 now provides a 64-bit WAS using 64-bit JVM on a 64-bit distribution of Linux on zSeries (either SLES 9 or RHEL 4). See the following technical note for details regarding 64-bit WAS 6.0.2:

http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21210058

Please note that 64-bit WAS for Linux on zSeries needs to be ordered via Passport Advantage to obtain the updated product package for WAS V6.0.2. Install the appropriate compact disc from the updated WAS V6.0.2 product package to obtain the 64-bit exploitation support for 64-bit kernels running on Linux for zSeries platforms.

As for the Fix Pack 3 for 31-bit WAS 6.0.2 or WAS 6.0.2.3, the following web page provides more information plus the downloads for this FixPack:

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24010722

For WebSphere Application Server (WAS) Version 6.0.2:

http://www-306.ibm.com/software/webservers/appserv/doc/v60/prereqs/was_v602.htm
For WebSphere Application Server (WAS) Deployment Manager Version 6.0.2:

For Edge Components 6.0.2:

Note that WAS V6.0.2 and WAS Deployment Manager V6.0.2 both exploit 64-bit distributions of SLES 9 SP1 and RHEL 4 Update 1 on IBM System z9 and zSeries processors; however, WAS Edge Components are still 31-bit programs that only run on 31-bit distributions of SLES 8 SP3 or SP 4, SLES 9 or 9 SP1, RHEL 3 Update 2, 3 or 4, or RHEL 4. The WAS Edge Components will exploit 64-bit distributions in 2006."

11.3.2 Cloning a virtual server for the master WebSphere

Start an SSH session to the SLES9X controller as root. Use the clone.sh script to clone a 64-bit Linux system to the WAS user ID. This is step 1 shown in Figure 11-2 on page 169.

```
clone.sh was
Invoking CP command: QUERY WAS
HCPQ0045E WAS not logged on
Error: non-zero CP response for command 'QUERY WAS': #45
Setting device 0.0.0191 offline
Done
Setting device 0.0.0191 online
Done
WAS PARMFILE D1 V 73 8 1 2/02/2006 10:41:28
WARNING!!: this will copy 100 and 102 disks to WAS 100 and 102
New host name will be: lat132.pbm.ihost.com
New TCP/IP address will be: 129.40.178.132
Other network data is retrieved from WAS PARMFILE on 191 disk
Are you sure you want to overwrite these disks (y/n): y
Copying 0102 swap space to WAS ...
```

11.3.3 Preparing for installation

The installation that will be done in this section is a 31-bit WAS 6 onto a 64-bit SLES9. Then FixPack 2 will be applied to bring WAS up to version 6.0.2.

The following prerequisites should be met for WebSphere Application Server V6.0.2

- Install Java RPMs - JRE and SDK
- Install base and 32-bit compatibility libraries
- Adequate memory - 512 MB or more is recommended

Start an SSH session to the new Linux system running on the WAS user ID. Verify Java 1.4.2 is installed:

```
rpm -qa | grep Java
IBMJava2-SDK-1.4.2-0.60
IBMJava2-JRE-1.4.2-0.60
```

Verify the two compatibility library RPMs are installed:

```
rpm -qa | grep compat
compat-32bit-9-2004071011411
compat-2004.7.1-1.2
```

You should have at least a 512MB machine. Search for the lines with Mem in the file /proc/meminfo to verify:
grep Mem /proc/meminfo
MemTotal: 506544 kB
MemFree: 292412 kB

The value of MemTotal is not the entire 512 MB that z/VM reports, but it is sufficiently close to signify that you have a 512 MB system (your actual numbers may differ).

11.3.4 Enabling the new DASD

The WAS Linux system has minidisks at virtual addresses 300 and a 400, however, they are not enabled. This can be verified with the lsdasd command:

```
lsdasd
0.0.0100(ECKD) at (94: 0) is dasda : active at blocksize 4096, 546840 blocks, 2136 MB
0.0.0101(FBA) at (94: 4) is dasdb : active at blocksize 512, 524288 blocks, 256 MB
0.0.0102(ECKD) at (94: 8) is dasdc : active at blocksize 4096, 54000 blocks, 210 MB
```

Bring the WebSphere production and test disks online with the chccwdev command:

```
chccwdev -e 300
Setting device 0.0.0300 online
Done
chccwdev -e 400
Setting device 0.0.0400 online
Done
```

Verify the new DASD are now active via the lsdasd command:

```
lsdasd
0.0.0100(ECKD) at (94: 0) is dasda : active at blocksize 4096, 546840 blocks, 2136 MB
0.0.0101(FBA) at (94: 4) is dasdb : active at blocksize 512, 524288 blocks, 256 MB
0.0.0102(ECKD) at (94: 8) is dasdc : active at blocksize 4096, 54000 blocks, 210 MB
0.0.0300(ECKD) at (94: 12) is dasdd : active at blocksize 4096, 300420 blocks, 1173 MB
0.0.0400(ECKD) at (94: 16) is dasde : active at blocksize 4096, 300420 blocks, 1173 MB
```

Format the two DASD with the dasdfmt command:

```
dasdfmt -b 4096 -y -f /dev/dasdd
...
dasdfmt -b 4096 -y -f /dev/dasde
...
```

Create a single partition out of the two minidisks via the fdasd -a command:

```
fdasd -a /dev/dasdd
auto-creating one partition for the whole disk...
writing volume label...
writing VTOC...
rereading partition table...
fdasd -a /dev/dasde
auto-creating one partition for the whole disk...
writing volume label...
writing VTOC...
rereading partition table...
```

Minidisk 300, /dev/dasdd1, will be the production WebSphere server installation so use a label of was-prod. Minidisk 400, /dev/dasde1, will allow testing of upgraded WebSphere software, so use a label of was-test. These labels will be used in the /etc/fstab file of the clones that link to them rather than the more commonly used device file name.

Make ext3 file systems out of the two minidisks via the mke2fs -j command. Use the -L flag to set the labels of the two file systems.
Specify the new minidisks of 300 and 400 by adding them to the `dasd=` parameter of the `/etc/zipl.conf` file:

```bash
cd /etc/
cp zipl.conf zipl.conf.orig
vi zipl.conf
```

```bash
[defaultboot]
default = ipl

[ipl]
target = /boot/zipl
image = /boot/image
ramdisk = /boot/initrd,0x1000000
parameters = "root=/dev/dasda1 dasd=100-102,300,400 selinux=0 TERM=dumb elevator=cfq"

[dumpdasd]
target = /boot/zipl
dumpto = /dev/dasd??

[dumptape]
target = /boot/zipl
dumpto = /dev/rtibm0
```

Run the `zipl` command to write the parameter changes to the boot record.

```bash
zipl
Using config file `/etc/zipl.conf'
Building bootmap in `/boot/zipl'
Adding IPL section 'ipl' (default)
Preparing boot device: dasda (0100).
Done.
```

Now when the system is rebooted, the two new minidisks will be available as `/dev/dasdd1` and `/dev/dasde1`.

Modify the file system table, `/etc/fstab`, by adding a line to mount the new file system labeled `was-prod` over the directory `/opt/IBM/WebSphere/`. The disk with the label `was-test` is not used in this section. First make a backup copy of the `fstab` file:

```bash
cp fstab fstab.orig
vi fstab
/dev/dasda1 / ext3 acl,user_xattr 1 1
/dev/dasdb1 swap swap pri=42 0 0
/dev/dasdc1 swap swap pri=42 0 0
LABEL=was-prod /opt/IBM/WebSphere ext3 acl,user_xattr 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0
```

Test the change with the `mount` command with one parameter - just the directory to be mounted over. This will test your change to the `/etc/fstab` file.
mount /opt/IBM/WebSphere

No output signifies the mount was successful. Verify with the `ls` command. You should see the `lost+found/` directory which is created at the root of an ext3 file system:

```
ls /opt/IBM/WebSphere/
lost+found/
```

Reboot the system to fully test the changes.

```
reboot

Broadcast message from root (pts/0) (Fri Mar 17 12:16:08 2006):

The system is going down for reboot NOW!
exit
```

The system should be available again in a minute or two. Start an SSH session as root and verify that the production file system is mounted:

```
mount | grep opt
/dev/dasdd1 on /opt/IBM/WebSphere type ext3 (rw,acl,user_xattr)
```

### 11.3.5 Start the VNC server

Because the WebSphere install requires a graphical environment, a VNC session is recommended. Start the VNC server manually on Linux with the `vncserver` command. You will need to set the VNC server password:

```
vncserver

You will require a password to access your desktops.

Password: <dntfrget>
Verify: <dntfrget>
Would you like to enter a view-only password (y/n)? n

New 'X' desktop is lat132:1

Starting applications specified in /root/.vnc/xstartup
Log file is /root/.vnc/lat132:1.log
```

### 11.3.6 Start a VNC client

Connect to the VNC server with a VNC client. The VNC client will prompt you for the password you just set. You should see a session similar to the following:
11.3.7 Installing Websphere V6

To get a trial WebSphere CD, contact your IBM Software representative and ask for a Trial request form.

WAS Network Deployment (ND) v6 is installed without a profile being created. A profile is not created on the master because it will be done later on each of the clones. Then FixPack 2 is installed to bring the software up to version 6.0.2

The WAS6 install tool is a graphical application. Now that the VNC server is running on the WAS Linux system, start a VNC client session. Then perform the following:

In this example an NFS file system with the WebSphere V6.0 software is mounted over the /mnt/ directory:

```
mount 129.40.45.3:/nfs/labstuff /mnt
cd /mnt/wasnd60x/WAS
```

Use the `install` command in the current directory to start the WebSphere graphical installation program:

```
./install
InstallShield Wizard

Initializing InstallShield Wizard...

Searching for Java(tm) Virtual Machine...

.........
```

After about a minute, a graphical install Window should appear in the VNC client workspace.

1. At the *Welcome to IBM WAS Network Deployment V6* window click **Next**.
2. At the *Software License Agreement* window, select *I accept* the terms and click **Next**.
3. At the *System prerequisites check* window, click **Next**.
4. At the Installation directory window, accept the default of /opt/IBM/WebSphere/AppServer and click Next.

5. In the next window, deselect Application Server Samples and Javadocs as shown in Figure 11-4 on page 178 and click Next.

![Image of Installation wizard with deselected files]

**Figure 11-4** Deselecting files to install

6. In the next window, verify the settings and click Next. Installation will proceed for a few minutes.

7. At the Installation is complete window, uncheck the box Launch the Profile creation wizard and click Next.

8. You will receive the warning window shown in Figure 11-5 on page 179. This is expected because you are installing WAS without creating a profile. The profile will be created on the WebSphere clones and click Next.
9. At the Installation is complete window, uncheck the box Launch the First steps console and click Finish. The install process is now complete.

11.3.8 Install FixPack 2

In the example that follows, the WebSphere V6 fix pack 2 was obtained in the form of a tar file and made available in the NFS directory /mnt/was-fps/was602. In general, WebSphere fix packs can be obtained starting at the following Web site:

http://www-306.ibm.com/software/webservers/appserv/was/support/

Continue working from the graphical VNC client session.

1. Untar the fix pack.

```
cd /opt/IBM/WebSphere/AppServer
tar xvf /mnt/was-fps/was602x/6.0-WS-WAS-LinuxS390-RP000002.tar
License.txt
...
```

2. Start installing the fix pack via the update command in the updateinstaller/ directory:

```
cd updateinstaller
#/./update
InstallShield Wizard

Initializing InstallShield Wizard...

Searching for Java(tm) Virtual Machine...

........
```

3. The IBM Update Installer for WebSphere window appears. Click Next.

4. The next window prompts you for the location of the WebSphere product to be updated. Click Next to accept the default of /opt/IBM/WebSphere/AppServer.
5. The next window prompts you for the type of maintenance package. Click Next to accept the default of **Install maintenance package**.

6. The next window prompts you for the name of the maintenance package. Click Next to accept the default.

7. The maintenance package requires an update to an installed JDK. In order to continue, it is necessary to copy the current JDK to a new location and relaunch the wizard. Click Next and the JDK will be copied.

8. Click Relaunch and the wizard will go down, then will restart after a few seconds.

9. Again you will be prompted for the type of maintenance package. Click Next to accept the default.

10. Again you will be prompted for the name of the maintenance package. Click Next to accept the default. You should see a window similar to the following:

![Figure 11-6 Update Installer ready to begin install](image)

11. Click Next to begin the update installation. This will take some time - perhaps 10-15 minutes. When the installation is complete, you should see the following:
12. Click **Finish**.

13. Close the VNC client as you are done with graphical applications.

Go back to your SSH session and see how full the *was-prod* disk is. In this example it became a little more than two thirds full:

```
df -h | grep WebSphere
/dev/dasdd1 2.3G 1.5G 733M 67% /opt/IBM/WebSphere
```

You now have WebSphere installed and the binaries are ready to be shared read-only. However, there is one more change to make: that is in the `wasprofile.properties` file in the `/opt/IBM/WebSphere/AppServer/properties/` directory.

Change the log home variable to point to the directory where the WebSphere profile will exist `- /opt/IBM/wasprofiles/logs` and change the WAS profile registry variable to `/opt/IBM/wasprofiles/properties/profileRegistry.xml`:

```
cd /opt/IBM/WebSphere/AppServer/properties
cp wasprofile.properties wasprofile.properties.orig
vi wasprofile.properties
```

```
5724-I63, 5724-H88 (C) COPYRIGHT International Business Machines Corp. 2000, 2004
All Rights Reserved * Licensed Materials - Property of IBM

#--
The log home property determines the directory that would hold log
files produced by the wasprofile tool.
#
The default path is <install location>/logs/wasprofile.
#--
WS_CMT_LOG_HOME=/opt/IBM/wasprofiles/logs

The prefix for all wasprofile log file names.
```
WS_WSPROFILE_LOG_NAME_PREFIX=wasprofile

WS_PROFILE_REGISTRY=/opt/IBM/wasprofiles/properties/profileRegistry.xml

WS_WSPROFILE_LOG_LEVEL=3

Save your changes.

With this modification, on the clones, the WebSphere profiles will be expected in the read-write /opt/IBM/wasprofiles/ directory, not the read-only /opt/IBM/WebSphere/ directory.

11.3.9 Shutting down the WebSphere master

You are almost ready to manually clone a WebSphere server: you must first shut down the WebSphere master.

    # shutdown -h now

Broadcast message from root (pts/0) (Tue Jun  6 13:44:27 2006):

    The system is going down for system halt NOW!

The master should be shut down because the cloned images will need to link the disk read-only and mount it as ext2 so it does not try to write to a journal. For the clones to do this, the master must not have the disk mounted as ext3. Further, there is no need for the master to be running and using resources. Its main task is done by creating the disk to be linked read-only. It will only need to booted up when service or upgrades to the software is needed.

11.4 Creating a WebSphere clone manually

Now that you have the master WebSphere server installed and shut down, you can create your first clone. This section describes how to create the clone manually and then section 11.5, “Automating WebSphere cloning” on page 186 describes how the process can be automated.

From the SLES9X controller, clone a 64-bit Linux system. In this example, LINUX05 is used:

    # clone.sh linux05

When the LINUX05 system comes up, start an SSH session to it as root. Use the lsdasd command to observe that the 300 and 400 minidisks are not available:
Bring mindisks 300 and 400 online, the WebSphere production and test disks. Verify that they are available:

```
chccwdev -e 300
Setting device 0.0.0300 online
Done
chccwdev -e 400
Setting device 0.0.0400 online
Done
lsdasd
0.0.0100(ECKD) at (94: 0) is dasda : active at blocksize 4096, 546840 blocks, 2136 MB
0.0.0101(FBA) at (94: 4) is dasdb : active at blocksize 512, 524288 blocks, 256 MB
0.0.0102(ECKD) at (94: 8) is dasdc : active at blocksize 4096, 54000 blocks, 210 MB
0.0.0300(ECKD) at (94: 12) is dasdd: active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0400(ECKD) at (94: 16) is dasde: active at blocksize 4096, 600840 blocks, 2347 MB
```

Add the dasd= string to /etc/zipl.conf specifying that minidisks 300 and 400 are read-only with the (ro) parameter:

```
cd /etc
cp zipl.conf zipl.conf.orig
vi zipl.conf
Modified by YaST2. Last modification on Wed Jan 25 19:38:59 2006

[defaultboot]
default = ipl

[ipl]
target = /boot/zipl
image = /boot/image
ramdisk = /boot/initrd,0x1000000
parameters = "root=/dev/dasda1 dasd=100-102,300(ro),400(ro) selinux=0 TERM=dumb elevator=cfq"
...
```

Run the zipl command to write the changes to the boot record:

```
zipl
Using config file '/etc/zipl.conf'
Building bootmap in '/boot/zipl'
Adding IPL section 'ipl' (default)
Preparing boot device: dasda (0100).
Done.
```

Add a line to /etc/fstab so the production WebSphere disk is mounted read-only over the /opt/IBM/WebSphere/ directory:

```
vi fstab
/dev/dasda1 / ext3 acl,user_xattr 1 1
/dev/dasdb1 swap swap pri=42 0 0
/dev/dasdc1 swap swap pri=42 0 0
LABEL=was-prod /opt/IBM/WebSphere ext2 ro,acl,user_xattr 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0
```
Mount the new disk. Verify that it has been mounted:

```
mount /opt/IBM/WebSphere
mount | grep opt
/dev/dasdd1 on /opt/IBM/WebSphere type ext2 (ro, acl, user_xattr)
```

Reboot the system to test the changes.

```
reboot
```

Broadcast message from root (pts/0) (Fri Mar 17 16:46:28 2006):

The system is going down for reboot NOW!

When the system comes back up, get a new SSH session and verify that /dev/dasdd1 is being mounted:

```
mount | grep opt
/dev/dasdd1 on /opt/IBM/WebSphere type ext2 (rw, acl, user_xattr)
```

### 11.4.1 Customizing the WebSphere clone

You now have a WebSphere master system running on the WAS user ID, and a clone system linking to the master system's disks read-only on the LINUX05 ID. You now want to copy the wasprofile.properties file that you modified earlier to the clone. This file is available to you in the /opt/IBM/WebSphere/AppServer/profiles/ directory. When LINUX05 comes back up, start an SSH session into it. Create the directory /opt/IBM/wasprofiles/profiles/ and copy the file to it:

```
cd /opt/IBM/wasprofiles
mkdir properties
cd properties
cp /opt/IBM/WebSphere/AppServer/profiles/wasprofile.properties .
```

Create the following simple script, wasprofile in the /usr/local/sbin/ directory. It is a wrapper around the WebSphere wasprofile.sh command:

```
cd /usr/local/sbin/
vi wasprofile
#!/bin/bash
HOST=`hostname -s`
/opt/IBM/WebSphere/AppServer/bin/wasprofile.sh
 -create
 -profileName AppSrv01
 -profilePath /opt/IBM/wasprofiles/AppSrv01
 -templatePath /opt/IBM/WebSphere/AppServer/profileTemplates/default
 -nodeName "$HOST"Node01
 -cellName "$HOST"Node01Cell
 -hostName "$HOST".pbm.ihost.com
chmod +x wasprofile
```

Create a file named .bash_profile in root's home directory that will be run whenever a shell is started. Add the WebSphere profiles bin/ directory to the PATH:

```
cd /root
vi .bash_profile
export PATH=$PATH:/opt/IBM/wasprofiles/AppSrv01/bin
```

Save the file and run it in the current environment with the `source` command.

```
source .bash_profile
```
11.4.2 Create the WebSphere profile

Run the `wasprofile` script. This will take a few minutes:

```
wasprofile
INSTCONFSUCCESS: Success: The profile now exists.
```

View the directory `/opt/IBM/wasprofiles/AppSrv01/` that was created:

```
ls /opt/IBM/wasprofiles/AppSrv01
 bin/ etc/ installableApps/ installedConnectors/ properties/ wstemp/
 config/ firststeps/ installedApps/ logs/ temp/
```

11.4.3 Test the WebSphere installation

Verify that the WebSphere server can be started:

```
startServer.sh server1
ADMU0116I: Tool information is being logged in file
 /opt/IBM/wasprofiles/AppSrv01/logs/server1/startServer.log
ADMU0128I: Starting tool with the AppSrv01 profile
ADMU3100I: Reading configuration for server: server1
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server server1 open for e-business; process id is 1340
```

Start a browser and open the following URL, replacing the TCP/IP address of your server:

```
http://<129.40.178.131>:9060/admin
```

You should see a window that says *Welcome, please enter your information.* Enter any user ID such as `admin` and click **Log in.** You should see the WebSphere administration console:
Figure 11-8 WebSphere Administration Console

You may wish to test the administration console again and perhaps another application such as snoop on port 9080:

http://129.40.178.131:9080/snoop

When you are confident that WebSphere is installed correctly, you can stop the server:

```
stopServer.sh server1
ADMU0116I: Tool information is being logged in file
/opt/IBM/wasprofiles/AppSrv01/logs/server1/stopServer.log
ADMU0128I: Starting tool with the AppSrv01 profile
ADMU3100I: Reading configuration for server: server1
ADMU3201I: Server stop request issued. Waiting for stop status.
ADMU4000I: Server server1 stop completed.
```

You have cloned a WebSphere Application Server manually. Now it is time to automate the process.

### 11.5 Automating WebSphere cloning

The same way that RPMs were added to the master image in section 11.2, "Modifying the master image" on page 171, three files are created on the master image that will be needed for a WebSphere clone. They are as follows:

- **wasprofile.properties**: This file, modified previously, is used to set the WebSphere profile properties.
- **wasprofile**: This is a shell script that is created in the directory `/usr/local/sbin/`. It is used once when a WebSphere clone first comes to life to create a WebSphere profile.
Chapter 11. Cloning IBM middleware virtual servers

11.5.1 Copying the wasprofile.properties file

Just as you copied this file to the clone when creating it manually, you will now copy it to the master image so the modified copy will be cloned. Start an SSH session to the master image as root and copy the file with the scp command. In this example the WebSphere master image has the IP address 129.40.178.132:

```bash
chroot /sles9master
mkdir -p /opt/IBM/wasprofiles/properties
cd /opt/IBM/wasprofiles/properties
scp 129.40.178.132:/opt/IBM/WebSphere/AppServer/properties/wasprofile.properties .
```

The authenticity of host '129.40.178.132 (129.40.178.132)' can't be established.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '129.40.178.132' (RSA) to the list of known hosts.
Password:

11.5.2 Creating the wasprofile script

The `wasprofile` script is similar to the one you created when cloning manually. However it is not run interactively, so some of the output is logged to the `/tmp/` directory. It should exist in the `/etc/init.d/` directory so it can behave like a service (though it is only designed to run once). This should have been copied to the master image when you recursively copied all files associated with this book.

The WebSphere `wasprofile.sh` command does the real work. The last `if` statement removes the symbolic link from the run level 5 directory so that `wasprofile` is only run the first time the clone comes to life. Finally, WebSphere is started for this session.

```bash
cd /etc/init.d/
vi wasprofile
#!/bin/bash
chroot /sles9master
mkdir -p /opt/wasprofiles/properties
cd /opt/wasprofiles/properties
scp 129.40.178.132:/opt/IBM/WebSphere/AppServer/properties/wasprofile.properties .
```

```bash
#!/bin/bash
echo "$0 - Creating a WAS profile ..." | tee /tmp/wasprofile.log
host=`hostname -s`
domain=`hostname -d`
/opt/IBM/WebSphere/AppServer/bin/wasprofile.sh -create
 -profileName AppSrv01
 -profilePath /opt/IBM/wasprofiles/AppSrv01
 -templatePath /opt/IBM/WebSphere/AppServer/profileTemplates/default
 -nodeName $host
 -cellName $hostNode01Cell
 -hostName $host.$domain

echo "Return code from wasprofile.sh = $?" | tee -a /tmp/wasprofile.log

```

```bash
symlink="/etc/init.d/rc5.d/S99wasprofile"
if [-h $symlink]; then
 rm $symlink
 echo "Removed symbolic link $symlink" | tee -a /tmp/wasprofile.log
fi
```

```bash
/opt/IBM/wasprofiles/AppSrv01/bin/startServer.sh server1 |
 tee -a /tmp/wasprofile.log
```
11.5.3 Creating the .bash_profile file

The PATH is set in root's .bash_profile so that the WebSphere executables can be found:

```
cat /root/.bash_profile
export PATH=$PATH:/opt/IBM/wasprofiles/AppSrv01/bin
```

11.5.4 Modifying the clone.sh script

Now that the master image is primed with some WebSphere files, the process can be added to the clone.sh script so WebSphere servers can be created quickly. A new flag --was (or just -w) is added to the script. The following function is added to the clone.sh script. If the --was flag is used, this function is invoked:

```
function clone_was()
 # Arg 1: Mount point of the newly cloned server
 # Clone a WebSphere Application Server
{
 echo "Cloning WebSphere ..."
 echo "Modifying zipl.conf and running zipl ..."
 cd /etc
 cp zipl.conf zipl.conf.orig
 sed -i -e 's:dasd=100-102:dasd=100-102,300(ro),400(ro):g' zipl.conf
 chroot $1 zipl
 echo "Modifying fstab ..."
 cp fstab fstab.orig
 sed -i -e '4a LABEL=was-prod /opt/IBM/WebSphere ext2
 ro,acl,user_xattr 0 0' fstab
 echo "making symlink to /etc/init.d/wasprofile ..."
 cd /etc/init.d/rc5.d
 ln -s ../wasprofile S99wasprofile
 cd
}
```

Notes:

1. Change directory to /etc/ of the newly cloned Linux
2. A backup copy of /etc/zipl.conf is made
3. The string ,300(ro),400(ro) is added to the dasd= parameter
4. The zipl command is run in the new clone's environment
5. A backup copy of /etc/fstab is made
6. A line is added to /etc/fstab so the WebSphere production disk is mounted
7. The run level 5 start/stop directory is changed to
8. A symbolic link to /etc/init.d/wasprofile is made so it is run in run level 5
9. The default directory is changed back to

11.5.5 Testing cloning of WebSphere

Following is an example of cloning a WebSphere server to LINUX05. The output specific to the cloning of WebSphere is highlighted:

```
clone.sh --was linux05

WARNING!!: this will copy 100 and 102 disks to LINUX05 100 and 102
New host name will be: lat131.pbm.ihost.com
New TCP/IP address will be: 129.40.178.131
Other network data is retrieved from LINUX05 PARMFILE on 191 disk
A WebSphere system will be cloned
```
Chapter 11. Cloning IBM middleware virtual servers

11.6 Setting up the DB2 master

The overall process of cloning DB2 is almost identical to that of WebSphere. See section 11.1, “Setting up to clone IBM middleware” on page 168 for an overview.

Start by cloning a new Linux image to the DB2 user ID. From an SSH session on the SLES9X controller use the clone.sh script:

```
clone.sh db2
Invoking CP command: QUERY DB2
HCPCC045E DB2 not logged on
Error: non-zero CP response for command 'QUERY DB2': #45
Setting device 0.0.0191 offline
Done
Setting device 0.0.0191 online
Done
DB2 PARMFILE E1 V 65 8 1 3/09/2006 20:19:54
WARNING!!: this will copy 100 and 102 disks to DB2 100 and 102
New host name will be: lat133.pbm.ihost.com
New TCP/IP address will be: 129.40.178.133
Other network data is retrieved from DB2 PARMFILE on 191 disk
Are you sure you want to overwrite these disks (y/n): y
```

DB2 will be installed onto the cloned server.
11.6.1 Configure minidisks 301 and 401

When the new clone is available, start an SSH session to it as root. Observe that the 301 and 401 disks are not available:

```
lsdasd
0.0.0.0100(ECKD) at (94: 0) is dasda : active at blocksize 4096, 546840 blocks, 2136 MB
0.0.0.0101(FBA) at (94: 4) is dasdb : active at blocksize 512, 524288 blocks, 256 MB
0.0.0.0102(ECKD) at (94: 8) is dasdc : active at blocksize 4096, 54000 blocks, 210 MB
```

Enable the new minidisks 301 and 401 via the `chccwdev` command:

```
chccwdev -e 301
Setting device 0.0.0301 online
Done
chccwdev -e 401
Setting device 0.0.0401 online
```

Verify the new minidisks are now active:

```
lsdasd
0.0.0.0100(ECKD) at (94: 0) is dasda : active at blocksize 4096, 546840 blocks, 2136 MB
0.0.0.0101(FBA) at (94: 4) is dasdb : active at blocksize 512, 524288 blocks, 256 MB
0.0.0.0102(ECKD) at (94: 8) is dasdc : active at blocksize 4096, 54000 blocks, 210 MB
0.0.0.0301(ECKD) at (94: 12) is dasdd : active at blocksize 4096, 300420 blocks, 1173 MB
0.0.0.0401(ECKD) at (94: 16) is dasde : active at blocksize 4096, 300420 blocks, 1173 MB
```

Format the two minidisks with the `dasdfmt` command:

```
dasdfmt -b 4096 -y -f /dev/dasdd
...
dasdfmt -b 4096 -y -f /dev/dasde
...
```

Create a single partition out of each of the two minidisks:

```
fdasd -a /dev/dasdd
auto-creating one partition for the whole disk...
writing volume label...
writing VTOC...
rereading partition table...
fdasd -a /dev/dasde
auto-creating one partition for the whole disk...
writing volume label...
writing VTOC...
rereading partition table...
```

Make ext3 file systems out of the two minidisks via the `mke2fs -j` command. Associate the label `db2-prod` with the `/dev/dasdd1`, or the 301 minidisk, and associate the label `db2-test` with the `/dev/dasde1`, or the 401 minidisk.

```
mke2fs -j -L db2-prod /dev/dasdd1
mke2fs 1.38 (30-Jun-2005)
...
mke2fs -j -L db2-test /dev/dasde1
mke2fs 1.38 (30-Jun-2005)
...
```

Modify the file system table, `/etc/fstab`. First make a backup copy. Then add a line to mount the disk with the label `db2-prod` over the directory `/opt/IBM/db2/`. The disk with the label `db2-test` is not used in this section.

```
cd /etc
cp fstab fstab.orig
```
Modify the file /etc/zipl.conf by adding the dasd= parameter to the parameter line so the 301 and 401 minidisks will be available read/write:

```
Modified by YaST2. Last modification on Wed Jan 25 19:38:59 2006

[defaultboot]
 default = ipl

[ipl]
 target = /boot/zipl
 image = /boot/image
 ramdisk = /boot/initrd,0x1000000
 parameters = "root=/dev/dasda1 dasd=100-102,301,401
 selinux=0 TERM=dumb elevator=cfq"
...
```

Run zipl to write the changes to the boot record:

```
zipl
Using config file '/etc/zipl.conf'
Building bootmap in '/boot/zipl'
Adding IPL section 'ipl' (default)
Preparing boot device: dasda (0100).
Done.
```

Test the changes with the mount command with one parameter - just the directory to be mounted over. This will test your change to the /etc/fstab file. If you see no output then the file system was successfully mounted:

```
mount /opt/IBM/db2
```

Reboot your server to test the changes:

```
reboot
```

Broadcast message from root (pts/0) (Fri Mar 17 12:16:08 2006):

```
The system is going down for reboot NOW!
```

```
exit
```

When the system comes back up, start an SSH session to it as root. Verify the db2-prod file system is mounted:

```
mount | grep opt
/dev/dasdd1 on /opt/IBM/db2 type ext3 (ro,acl,user_xattr)
```

11.6.2 Install DB2 from a graphical environment

The graphical installation of DB2 is described in this section, so a graphical environment is necessary. Start the VNC server and set a password.

```
vncserver
```
You will require a password to access your desktops.

Password: dntfrget
Verify: dntfrget
Would you like to enter a view-only password (y/n)? n

You can get trial DB2 software by starting at the following Web site:


From your desktop, start a graphical VNC client session. The DB2 software is unloaded into the directory /nfs/labstuff/udb82x on the NFS server 129.40.45.3. The NFS share is mounted and the db2setup command is used to install DB2:

```bash
mount 129.40.45.3:/nfs/labstuff /mnt
cd /mnt/udb82x
./db2setup
```

DBI11901 db2setup is preparing the DB2 Setup wizard which will guide you through the program setup process. Please wait.

1. A Setup Launchpad window should appear. Click Install Products.

![DB2 Setup window](image.png)

**Figure 11-9 DB2 Setup window**

2. At the Setup window, accept the default of DB2 UDB Enterprise Server Edition and click Next.

3. At the Welcome to DB2 Setup window, click Next.

4. At the Software License Agreement window, select Accept and click Next.

5. At the Select the Installation type window, accept the default type of Typical and click Next.
6. At the Select the installation action window, accept the default of Install DB2 UDB Enterprise Server Edition and click Next.
7. At the Set user information for the DB2 Administration Server window, set a password and confirm it. Click Next.
8. At the Set up a DB2 instance window, select Do not create a DB2 instance and click Next.
9. At the Set up the administration contact list window, accept the default of Local and click Next.
10. The warning about SMTP notification is not a problem. Click OK.
11. At the Start copying files window, review the values and click Finish to begin the installation.
12. At the Setup is complete window, you may wish to review the Status Report. When you are done click Finish. The db2setup window will close.
13. Close the VNC client window - you will not need a graphical environment after this.

Go back to your SSH session. You may wish to query how full the db2-prod disk is. In this example it is 30% full:

```
df -h | grep db2
/dev/dasdd1 1.2G 319M 779M 30% /opt/IBM/db2
```

### 11.6.3 Shutting down the DB2 master

You are almost ready to manually clone a DB2 server: you must first shut down the master server.

```
shutdown -h now
```

Broadcast message from root (pts/0) (Tue Jun 6 13:44:27 2006):

The system is going down for system halt NOW!

See section 11.3.9, “Shutting down the WebSphere master” on page 182 for a discussion of why the master should be shut down.

### 11.7 Cloning a DB2 server manually

This section describes how to create a DB2 clone manually. From the SLES9X controller, clone a 64-bit Linux system. In this example, LINUX06 is used:

```
clone.sh linux06
...`
Done

chccwdev -e 401
Setting device 0.0.0401 online
Done
lsdasd
0.0.0100(ECKD) at (94: 0) is dasda : active at blocksize 4096, 546840 blocks, 2136 MB
0.0.0101(FBA) at (94: 4) is dasdb : active at blocksize 512, 524288 blocks, 256 MB
0.0.0102(ECKD) at (94: 8) is dasdc : active at blocksize 4096, 54000 blocks, 210 MB
0.0.0301(ECKD) at (94: 12) is dasdd : active at blocksize 4096, 300420 blocks, 1173 MB
0.0.0401(ECKD) at (94: 16) is dasde : active at blocksize 4096, 300420 blocks, 1173 MB

Append to the dasd= string to /etc/zipl.conf this time specifying that minidisks 301 and 401 are read-only with the (ro) parameter:

cd /etc
cp zipl.conf zipl.conf.orig
vi zipl.conf
Modified by YaST2. Last modification on Wed Jan 25 19:38:59 2006

[defaultboot]
 default = ipl

[ipl]
 target = /boot/zipl
 image = /boot/image
 ramdisk = /boot/initrd,0x1000000
 parameters = "root=/dev/dasda1 dasd=100-102,301(ro),401(ro) selinux=0 TERM=dumb elevator=cfq"
...

Run zipl to write the changes to the boot record:

zipl
Using config file '/etc/zipl.conf'
Building bootmap in '/boot/zipl'
Adding IPL section 'ipl' (default)
Preparing boot device: dasda (0100).
Done.

Add a line to /etc/fstab so the disk with the label db2-prod will be mounted read-only over the directory /opt/IBM/db2/:

cp fstab fstab.orig
vi fstab
/dev/dasda1 / ext3 acl,user_xattr 1 1
/dev/dasdb1 swap swap pri=42 0 0
/dev/dasdc1 swap swap pri=42 0 0
LABEL=db2-prod /opt/IBM/db2 ext2 ro, acl,user_xattr 0 0
devpts /dev/pts devpts mode=0620,gid=5 0 0
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0

Use the mount command with one parameter to test the change to the /etc/fstab file:

mount /opt/IBM/db2

Reboot the system to test the changes.

reboot

Broadcast message from root (pts/0) (Fri Mar 17 16:46:28 2006):
The system is going down for reboot NOW!

When your system comes back, start a new SSH session as root. Verify the read-only file system is mounted:

```
# mount | grep opt
/dev/dasdd1 on /opt/IBM/db2 type ext3 (ro,acl,user_xattr)
```

11.7.1 Creating DB2 groups and users

Create a group named `db2grp1` and user ID named `dbinst1` for the DB2 instance. Set the password of the new user:

```
# groupadd db2grp1
# mkdir /tmp/noskel
# useradd -g db2grp1 -m -k /tmp/noskel db2inst1
# passwd db2inst1
Changing password for db2inst1.
New password:
Re-enter new password:
Password changed
```

Create a group named `db2fgrp1` and user ID named `db2fenc1` for the DB2 fenced user. Set the password of the new user:

```
# groupadd db2fgrp1
# useradd -g db2fgrp1 -m -k /tmp/noskel db2fenc1
# passwd db2fenc1
Changing password for db2fenc1.
New password:
Re-enter new password:
Password changed
```

Create a group named `db2agrp1` and user ID named `db2admn1` for the DB2 administration user. Set the password of the new user:

```
# groupadd db2agrp1
# useradd -g db2agrp1 -m -k /tmp/noskel db2admn1
# passwd db2admn1
Changing password for db2admn1.
New password:
Re-enter new password:
Password changed
```

View the new directories in `/home`:

```
# ls -l /home
```

```
drwxr-xr-x  2 db2admn1 db2agrp1 4096 Apr 26 13:06 db2admn1/
drwxr-xr-x  2 db2fenc1 db2fgrp1 4096 Apr 26 09:42 db2fenc1/
drwxr-xr-x  2 db2inst1 db2grp1  4096 Apr 26 09:41 db2inst1/
```

11.7.2 Creating a DB2 instance

Create a file named `.profile` in the home directory of `db2inst1` via the `touch` command. This is needed because the `db2icrt` command will try to write to this file and needs it to first exist. Then use the `db2icrt` command to create an instance named `db2inst1`.

```
# touch /home/db2inst1/.profile
# /opt/IBM/db2/V8.1/instance/db2icrt -u db2fenc1 db2inst1
DBI1070I Program db2icrt completed successfully.
```
The DB2 command `dascrt` is used to create an administrative user. First create an empty file named `.profile` in the `db2admin1` home directory as `dascrt` needs to append to it:

```
# touch /home/db2admin1/.profile
# /opt/IBM/db2/V8.1/instance/dascrt db2admin1
```

SQL4406W The DB2 Administration Server was started successfully.
DBI1070I Program dascrt completed successfully.

Set the DB2 profile variable `DB2AUTOSTART` to `TRUE`:

```
# /opt/IBM/db2/V8.1/instance/db2iset DB2AUTOSTART=TRUE -i db2inst1
```

11.7.3 Testing DB2

The `db2sampl` command will create a test database:

```
# su - db2inst1
db2inst1> db2sampl
```

Start DB2:

```
# db2start
```

SQL1063N DB2START processing was successful.

You should now have DB2 running. Connect to sample database query a table:

```
db2inst1> db2
...
db2 => connect to sample
```

```
Database Connection Information

Database server        = DB2/LINUXZ64 8.2.0
SQL authorization ID   = DB2INST1
Local database alias   = SAMPLE
```

```
db2 => select * from staff where dept = 20
```

```
ID     NAME      DEPT   JOB   YEARS  SALARY    COMM
------ --------- ------ ----- ------ --------- ---------
10 Sanders       20 Mgr        7  18357.50         -
20 Pernal        20 Sales      8  18171.25    612.45
80 James         20 Clerk      -  13504.60    128.20
190 Sneider       20 Clerk      8  14252.75    126.50
```

4 record(s) selected.

This shows that your DB2 clone is working.

11.8 Automating DB2 cloning

Now that you have cloned a DB2 server manually, you may choose to automate the process.

11.8.1 Modifying the master image for DB2

A shell script named `db2instance` is added to the master in the `/etc/init.d/` directory. This script is designed to run once when the cloned DB2 server first comes to life.

```
#!/bin/bash

echo "Creating a DB2 instance ..." | tee /tmp/db2instance.log
```
mkdir /tmp/noskel # create a DB2 instance user and group
useradd -g db2grp1 -m -k /tmp/noskel db2inst1

touch /home/db2inst1/.profile

create a DB2 fenced user and group
useradd -g db2fgrp1 -m -k /tmp/noskel db2fenc1

touch /home/db2admn1/.profile

create a DB2 administrative user and group
useradd -g db2agrp1 -m -k /tmp/noskel db2admn1

touch /home/db2admn1/.profile

/opt/IBM/db2/V8.1/instance/db2icrt -a SERVER -s ese -u db2fenc1 -p db2c_db2inst1
db2inst1

echo "Return code from db2icrt = $?" | tee -a /tmp/db2instance.log

/opt/IBM/db2/V8.1/instance/dascrt -u db2admn1

echo "Return code from dascrt = $?" | tee -a /tmp/db2instance.log

cp /opt/IBM/db2/V8.1/das/dasprofile /home/db2admn1/das

su - db2inst1 -c "db2iauto -on db2inst1"

echo "Return code from db2iauto = $?" | tee -a /tmp/db2instance.log

symlink="/etc/init.d/rc5.d/S98db2instance"
if [-h $symlink]; then # remove symlink so script runs once
 rm $symlink
 echo "Removed symbolic link $symlink" | tee -a /tmp/db2instance.log
fi

su - db2inst1 -c "db2start"

echo "Return code from db2start = $?" | tee -a /tmp/db2instance.log

Notes:
1 Create a user db2inst1 with a primary group of db2grp1
2 Create a .profile for the user which will be written to by db2icrt
3 Create a user db2fenc1 with a primary group of db2fgrp1
4 Create a user db2admn1 with a primary group of db2agrp1
5 Create a .profile for the user which will be written to by dasprofile
6 Run the db2icrt command to create an instance named db2inst1
7 Create the DB2 administration server via the dascrt command
8 Copy the administration server profile to the user's home directory
9 Set DB2 to start automatically via the db2iauto command
10 Remove the symbolic link from run level 5 so this script runs only once
11 Start DB2 for this session

11.8.2 Adding DB2 cloning to clone.sh script

The clone.sh script is modified so DB2 servers can be created quickly. A flag, --db2, is added. If that flag is included when clone.sh is invoked, the following function is called after the new server is cloned:

```bash
#+--------------------------------------------------------------------------+
function clone_db2()
#   Arg 1: Mount point of the newly cloned server
# Clone a DB2 Server
#+--------------------------------------------------------------------------+
{
  echo "Cloning DB2 ...
  echo "Modifying zipl.conf and running zipl ...
```
cd $1/etc

cp zipl.conf zipl.conf.orig

sed -i -e 's:dasd=100-102:dasd=100-102,301(ro),401(ro):g' zipl.conf

chroot $1 zipl

cp /etc/fstab /etc/fstab.orig

sed -i -e '4a LABEL=db2-prod /opt/IBM/db2 ext2
 ro, acl, user_xattr 0 0' fstab

echo "Making symlink to /etc/initd/db2instance ..."
cd $1/etc/init.d/rc5.d

ln -s ../db2instance S98db2instance

8
cd

Notes:

1. Change directory to /etc/ of the newly cloned Linux
2. The string ,301(ro),401(ro) is added to the dasd= parameter in /etc/zipl.conf
3. The zipl command is run in a "chrooted" environment of the new clone
4. Make a backup copy of /etc/fstab
5. Add a line to /etc/fstab so the production DB2 disk is mounted over /opt/IBM/db2
6. Add a line to /etc/inittab so the DB2 db2fmcd command is started at boot time
7. Change to the run level 5 start/stop directory
8. Create a symbolic link to the file /etc/init.d/db2instance so it is run in run level 5.
 This assumes that file exists
9. Change back to the user's home directory

After the above changes are made to the newly cloned server, it is booted via the XAUTOLOG
the default run level of 5.

11.8.3 Testing cloning of DB2

The --db2 flag to the clone.sh script can now be tested. The target user ID in the example
that follows is LINUX06. The output specific to DB2 cloning is highlighted.

clone.sh --db2 linux06
.

WARNING!!: this will copy 100 and 102 disks to LINUX06 100 and 102
New host name will be: lat126.pbm.ihost.com
New TCP/IP address will be: 129.40.178.126
Other network data is retrieved from LINUX06 PARMFILE on 191 disk

A DB2 system will be cloned
Are you sure you want to overwrite these disks (y/n): y
.

Mounting /dev/dasdk1 over /mnt/sles9cloned ...
Modifying cloned image under /mnt/sles9cloned ...
Regenerating SSH keys in /mnt/sles9cloned/etc/ssh/ ...
Adding 129.40.178.132 to known_hosts file

Cloning DB2 ...
Modifying zipl.conf and running zipl ...
Using config file '/etc/zipl.conf'
Building bootstrap in '/boot/zipl'
Adding IPL section 'ipl' (default)
Preparing boot device: 1100.
Done.
Modifying fstab ...
Modifying /etc/inittab
Making symlink to /etc/init.d/db2instance ...

... Successfully cloned /sles9master to LINUX06
You should be able to ping 129.40.178.132 within one minute

Start an SSH session to the newly cloned Linux. Note that the DB2 instance creation may still be running for a few minutes. When it is completed, view the log file written to /tmp:

```bash
# cat /tmp/db2instance.log
Creating a DB2 instance ...
Return code from db2icrt = 0
Return code from dascrt = 0
Return code from db2iauto = 0
Removed symbolic link /etc/init.d/rc5.d/S98db2instance
Return code from db2start = 0
```

If there are any errors, you may wish to clone again and immediately log on to the z/VM console after the clone.sh script logs the user ID on via XAUTOLOG. There you can watch the entire process of the clone first coming to life.

Use the `pstree -G` command to see that DB2 is running:

```bash
# pstree -G
init---cron
 +-db2dasrrm
  +-db2fmcd
  +-db2fmd
  +-db2sysc---db2sysc---db2fmp
  |                   +-5*[db2sysc]
  |                     +-db2sysc---db2sysc
...
```

You should now have cloning of DB2 working.

11.9 Setting up the MQ Series master

The overall process of cloning MQ Series is almost identical to that of DB2 and WebSphere. See section 11.1, “Setting up to clone IBM middleware” on page 168 for an overview.

To set up the MQ Series master server, perform the following steps.

11.9.1 Getting trial MQ Series software

To get a 90 day trial version of MQ Series V6, start at the Web page:

http://www-306.ibm.com/software/integration/wmq/v60/

- Click on **free trial code**.
- Click on the first line of the Linux for zSeries section:

 Trial: WebSphere MQ (Linux platform)
 WebSphere MQ - Free 90 Day trial code. Ensure you experience what open, scalable, industrial-strength messaging can do for your business.
 Operating system: Linux for zSeries | Version: 6.0

- Fill out the form with the necessary information. You may need to create a user ID and password. You should be able to download one tar file and one manual with the following file names.

 WMQv600Trial-s390_linux_2.tar.gz
11.9.2 Cloning a Linux server

Start by cloning a vanilla Linux image to the MQS user ID. From an SSH session on the SLES9X controller use the clone.sh script:

```bash
# clone.sh mqs
...
```

When the new server comes up, start an SSH session into it as root.

11.9.3 Configuring minidisks 302 and 402

The MQS Linux system has minidisks at virtual addresses 302 and 402, however, they are not enabled. This can be verified with the lsdasd command:

```bash
# lsdasd
0.0.0100(ECKD) at ( 94:  0) is dasda : active at blocksize 4096, 546840 blocks, 2136 MB
0.0.0101(FBA ) at ( 94:  4) is dasdb : active at blocksize 512, 524288 blocks, 256 MB
0.0.0102(ECKD) at ( 94:  8) is dasdc : active at blocksize 4096, 54000 blocks, 210 MB
```

Bring the minidisks at device addresses 302 and 402 online with the chccwdev command:

```bash
# chccwdev -e 302
Setting device 0.0.0302 online
Done
# chccwdev -e 402
Setting device 0.0.0402 online
Done
```

Verify the new minidisks are now active:

```bash
# lsdasd
0.0.0100(ECKD) at ( 94:  0) is dasda : active at blocksize 4096, 546840 blocks, 2136 MB
0.0.0101(FBA ) at ( 94:  4) is dasdb : active at blocksize 512, 524288 blocks, 256 MB
0.0.0102(ECKD) at ( 94:  8) is dasdc : active at blocksize 4096, 54000 blocks, 210 MB
0.0.0302(ECKD) at ( 94: 12) is dasdd : active at blocksize 4096, 300420 blocks, 1173 MB
0.0.0402(ECKD) at ( 94: 16) is dasde : active at blocksize 4096, 300420 blocks, 1173 MB
```

Format the two disks with the dasdfmt command:

```bash
# dasdfmt -b 4096 -y -f /dev/dasdd
...
# dasdfmt -b 4096 -y -f /dev/dasde
...
```

Create a single partition out of the two minidisks via the fdasd -a command:

```bash
# fdasd -a /dev/dasdd
auto-creating one partition for the whole disk...
writing volume label...
writing VTOC...
rereading partition table...
# fdasd -a /dev/dasde
auto-creating one partition for the whole disk...
writing volume label...
writing VTOC...
rereading partition table...
```

Make ext3 file systems out of the two disks via the mke2fs -j command. Use the -L flag to set the labels of the two file systems. Minidisk 302, /dev/dasdd1, will be the production MQ
Series server installation so use a label of `mqs-prod`. Minidisk 402, `/dev/dasde1`, will be the test MQ Series server installation so use a label of `mqs-test`. This label will be used in the `/etc/fstab` file rather than the more commonly used device file name.

```bash
# mke2fs -j -L mqs-prod /dev/dasdd1
mke2fs 1.38 (30-Jun-2005)
...
# mke2fs -j -L mqs-test /dev/dasde1
mke2fs 1.38 (30-Jun-2005)
...
```

Specify the new minidisks in `dasd=` parameter of the `/etc/zipl.conf` file so that the 302 and 402 disks will be available read-write:

```bash
# cd /etc/
# cp zipl.conf zipl.conf.orig
# vi zipl.conf
# Modified by YaST2. Last modification on Wed Jan 25 19:38:59 2006

[defaultboot]
default = ipl

[ipl]
target = /boot/zipl
image = /boot/image
ramdisk = /boot/initrd,0x1000000
parameters = "root=/dev/dasda1
dasd=100-102,302,402
selinux=0 TERM=dumb elevator=cfq"
...
```

Run the `zipl` command to create a new initial RAMdisk and to write the parameter changes to the boot record.

```bash
# zipl
Using config file '/etc/zipl.conf'
Building bootmap in '/boot/zipl'
Adding IPL section 'ipl' (default)
Preparing boot device: dasda (0100).
Done.
```

Modify the file system table, `/etc/fstab` to add a line to mount the new file system labeled `was-prod` over the directory `/opt/mqm/`. First make a backup copy.

```bash
# cp fstab fstab.orig
# vi fstab
/dev/dasda1          /                    ext3       acl,user_xattr        1 1
/dev/dasdb1          swap                 swap       pri=42                0 0
/dev/dasdc1          swap                 swap       pri=42                0 0
LABEL=mqs-prod        /opt/mqm            ext3       acl,user_xattr  0 0
devpts               /dev/pts             devpts     mode=0620,gid=5       0 0
proc                 /proc                proc       defaults              0 0
sysfs                /sys                 sysfs      noauto                0 0
```

Test the change with the `mount` command with one parameter - just the directory to be mounted over. This will test your change to the `/etc/fstab` file.

```bash
# mount /opt/mqm
```

Reboot the system to test the change.

```bash
# reboot
```
Broadcast message from root (pts/0) (Fri Mar 17 12:16:08 2006):

The system is going down for reboot NOW!

exit

The system should be available again in a minute or two. Start an SSH session as root and verify that the production file system is mounted:

mount | grep opt
/dev/dasdd1 on /opt/mqm type ext3 (rw,acl,user_xattr)

11.9.4 Installing MQ Series

Copy or download the MQ Series trial tar file to the directory /opt/mqm/. Then untar the file:

```
# cd /opt/mqm
# scp 129.40.45.3:/nfs/labstuff/WMQv600Trial-s390_linux_2.tar.gz .
... 
# ls -lh
-rwxr--r-- 1 root root 142M Mar 21 16:12 WMQv600Trial-s390_linux_2.tar.gz
drwx------ 2 root root  16K Mar 21 15:05 lost+found/
# tar xzf WMQv600Trial-s390_linux_2.tar.gz
# ls
.
  MQSeriesMsg_pt-6.0.0-0.s390.rpm
.. 
  MQSeriesRuntime-6.0.0-0.s390.rpm
IBMJava2-SDK-1.4.2-0.0.s390.rpm 
MQSeriesClient-6.0.0-0.s390.rpm 
MQSeriesJava-6.0.0-0.s390.rpm 
MQSeriesKeyMan-6.0.0-0.s390.rpm 
MQSeriesMan-6.0.0-0.s390.rpm 
MQSeriesMsg_Zh_CN-6.0.0-0.s390.rpm 
MQSeriesMsg_Zh_TW-6.0.0-0.s390.rpm 
MQSeriesMsg_de-6.0.0-0.s390.rpm 
MQSeriesMsg_es-6.0.0-0.s390.rpm 
MQSeriesMsg_fr-6.0.0-0.s390.rpm 
MQSeriesMsg_ja-6.0.0-0.s390.rpm 
MQSeriesMsg_ko-6.0.0-0.s390.rpm 
MQSeriesMsg-it-6.0.0-0.s390.rpm 
MQSeriesSamples-6.0.0-0.s390.rpm 
MQSeriesSDK-6.0.0-0.s390.rpm 
MQSeriesServer-6.0.0-0.s390.rpm 
MQSeriesTXClient-6.0.0-0.s390.rpm 

Run the `mqlicense.sh` script and agree with the license.

```
./mqlicense.sh
...
Please enter the number that corresponds to the language you prefer.

2
...
Press Enter to display the license agreement on your
...

Enter
Press Enter to continue viewing the license agreement, or, Enter "1" to accept the agreement, "2" to decline it or "99" to go back to the previous screen.

1

Agreement accepted: Proceed with install.

Install the MQ Series RPMs:

```
# rpm -ivh MQSeriesRuntime-6.0.0-0.s390.rpm
```
Preparing... ### [100%]
Creating group mqm
Creating user mqm
1:MQSeriesRuntime ### [100%]
rpm -ivh MQSeriesSDK-6.0.0-0.s390.rpm
Preparing... ### [100%]
1:MQSeriesSDK ### [100%]
rpm -ivh MQSeriesServer-6.0.0-0.s390.rpm
Preparing... ### [100%]
1:MQSeriesServer ### [100%]
rpm -ivh MQSeriesClient-6.0.0-0.s390.rpm
Preparing... ### [100%]
1:MQSeriesClient ### [100%]
rpm -ivh MQSeriesSamples-6.0.0-0.s390.rpm
Preparing... ### [100%]
1:MQSeriesSamples ### [100%]
rpm -ivh MQSeriesJava-6.0.0-0.s390.rpm
Preparing... ### [100%]
1:MQSeriesJava

The MQ Series server should now be installed on the MQS master user ID.

11.9.5 Preparing for cloning

To prepare the MQS Linux server for cloning, first create a file named `.bash_profile` on MQS master and copy several files to Linux master.

```bash
# cd /var/mqm
# vi .bash_profile # add one line
export PATH=$PATH:/opt/mqm/bin
# cd /var
# scp -rp mqm <129.40.178.130>:/sles9master/var
Password:

ccsid.tbl 100% 26KB 26.4KB/s 00:00
AMQERR01.LOG 100% 0 0.0KB/s 00:00
AMQERR02.LOG 100% 0 0.0KB/s 00:00
AMQERR03.LOG 100% 0 0.0KB/s 00:00
mqs.ini 100% 2104 2.1KB/s 00:00
service.env 100% 1373 1.3KB/s 00:00
WMQBaseLO60000.sys 100% 100 0.1KB/s 00:00
.bash_history 100% 66 0.1KB/s 00:00
.bash_profile 100% 25 0.0KB/s 00:00
```

Create a directory on Linux master

```bash
# ssh <129.40.178.130> "mkdir -p /sles9master/usr/share/locale/C/LC_MESSAGES"
Password:
```

Copy the file `amq.cat` to the Linux master

```bash
# cd /usr/share/locale/C/LC_MESSAGES
# scp -p amq.cat <129.40.178.130>:/sles9master/usr/share/locale/C/LC_MESSAGES
Password:
amq.cat
```

11.9.6 Shutting down the MQ Series master

You are almost ready to manually clone a MQ Series server: you must first shut down the master server.

```bash
# shutdown -h now
```
Broadcast message from root (pts/0) (Tue Jun 6 13:44:27 2006):

The system is going down for system halt NOW!

See section 11.3.9, “Shutting down the WebSphere master” on page 182 for a discussion of why the master should be shut down.

11.10 Cloning an MQ Series server manually

Now that MQ Series is installed onto the master you can create a clone manually. From the SLES9X controller, clone a 64-bit Linux system. In this example LINUX07 is used:

```
# clone.sh linux07
...
```

When the server comes up, start an SSH session to it as root. First observe that the MQ Series minidisks, 302 and 402, are not known via the `1sdasd` command:

```
# 1sdasd
0.0.0100(ECKD) at (94:0) is dasda: active at blocksize 4096, 546840 blocks, 2136 MB
0.0.0101(FBA ) at (94:4) is dasdb: active at blocksize 512, 524288 blocks, 256 MB
0.0.0102(ECKD) at (94:8) is dasdc: active at blocksize 4096, 54000 blocks, 210 MB
```

Bring the MQ Series production and test disks online with the `chccwdev` command and verify:

```
# chccwdev -e 302
Setting device 0.0.0301 online
Done
# chccwdev -e 402
Setting device 0.0.0401 online
Done
# 1sdasd
0.0.0100(ECKD) at (94:0) is dasda: active at blocksize 4096, 546840 blocks, 2136 MB
0.0.0101(FBA ) at (94:4) is dasdb: active at blocksize 512, 524288 blocks, 256 MB
0.0.0102(ECKD) at (94:8) is dasdc: active at blocksize 4096, 54000 blocks, 210 MB
0.0.0302(ECKD) at (94:12) is dasdd: active at blocksize 4096, 300420 blocks, 1173 MB
0.0.0402(ECKD) at (94:16) is dasde: active at blocksize 4096, 300420 blocks, 1173 MB
```

Append to the dasd= string to `/etc/zipl.conf` this time specifying that minidisks 302 and 402 are read-only with the `ro` parameter:

```
# cd /etc
# cp zipl.conf zipl.conf.orig
# vi zipl.conf
# Modified by YaST2. Last modification on Wed Jan 25 19:38:59 2006

[defaultboot]
  default = ipl

[ipl]
  target = /boot/zipl
  image = /boot/image
  ramdisk = /boot/initrd,0x1000000
  parameters = "root=/dev/dasda1 dasd=100-102,302(ro),402(ro) selinux=0 TERM=dumb"
  elevator=cfq"
...
```
Run `zipl` to write the changes to the boot record:

```bash
# zipl
Using config file '/etc/zipl.conf'
Building bootmap in '/boot/zipl'
Adding IPL section 'ipl' (default)
Preparing boot device: dasda (0100).
Done.
```

Add a line to `/etc/fstab` so the disk with the label `mqs-prod` will be mounted read-only over the directory `/opt/mqm`:

```bash
# cp fstab fstab.orig
# vi fstab
/dev/dasda1          /                    ext3       acl,user_xattr        1 1
/dev/dasdb1          swap                 swap       pri=42                0 0
/dev/dasdc1          swap                 swap       pri=42                0 0
LABEL=mqs-prod       /opt/mqm  ext2       ro,acl,user_xattr     0 0
devpts               /dev/pts             devpts     mode=0620,gid=5       0 0
proc                  /proc                proc       defaults              0 0
sysfs                /sys                 sysfs      noauto                0 0
```

Use the `mount` command with one parameter to test the change to the `/etc/fstab` file:

```bash
# mount /opt/mqm
```

Reboot the system to test the changes.

```bash
# reboot
```

Broadcast message from root (pts/0) (Fri Mar 17 16:46:28 2006):

The system is going down for reboot NOW!

When your system comes back, start a new SSH session as root. Verify the read-only file system is mounted:

```bash
# mount | grep opt
/dev/dasdd1 on /opt/mqm type ext2 (ro,acl,user_xattr)
```

Create a messages directory:

```bash
# mkdir -p /usr/share/locale/C/LC_MESSAGES/
```

11.10.1 Create an MQ Series user

Create the group `mqm`, then create the user `mqm` with a primary group of `mqm`:

```bash
# groupadd mqm
# useradd -g mqm -d /var/mqm mqm
```

Create a `.bash_profile` in the `mqm` home directory and set the `PATH` to include the directory `/opt/mqm/bin`:

```bash
# cd /var/mqm
# vi .bash_profile
export PATH=$PATH:/opt/mqm/bin
```

11.10.2 Copy files from the master MQS

From the MQS master Linux, copy the message catalog to the new clone:

```bash
# cd /usr/share/locale/C/LC_MESSAGES
# scp -p amq.cat 129.40.178.131:/usr/share/locale/C/LC_MESSAGES
```
Recursively copy the directories and files that were set up in the `/var/mqm/` directory:

```bash
# su - mqm
# scp -rp mqm 129.40.178.131:/var
```

11.10.3 Testing queue creation

Test creating an MQ Series queue via the `crtmqm` command from the `mqm` user:

```bash
# su - mqm
$ crtmqm -q venus.queue.manager
```

There are 90 days left in the trial period for this copy of WebSphere MQ.

WebSphere MQ queue manager created.

Creating or replacing default objects for venus.queue.manager.

Default objects statistics: 40 created. 0 replaced. 0 failed.

Completing setup.

Setup completed.

11.11 Automating MQ Series cloning

Now that you have cloned an MQ Series server manually, you may choose to automate the process.

11.11.1 Modifying the master image for MQ Series

One file is added to the master in the `/etc/init.d/` directory. It is a shell script named `mqmuser`. This script is designed to run once when the cloned MQ Series server first comes to life.

```bash
# cd /sles9master/etc/init.d
# vi mqmuser
#!/bin/bash
echo "Creating an MQ Series user ..." | tee /tmp/mqmuser.log
groupadd mqm
echo "Return code from groupadd = $?" | tee -a /tmp/mqmuser.log
useradd -g mqm -d /var/mqm mqm
echo "Return code from useradd = $?" | tee -a /tmp/mqmuser.log
chown -R mqm.mqm /var/mqm
echo "Return code from chown = $?" | tee -a /tmp/mqmuser.log
symlink="/etc/init.d/rc5.d/S97mqmuser"
if [-h $symlink ]; then # symlink found - remove it so script runs once
  rm $symlink
  echo "Removed symbolic link $symlink" | tee -a /tmp/mqmuser.log
fi
```
11.12 Adding MQ Series cloning to the clone.sh script

Following is the function in the clone.sh script that is run when the flag --mqm is included:

```bash
#+--------------------------------------------------------------------------+
function clone_mqs()  
# Clone a MQ Series Server  
#+--------------------------------------------------------------------------+
{
    echo "Cloning MQ Series ..."
    echo "Modifying zipl.conf and running zipl ..."
    cd $1/etc
    cp zipl.conf zipl.conf.orig
    sed -i -e 's:dasd=100-102:dasd=100-102,302(ro),402(ro):g' zipl.conf
    chroot $1 zipl
    echo "Modifying fstab ..."
    cp fstab fstab.orig
    sed -i -e '4a LABEL=mqs-prod       /opt/mqm             ext2
             ro,acl,user_xattr     0 0' fstab
    echo "Making symlink to /etc/init.d/mqmuser ..."
    cd $1/etc/init.d/rc5.d
    ln -s ../mqmuser S97mqmuser
    cd
}
```

11.12.1 Testing cloning of MQ Series

The --mqm flag to the clone.sh script can now be tested. The target user ID in the example that follows is LINUX07. The output specific to MQ Series cloning is highlighted.

```
# clone.sh --mqm LINUX07
...
An MQ Series system will be cloned
Are you sure you want to overwrite these disks (y/n): y ...
Mounting /dev/dasdk1 over /mnt/sles9cloned ...
Modifying cloned image under /mnt/sles9cloned ...
Regenerating SSH keys in /mnt/sles9cloned/etc/ssh/ ...
Adding 129.40.178.127 to known_hosts file
Cloning MQ Series ...
Modifying zipl.conf and running zipl ...
Using config file '/etc/zipl.conf'
Building bootmap in '/boot/zipl'
Adding IPL section 'ipl' (default)
Preparing boot device: 1100.
Done.
Modifying fstab ...
Making symlink to /etc/init.d/mqmuser ...
Setting device 0.0.1100 offline ...
```

After the clone is complete, start an SSH session to it as root. View the log file written to /tmp/:

```
# cat /tmp/mqmuser.log
Creating an MQ Series user ...
Return code from groupadd = 0
Return code from useradd = 0
Return code from chown = 0
Removed symbolic link /etc/init.d/rc5.d/S97mqmuser
```
11.13 Upgrading software

When a new version of software becomes available, you may want to upgrade to it. Before
switching the cloned servers to this new level of software, you will want to test it. Having
production and test disks allows you to test the new level on a test disk and then move it over
to the production disk when successfully tested.

TODO: Describe upgrading WebSphere V6.0.2 to V6.1
Chapter 12. Miscellaneous Recipes

Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.

--Albert Einstein

This chapter has the following sections of miscellaneous tasks that you might want to perform:

- “Adding a logical volume” on page 209
- “Creating a DCSS/XIP2 shared file system” on page 216

12.1 Adding a logical volume

Often more disk space is needed than the 2 GB root file system used thus far. Two 3390-3s combined into a logical volume will give approximately 4.4GB of disk space. The logical volume manager (LVM) which is built into SLES9 can do this for you.

The overall steps in adding a logical volume are as follow

- Add minidisks to the z/VM directory entry and IPL Linux
- Install the LVM2 RPM
- Bring the new DASD online
- Format and partition the DASD
- Create the logical volume and file system
- Update the file system table
- Make the change persistent

12.1.1 Adding minidisks to the z/VM directory entry

The overall steps are the following. Specific details of these steps on z/VM are not given.

- Determine the labels of the two volumes that will be added.
- Add minidisk statements to define minidisks at virtual addresses 103 and 104 to the appropriate Linux user ID definition in the USER DIRECT file.
- Create the USER DISKMAP file to verify the disk layout
Bring the changes online with the **DIRECTXA** command

- Logoff the Linux user ID and log back on to obtain the new directory entry. Run **QUERY DASD** to verify the new minidisks are available.

- IPL Linux

12.1.2 Installing LVM2 RPM

Start an ssh (PuTTY) session to the virtual server to which you added the minidisks.

The lvm2 RPM must be added. You could use the command `yast -i lvm2` to add it, but what if you don't know the name of the RPM you want to add? In this case you can use `yast` to search for RPMs. Invoke `yast` (which can be done from a terminal session, `yast2` requires a graphical session) and use the Tab and down-arrow keys to select **Software -> Install and Remove Software**:

```
# yast
```

This should bring you to a panel with some RPMs listed. In order to search for RPMs, use the Tab key to move to the **Search** "button" at the bottom. This should bring you to a **Package Search** panel. Type in `lvm` for a search string, move the cursor to the **OK** button and press **Enter**.

```
Package Search
```

```
[x] Ignore Case
```

```
[y] Name of the Package
[y] Summary
[[ ]] Description (time-consuming)
[[ ]] Provides
[[ ]] Requires
```
This search should result in one RPM named lvm2. Press the Space bar to select the package and a “+” character should be displayed to the left of the package:

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>lvm2</td>
<td>2.00.33</td>
<td></td>
<td>LVM2 tools</td>
<td>638.9 kB</td>
<td></td>
</tr>
</tbody>
</table>
```

“Press” the Accept button. The RPM should be added. Quit yast. You may want to verify the RPM was added with the `rpm` command.

12.1.3 Bringing the new minidisks online

The `lsdasd` command will show the minidisks that are active. Note that the new 103 and 104 DASD are not shown:

```bash
# lsdasd
0.0.0100(ECKD) at ( 94: 0) is dasda : active at blocksize 4096, 360000 blocks, 1406 MB
0.0.0101(ECKD) at ( 94: 4) is dasdb : active at blocksize 4096, 36000 blocks, 140 MB
```

The `lscss` command lists the channel subsystem devices. The `-t 3390` flag shows only the DASD devices. Note that 103 and 104 are listed but not in use:

```bash
# lscss -t 3390
Device   Subchan.  DevType CU Type Use  PIM  PAM  POM  CHPIDs
------------------------------------------------------------------
0.0.0100 0.0.0000  3390/0A 3990/E9 yes  F0  F0  FF  8C8D8E8F 00000000
0.0.0101 0.0.0001  3390/0A 3990/E9 yes  F0  F0  FF  8C8D8E8F 00000000
0.0.0103 0.0.0002  3390/0A 3990/E9   F0  F0  FF  8C8D8E8F 00000000
0.0.0104 0.0.0003  3390/0A 3990/E9   F0  F0  FF  8C8D8E8F 00000000
0.0.0592 0.0.000E  3390/0A 3990/E9   F0  F0  FF  8C8D8E8F 00000000
...                                           
```

The `chccwdev` command with the `-e` flag will activate the unused DASD. Use the `lsdasd` command again to verify they are online:

```bash
# chccwdev -e 103
Setting device 0.0.0103 online
Done
# chccwdev -e 104
Setting device 0.0.0104 online
Done
# lsdasd
0.0.0100(ECKD) at ( 94:  0) is dasda : active at blocksize 4096, 360000 blocks, 1406 MB
0.0.0101(ECKD) at ( 94:  4) is dasdb : active at blocksize 4096, 36000 blocks, 140 MB
0.0.0103(ECKD) at ( 94:  8) is dasdc : active at blocksize 4096, 204840 blocks, 800 MB
0.0.0104(ECKD) at ( 94: 12) is dasdd : active at blocksize 4096, 600840 blocks, 2347 MB
```

12.1.4 Formatting and partitioning the minidisks

You could format the minidisks sequentially, but you can also use the following bash for loop to put two `dasdfmt` jobs in the background so as to format both minidisks in parallel:

```bash
# for i in c d
#   do
#     dasdfmt -b 4096 -y -f /dev/dasd$i &
#   done
[1] 2713
[2] 2714
```

When the jobs are finished use the `fdasd` command with the `-a` flag to create a single partition from each minidisk:

```bash
# fdasd -a /dev/dasdc
```
auto-creating one partition for the whole disk...
writing volume label...
writing VTOC...
rereading partition table...
```
# fdasd -a /dev/dasdd
auto-creating one partition for the whole disk...
writing volume label...
writing VTOC...
rereading partition table...
```

The minidisks should now be ready to use to create a logical volume

12.1.5 Create the logical volume and file system

The overall steps involved in creating a logical volume are as follow:

- Create physical volumes from the two DASD
- Create a single volume group
- Create a single logical volume
- Make a file system from the logical volume

![Figure 12-1 LVM block diagram](image)

Figure 12-1 shows a block diagram of the logical volume manager reflecting this example.

Creating physical volumes from the two DASD

The `pvcreate` command initializes DASD for use by LVM. Initialize the two new DASD partitions. Verify with the `pvdisplay` command:

```
# pvcreate /dev/dasdc1 /dev/dasdd1
Physical volume "/dev/dasdc1" successfully created
Physical volume "/dev/dasdd1" successfully created
# pvdisplay
```

--- NEW Physical volume ---
PV Name /dev/dasdc1
VG Name
PV Size 799.88 MB
Allocatable NO
PE Size (KByte) 0
Total PE 0
Free PE 0
Allocated PE 0
PV UUID 82c0rk-iVg8-jvs8-6CLg-qjtB-YaLD-wiG21w

--- NEW Physical volume ---
PV Name /dev/dasdd1
VG Name
PV Size 2.29 GB
...

Creating a single volume group
The vgcreate command can be used to create a volume group named optvg from the two DASD. Use the vgdisplay command to verify:

```bash
# vgcreate optvg /dev/dasdc1 /dev/dasdd1
Volume group "optvg" successfully created
# vgdisplay
--- Volume group ---
VG Name optvg
System ID
Format lvm2
Metadata Areas 2
Metadata Sequence No 1
VG Access read/write
VG Status resizable
MAX LV 0
Cur LV 0
Open LV 0
Max PV 0
Cur PV 2
Act PV 2
VG Size 3.07 GB
PE Size 4.00 MB
Total PE 785
Alloc PE / Size 0 / 0
Free PE / Size 785 / 3.07 GB
VG UUID a0SwJA-0BWk-M8f8-OgXY-eDUl-jb8T-Ug3Vo5
```

In this example, there are 785 free physical extents.

Creating a single logical volume
The lvcreate command is used to create a logical volume. The -l 785 flag specifies to use all free extents, in this example. The -n optlv specifies the name of the logical volume. The last argument optvg specifies the name of the volume group from which the logical volume will be created. Use the lvdisplay command to verify:

```bash
# lvcreate -l 785 -n optlv optvg
Logical volume "optlv" created
# lvdisplay
--- Logical volume ---
LV Name /dev/optvg/optlv
VG Name optvg
LV UUID GriEkv-peJd-C85c-d1x0-87IR-iVa4-Z79gT8
```
Making a file system from the logical volume

Now you have a logical volume. Use the `mke2fs` command to create a file system out of it. The `-j` flag adds a journal so it will be of type ext3:

```
# mke2fs -j /dev/optvg/optlv
mke2fs 1.36 (05-Feb-2005)
Filesystem label= 
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
402400 inodes, 803840 blocks
40192 blocks (5.00%) reserved for the super user
...
```

The file system created from the logical volume is now ready to be mounted.

12.1.6 Updating the file system table

You could now mount the file system manually. However if you add the mount to the file system table file, `/etc/fstab`, you can effectively test the change by using the `mount` command with only one argument. First make a backup copy of the `fstab` file:

```
# cd /etc
# cp fstab fstab.orig
# vi fstab
/dev/dasda1          /                    ext3       acl,user_xattr        1 1
/dev/dasdb1          swap                 swap       pri=42                0 0
/dev/optvg/optlv     /opt                 ext3       acl,user_xattr        0 0
...                  
```

Note that the `/opt/` file system is empty (if there were data in the directory you might have copied it out, emptied `/opt/` and then copied it back after the mount). Mount the `/opt/` file system with one argument. Use the `df` `-h` command to verify that it is mounted.

```
# ls /opt
...                  
# mount /opt
# ls /opt
...  lost+found
# df -h
Filesystem            Size  Used Avail Use% Mounted on
/dev/dasda1           1.4G  515M  800M  40% /
tmpfs                 378M     0  378M   0% /dev/shm
/dev/mapper/optvg-optlv 4.4G  33M  4.3G   2% /opt
```
12.1.7 Making the change persistent

The new logical volume is mounted over /opt/. However, for the change to be persistent, the minidisk device addresses must also be added to the file /etc/zipl.conf. See section 7.4.13, “Modifying zipl.conf” on page 107 for a discussion on why this file is used.

Add the new minidisks (103 and 104) to the string which should be dasd=100-102. You could specify the string dasd=100-102,103-104, however, it can be shortened to dasd=100-104 because the addresses are consecutive. If you chose different devices addresses for the new minidisks, such as 200 and 201, the string would be dasd=100-102,200-201.

Make a backup copy of zipl.conf then modify the original dasd= string:

```
# cd /etc
# cp zipl.conf zipl.conf.orig
# vi zipl.conf
# Modified by YaST2. Last modification on Wed Nov 30 15:16:43 2005
[defaultboot]
  default = ipl

[ipl]
  target = /boot/zipl
  image = /boot/image
  ramdisk = /boot/initrd,0x1000000
  parameters = "root=/dev/dasda1 dasd=100-104 selinux=0 TERM=dumb elevator=cfq"
```

Now run the mknitrd and zipl commands to bring the changes online.

```
# mknitrd
...
# mknitrd
Root device: /dev/dasda1 (mounted on / as ext3)
Module list: jbd ext3 dasd_eckd_mod dasd_fba_mod
Kernel image: /boot/image-2.6.5-7.244-s390x
Initrd image: /boot/initrd-2.6.5-7.244-s390x
Shared libs: lib64/libc.so.6 lib64/libeuid.so.1 lib64/libm.so.6
  lib64/libcrypto.so.0.1.0 lib64/libuuid.so.1.2
Modules: kernel/fs/jbd/jbd.ko kernel/fs/ext3/ext3.ko
  kernel/drivers/s390/block/dasd_mod.ko kernel/drivers/s390/block/dasd_eckd_mod.ko
  kernel/drivers/s390/block/dasd_fba_mod.ko
DASDs: 0.0.0100(ECKD) 0.0.0101(ECKD) 0.0.0102(ECKD) 0.0.0103(ECKD) 0.0.0104(ECKD)
Including: udev

initrd updated, zipl needs to update the IPL record before IPL!
# zipl
Using config file '/etc/zipl.conf'
Building bootmap in '/boot/zipl'
Adding IPL section 'ipl' (default)
Preparing boot device: dasda (0100).
Done.
```

You can now reboot the system to test the changes. If you are quick, you can exit the SSH session before you lose communication.

```
# reboot

```
The system is going down for reboot NOW!
exit

When your system comes back the logical volume should be mounted over the /opt/ directory.

12.2 Creating a DCSS/XIP2 shared file system

This section contains excerpts from the document *How to use Execute-in-Place Technology with Linux on z/VM*, SC33-8283-00, March 23, 2005. A copy of this document can be found in:

This section describes how you can reduce memory requirements of Linux servers by using z/VM Discontiguous Saved Segments (DCSS). All operating system instances that run concurrently on a mainframe vie for some of the available physical memory. When multiple operating system instances need the same data it often gets loaded into memory several times. Linux itself only loads shared libraries into memory once, but DCSS would optimize that further by allowing you to customize shared binaries and libraries and by having only one copy loaded in memory per VM instead of per guest.

A major part of the memory required by a Linux server is used for binary application files and for shared library files. The shared data must be identical across all sharing Linux instances. Some suitable candidates are:

- Applications files can be shared, only by Linux instances that use the same version of the application.
- Read only shared data. This is to prevent Linux instances from interfering with one another.
- Directories with applications and libraries that are frequently used by numerous Linux instances are good candidates for sharing.

Directories that are not suitable for sharing are:

- Directories that are being written to.
- Scripts - sharing is not effective because they are interpreted and not executed directly. This is not to be confused with the interpreters themselves (i.e. bash, perl), which can be shared.

For a detailed description of how sharing works, see the document referenced at the start of this section.

12.2.1 Creating a DCSS

You first need to determine the maximum size of the DCSS.

1. Determine the beginning memory address of the DCSS address range. The address range must not overlap with the virtual storage of the guest operating system. Therefore the beginning memory address of the DCSS is equal to the highest amount of virtual storage that has been allocated to any of your images.

2. Determine the upper boundary of the DCSS address range. The upper boundary is 1960 MB for 31-bit Linux kernels and 2 GB for 64-bit Linux kernels.

3. Subtract the lower beginning memory address from the upper boundary to obtain the maximum possible DCSS size.
The maximum possible size of the DCSS in this example assumes a 31-bit Linux distribution and 256 MB of virtual storage:

\[1960 \text{ MB} - 256 \text{ MB} = 1704 \text{ MB} \]

Identifying directories to be shared

Good candidates are those which are read-only files/directories that are at the same level (version) in all Linux instances and that are applications and libraries that are frequently used by most of the images. Sharing the following directories can be used to test setting up a DCSS. To choose directories to share that results in performance improvements, you will have to profile a test workload that your Linux systems will be running.

- `/lib/`
- `/usr/lib/`
- `/bin/`
- `/usr/bin/`
- `/sbin/`
- `/usr/sbin/`

To calculate the space requirements for sharing the directories above, use the following command to find the space requirements for the chosen directories:

```
# du -smc /lib /usr/lib /bin /usr/bin /sbin /usr/sbin
31      /lib
180     /usr/lib
0       /bin
22      /usr/bin
12      /sbin
7       /usr/sbin
257     total
```

The space used by the directories adds up to 257 MB. You should add about 10% for metadata and contingencies which results in 282 MB. Rounding up to a multiple of 64 MB gives 320 MB which is well below the maximum size of 1704 MB.

To establish the start and end address for the DCSS, this addresses must be on a page boundary (4 KB on the mainframe) and in hexadecimal notation.

Start address: 256 MB => 0x10000000
End address: 256 MB + 320 MB - 1 B => 0x23ffffff

Calculate the page frame number for the start and end address. You can do this by dividing the above numbers by 4096 (4K pages). In hexadecimal notation 4096 = 1000, so dividing the above numbers by 1000 can be accomplished by dropping the last three digits.

Start address: 0x10000000 = page frame no. 0x10000
End address: 0x23ffffff = page frame no. 0x23fff

12.2.2 Preparing the Linux guest for DCSS creation

Logon to MAINT and edit the user directory. Change the user ID that will be used to create the DCSS. In this example it is LINUX01. Add privilege class “E” to the user definition which is needed to define and load a new DCSS. If not set already, then set the maximum memory allocation to 1G, to allow enough memory for loading the DCSS:

```
=> x user direct
```

The LINUX01 user definition should look like this:

```
user linux01 lnx4vm 256M 1G eg
```
Put the directory online after you file the changes.

```bash
****> file
****> directx user
```

12.2.3 Creating a file system image for the DCSS

A DCSS holds shared Linux code in form of a Linux file system. Before you can save a file system as a DCSS, you need to IPL from a disk that contains the file system image. So the first thing you need to do is create the file system image on a separate disk. This disk is needed temporarily only, for initializing the DCSS. You can use a temporary disk, a minidisk or a virtual disk. In this example a virtual disk or VDISK is used.

1. Shut down the Linux image running on guest LINUX01 and logon to LINUX01 in a 3270 emulator session.

2. A virtual disk can be used to house the DCSS file system. This disk is only temporary, once you define the shared segment you will not need this anymore. You can create a VDISK with the following `DEFINE` command:

```bash
****> def vfb-512 as 103 blk 1048576
00: DASD 0103 DEFINED
```

This VDISK is 1048576 blocks, or 512MB, which is big enough to house the directories to be shared (see “Identifying directories to be shared” on page 217).

3. IPL the Linux image:

```bash
****> ipl 100 clear
```

4. Open a SSH session to the Linux image and login as root.

5. Invoke `yast` to activate the DASD (you could also use `chccwdev -e`):

```bash
# yast
```

6. Select **Hardware --> DASD --> Select 0.0.0103 --> Perform Action --> Activate**

7. Find out which device is the VDISK defined in step 1:

```bash
# cat /proc/dasd/devices
0.0.0100(ECKD) at ( 94: 0) is dasda : active at blocksize: 4096, 546840 blocks, 2136 MB
0.0.0101(FBA ) at ( 94: 4) is dasdb : active at blocksize: 512, 524288 blocks, 256 MB
0.0.0102(ECKD) at ( 94: 8) is dasdc : active at blocksize: 4096, 54000 blocks, 210 MB
0.0.0103(FBA ) at ( 94: 12) is dasdd : active at blocksize: 512, 1048576 blocks, 512 MB
```

Note that the 103 minidisk is dasdd.

8. Run the `fdisk` command to create a partition for the FBA device. Use the `p` subcommand to see that there are no existing partitions:

```bash
# fdisk /dev/dasdd
Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite)

Command (m for help): p
```

```bash
Disk /dev/dasdd: 447 MB, 447393792 bytes
16 heads, 128 sectors/track, 426 cylinders
Units = cylinders of 2048 * 512 = 1048576 bytes

Device Boot Start   End Blocks Id  System
```
9. Create a new primary partition using all of the space with the n subcommand:

 Command (m for help): n
 Command action
 e extended
 p primary partition (1-4)

 p
 Partition number (1-4): 1
 First cylinder (1-426, default 1): Enter
 Using default value 1
 Last cylinder or +size or +sizeM or +sizeK (1-426, default 426): Enter
 Using default value 426

10. Save your changes with the w subcommand. The new partition will be /dev/dasdd1:

 Command (m for help): w
 The partition table has been altered!
 Calling ioctl() to re-read partition table.
 Syncing disks.

11. Create a file system in the partition via the mke2fs command:

 # mke2fs /dev/dasdd1
 mke2fs 1.38 (30-Jun-2005)
 Filesystem label=
 OS type: Linux
 Block size=1024 (log=0)
 Fragment size=1024 (log=0)
 131072 inodes, 524224 blocks
 26211 blocks (5.00%) reserved for the super user
 First data block=1
 64 block groups
 8192 blocks per group, 8192 fragments per group
 2048 inodes per group
 Superblock backups stored on blocks:
 8193, 24577, 40961, 57345, 73729, 204801, 221185, 401409
 Writing inode tables: done
 Writing superblocks and filesystem accounting information: done
 This filesystem will be automatically checked every 23 mounts or
 180 days, whichever comes first. Use tune2fs -c or -i to override.

12. Create an empty mount point, /dcss/ and mount the new file system over it:

 # mkdir /dcss
 # mount /dev/dasdd1 /dcss
 # df

 Filesystem 1K-blocks Used Available Use% Mounted on
 /dev/dasda1 2152876 997204 1046312 49% /
 tmpfs 117320 417316 115M 4% /dev/shm
 /dev/dasdd1 507684 1381460 32M 69% /dcss

13. Create an empty file with the size of the DCSS via the dd command. The total number of 4K pages needed to hold a 320 MB file system is 320M/4K = 81920:

 # dd if=/dev/zero of=/dcss/filesystem bs=4096 count=81920
 81920+0 records in
 81920+0 records out
 # df -h
 Filesystem Size Used Avail Use% Mounted on
 /dev/dasda1 2.1G 974M 1022M 49% /
 tmpfs 115M 4.0K 115M 1% /dev/shm
 /dev/dasdd1 496M 322M 149M 69% /dcss
14. Create an empty ext2 file system in the empty file using the `mke2fs` command. You will be informed that filesystem is not a block device and will be asked if you really want to create a file system in it. Respond with `y`.

```
# mke2fs -b 4096 /dcss/filesystem
mke2fs 1.38 (30-Jun-2005)
/dcss/filesystem is not a block special device.
Proceed anyway? (y,n) y
... 
This filesystem will be automatically checked every 32 mounts or 180 days, whichever comes first. Use tune2fs -c or -i to override.
```

15. Create a mount point, `/xipimage/` for the file system.

```
# mkdir /xipimage
```

16. Mount the file system on the mount point you have created. The `-t ext2` specifies the file system type and the `-o loop` specifies this is a loopback mount:

```
# mount -t ext2 -o loop /dcss/filesystem /xipimage
```

17. Double check that you have a copy of the execute-in-place script, `xipint`, in `/sbin/`. The `xipinit` script should have been copied to the master image before cloning - it is part of the package that comes with this book. The source code is in Appendix A.6.3, "The xipinit script" on page 277.

18. Copy all directories to be shared to the file system image.

```
# cp -ap /bin /xipimage/bin
# cp -ap /lib /xipimage/lib
# cp -ap /sbin /xipimage/sbin
# mkdir /xipimage/usr
# cp -ap /usr/bin /xipimage/usr/bin
# cp -ap /usr/lib /xipimage/usr/lib
# cp -ap /usr/sbin /xipimage/usr/sbin
# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/dasda1 2.1G 974M 1022M 49% /
tmpfs 115M 4.0K 115M 1% /dev/shm
/dev/dasdd1 496M 322M 149M 69% /dcss
/dcss/filesystem 310M 267M 28M 91% /xipimage
```

19.Unmount the file system.

```
# umount /xipimage/
```

Creating a DCSS from the image file

1. Before creating the DCSS in CMS, prepare the DASD with the image file for IPL. Use the `zipl` command where the `-t` flag identifies the directory that contains the image file and option `-s` identifies the image file and start address of the DCSS.

```
# zipl -t /dcss -s /dcss/filesystem,0x10000000
Building bootstrap in '/dcss'
Adding segment load section
    segment file......: /dcss/filesystem at 0x10000000
Preparing boot device: dasdd (0103).
Done.
```

2. Shutdown the Linux system

```
# shutdown -h now
```

3. From a 3270 emulator session, IPL CMS and do not IPL Linux:

```
=> i cms
```
Your Linux guest machine requires privilege class E to be able to add a DCSS, which was added previously.

4. Use the `QUERY NSS MAP` command. You should see that the named saved segment BC05DCSS has an S under the class column. S stands for skeleton. This means that it is just a placeholder for a DCSS but there are none yet saved.

```plaintext
d=> q nss map
```

5. Before loading the DCSS, a segment must be defined. This is done by entering the command:

```plaintext
defseg bc05dcss 10000-23fff sr
```

6. In order to save the segment you just defined you can not have more than one CPU available. If you have more than 1, you can temporarily detach the other CPU(s).

```plaintext
d=> q cpus
```

```plaintext
00: CPU 00  ID  FF14ABAA20848000 (BASE)
00: CPU 01  ID  FF14ABAA20848000

d=> det CPU 01
```

7. You want to be sure you have enough storage defined for the mapping of the DCSS. Remember that the start address is 256 MB and the DCSS is 320 MB. This means at least a 576 MB machine. Define storage to 1 GB just to make it simpler.

```plaintext
def stor 1g
```

8. IPL the DASD that contains the file system to be copied into the new DCSS. The boot loader installed on the disk loads the contents of the DCSS into the z/VM virtual guest memory and then enters a disable wait state.

```plaintext
d=> ipl 103 clear
```

```plaintext
00: Booting default... 
00: HCPGIR450W CP entered; disabled wait PSW 000A00000 00000000
```

9. After the memory is loaded, save the DCSS via the `SAVESSEG` command. This may take a couple of minutes:

```plaintext
d=> saveseg bc05dcss
```

```plaintext
00: HCPNSS440I Saved segment BC05DCSS was successfully saved in fileid 0029.
```

10. Following the `saveseg` command, issue the command `QUERY NSS MAP` to verify that the new DCSS save operation was successful. It completed successfully if the class column (column title CL) has changed from skeleton (S) to active (A).

You have now created a DCSS in z/VM.

12.2.4 Configuring Linux to use the DCSS

Before your Linux kernel can use the DCSS, it must be aware of the extended address space that covers the DCSS.

Perform the following steps to set the `mem=` kernel parameter accordingly:
1. Reset the storage for your Linux system to 256 MB. And if you had to detach CPUs for the `saveseq` command, now is the time to add them back.

```bash
=> def stor 256m
=> define cpu 01
```

2. IPL your Linux system.

```bash
=> ipl 100 clear
```

3. Add a `mem=<value>` parameter to your kernel parameter line of the `zipl.conf` file. The value must cover the entire DCSS, that is, must be equal to or above the DCSS end address. The value can be in either of these forms: in byte, in the form `<x>k`, in the form `<y>M. This example uses `mem=1024M`:

```bash
# vi /etc/zipl.conf
# Modified by YaST2. Last modification on Mon Dec 13 19:49:11 2004
[defaultboot]
default = ipl
[ipl]
target = /boot/zipl
image = /boot/image
ramdisk = /boot/initrd
parameters = "root=/dev/dasd1 selinux=0 TERM=dumb elevator=cfq mem=1024M"
[dumpdasd]
target = /boot/zipl
dumpto = /dev/dasd??
[dumptape]
target = /boot/zipl
dumpto = /dev/rtibm0
```

4. Run `zipl` with the new parameter file.

```bash
# zipl
```

5. Restart Linux.

```bash
# shutdown -r now
```

6. Issue the following command to verify that Linux is using the new parameter:

```bash
# cat /proc/cmdline
root=/dev/dasd1 selinux=0 TERM=dumb elevator=cfq mem=1024M BOOT_IMAGE=0
```

12.2.5 Testing the DCSS

Perform the following steps to test the DCSS:

1. Mount the xip2 file system.

```bash
# mount -t xip2 -o ro,memarea=BC05DCSS none /dcss
```

```bash
extmem info:segment_load: loaded segment BC05DCSS range 0000000010000000 .. 0000000023ffffff type SR in shared mode
Jan 12 10:46:52 lat131 kernel: extmem info:segment_load: loaded segment BC05DCSS range 0000000010000000 .. 0000000023ffffff type SR in shared mode
```

2. Make sure that all files are accessible:

```bash
# df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/dasd1 2152876 883908 1159528 44% /
tmpfs 117316 0 117316 0% /dev/shm
none 317392 250368 50640 84% /dcss
```

```bash
# cd /dcss
# ls -l
total 44
drwxr-xr-x 7 root root 4096 Dec 13 15:58 ./
```
Chapter 12. Miscellaneous Recipes

12.2.6 Activating the execute-in-place file system at boot time

Before you can activate the execute-in-place file system you have to over-mount the shared directories on startup. A sample script, /sbin/xipinit has been provided that can be used to over-mount directories with the content of a DCSS before Linux accesses them. Over-mounting a directory means replacing it with the contents of the DCSS at system startup. Shared directories must be over-mounted before any data on them is accessed. If a directory is accessed before being over-mounted, accessed libraries and binaries might remain in and waste memory. Directories that are on the root file system need to be over-mounted before running the first program on system startup, /sbin/init.

On system startup, xipinit runs first, over-mounts the shared directories and then calls /sbin/init.

1. The xipinit script can be modified to change the directories that are to be shared. In this example, no modification to the file is necessary as the RODIRS variable is set correctly.

 # ROdirs=/lib,/usr/lib,/bin,/usr/bin,/sbin,/usr/sbin
 # ROmount=/dcss
 # DCSSname=BC05DCSS
 ...

2. Test xipinit script by executing it and verifying that the directories are over-mounted correctly.

 # df
 Filesystem 1K-blocks Used Available Use% Mounted on
 /dev/dasda1 2152876 997236 1046280 49% /
 tmpfs 117320 4 117316 1% /dev/shm
 # xipinit
 binding directory /lib
 binding directory /usr/lib
 binding directory /bin
 binding directory /usr/bin
 binding directory /sbin
 binding directory /usr/sbin
 Usage: init 0123456SsQqAaBbCcUu

 # cat /proc/mounts
 rootfs / rootfs rw 0 0
 /dev/root / ext3 rw 0 0
proc /proc proc rw 0 0
sysfs /sys sysfs rw 0 0
depts /dev/pts devpts rw 0 0
tmpfs /dev/shm tmpfs rw 0 0
none /dcss xip2 ro 0 0
none /lib xip2 ro 0 0
none /usr/lib xip2 ro 0 0
none /bin xip2 ro 0 0
none /usr/bin xip2 ro 0 0
none /sbin xip2 ro 0 0
none /usr/sbin xip2 ro 0 0

3. Verify that the directories are mounted:

```
# df
Filesystem   1K-blocks  Used Available Use% Mounted on
/dev/dasda1   2152876 997236 1046280  49% /
tmpfs          117320    4   117316   1% /dev/shm
none           317392 272476  28532  91% /dcss
/dcss/lib     317392 272476  28532  91% /lib
/dcss/usr/lib  317392 272476  28532  91% /usr/lib
/dcss/bin     317392 272476  28532  91% /bin
/dcss/usr/bin  317392 272476  28532  91% /usr/bin
/dcss/sbin    317392 272476  28532  91% /sbin
/dcss/usr/sbin 317392 272476  28532  91% /usr/sbin
```

4. Now that the directories are correctly mounted, change the kernel parameters so that `xipinit` is run at boot time. Edit the kernel parameter file and add `init=/sbin/xipinit` to the kernel parameter line:

```
# vi /etc/zipl.conf
# Modified by YaST2. Last modification on Mon Dec 13 19:49:11 2004

[defaultboot]
  default = ipl

[ipl]
  target = /boot/zipl
  image = /boot/image
  ramdisk = /boot/initrd
  parameters = "root=/dev/dasda1 selinux=0 TERM=dumb elevator=cfq mem=1024M init=/sbin/xipinit"

[dumpdasd]
  target = /boot/zipl
  dumpto = /dev/dasd??

[dumptape]
  target = /boot/zipl
  dumpto = /dev/rtibm0
```

5. Run `zipl` with the new parameter file.

```
# zipl
```

6. Reboot Linux.

```
# shutdown -r now
```

7. When your system comes back up, verify all the shared directories are over-mounted.

```
# cat /proc/mounts
rootfs /rootfs rw 0 0
/dev/root / ext3 rw 0 0
none /dcss xip2 ro 0 0
none /lib xip2 ro 0 0
none /usr/lib xip2 ro 0 0
none /usr/bin xip2 ro 0 0
```
none /bin xip2 ro 0 0
none /usr/bin xip2 ro 0 0
none /sbin xip2 ro 0 0
none /usr/sbin xip2 ro 0 0
proc /proc proc rw 0 0
sysfs /sys sysfs rw 0 0
devpts /dev/pts devpts rw 0 0
tmpfs /dev/shm tmpfs rw 0 0

8. From a 3270 session verify that Linux is using the DCSS by issuing the **QUERY NSS MAP** command. Check the #USERS column; it should be equal to the number of users that successfully connected to the DCSS.

```
$ cp q nss map
```

<table>
<thead>
<tr>
<th>FILE</th>
<th>FILENAME</th>
<th>FILETYPE</th>
<th>MINSIZE</th>
<th>BEGPAG</th>
<th>ENDPAG</th>
<th>TYPE</th>
<th>CL</th>
<th>#USERS</th>
<th>PARMREGS</th>
<th>VMGROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0037</td>
<td>BC05DCSS</td>
<td>DCSS</td>
<td>N/A</td>
<td>20000</td>
<td>3BFF</td>
<td>SR</td>
<td>A</td>
<td>00001</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

12.2.7 Modifying another Linux guest to mount DCSS

Now change another Linux system, such as **LINUX02**, to mount the DCSS. A high level recipe of these steps are given, without the details.

1. Add the `mem=1024M` parameter to `zipl.conf`
2. Run `zipl` and reboot
3. Copy `xipinit` to `/sbin/`
4. Make the directory `/dcss/`
5. Test `xipinit`
6. Modify `zipl.conf` to add `xipinit`
7. Run `zipl` and reboot
Chapter 13. Monitoring z/VM and Linux

Not everything that can be counted counts, and not everything that counts can be counted.
--Albert Einstein

This chapter briefly describes how to monitor z/VM and Linux. For a more thorough chapter on z/VM performance and monitoring, see Chapter 11, Monitoring performance and capacity, in the Manual Getting Started With Linux, SC24-6096 on the Web at:

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/hcsh2a70

There are a number of z/VM monitoring tools such as Computer Associates’ VM:Monitor, IBM’s z/VM Performance Toolkit and Velocity Software’s ESALPS. The IBM z/VM Performance Toolkit is briefly described in this section.

For more information on Computer Associates’ VM:Monitor, see:

http://www.ca.com/

For more information on Velocity’s ESALPS, see:

http://www.velocitysoftware.com/

This chapter describes the following topics:

► “Using INDICATE and other commands” on page 227
► “The z/VM Performance Toolkit” on page 231
► “Monitoring Linux” on page 237
► “Registering Linux images with the Performance Toolkit” on page 240

13.1 Using INDICATE and other commands

z/VM has many commands to monitor the state of the system. CP INDICATE is the most commonly used, and there are other commands that are addressed.
13.1.1 Using the INDICATE command

z/VM has some basic commands such as INDICATE. There are many parameters that can be included. Use the command HELP INDICATE for a basic understanding and then press F11 for help on each parameter.

INDICATE LOAD

If no parameter is specified INDICATE LOAD is the default option. There are two flavors of this, a class G and a class E. Class G users can use INDICATE to display recent contention for system resources, display environment characteristics and measurements of resources used by their virtual machine.

The output from user ID with class E privilege (e.g. MAINT, OPERATOR) is shown here. The lines are number for clarity of the description that follows:

```plaintext
==>
ind load
1
AVGPROC-038% 03
2
XSTORE-000021/SEC MIGRATE-00001/SEC
3
MDC READS-000068/SEC WRITES-000001/SEC HIT RATIO-099%
4
PAGING-0001/SEC STEAL-000%
5
Q0-000006(00000) DORMANT-00357
6
Q1-000001(00000) E1-00000(00000)
7
Q2-000001(00000) EXPAN-002 E2-00000(00000)
8
Q3-000034(00000) EXPAN-002 E3-00000(00000)
9
PROC 0000-038% PROC 0001-038%
10
PROC 0002-038%
11
LIMITED-00000
```

The INDICATE LOAD command gives a snapshot of current system performance. Except for the counts of virtual machines in various queues and the limited list, the values you see here are a smoothed average over the past 4 minutes. Areas where z/VM performance analysts tend to focus are the following:

- **AVGPROC** on line 1 gives the overall processor utilization, 38% in this example. The number following it is the number of on-line processors, 3 in this example. The individual processor utilization is shown on lines 10 and 11. Take a glance at these to see if they are somewhat balanced. There are cases where an imbalance is okay. This would include very low utilization scenarios or cases where there are not enough ready to run virtual processors to keep the physical processors busy. Line 2 describes paging to expanded storage. Most z/VM systems on z900 class machines can sustain 1000s of paging operations a second without any problems. The MIGRATE rate is the number of pages per second being moved from expanded storage out to paging space on DASD. A healthy system will have a MIGRATE rate significantly lower than the XSTORE rate. However, there are times the MIGRATE value will spike for brief periods of time.

- **Minidisk cache (MDC)** statistics are given on the third line. The effectiveness of MDC can be judged by the combination of the READS rate and the HIT RATIO. If both are high, then a large number of physical I/Os are avoided due to the MDC feature. However, a high HIT RATIO with a low value for the READS rate is not good (it doesn’t matter much if you have a 100% hit ratio, but are doing only 1 I/O per second).

- **Line 4** describes more storage (memory) management. The PAGING rate is important. Higher values will often impact performance. The STEAL percentage is often misleading. This is basically the percentage of pages taken from guests that z/VM believes are non-dormant. Since some guests have periodic timers going off, they appear to be active to z/VM even when relatively idle. Pages taken from these guests are considered stolen. So there are scenarios where a system only has active guests, in which case all pages
taken would be considered stolen. Bearing this in mind, if a high STEAL value is observed, the paging rate needs to be checked. If the paging rate is low, then the STEAL value is not important.

- On lines 5 through 8 you also see a series of counters that represent the users in various queues. The z/VM scheduler classifies work into 3 different classes (1 through 3) and a special class of zero. So the Column of Q_x values and E_x represent the virtual machines in the dispatch list and the eligible list. The most important value here to validate is that there are no virtual machines in the Eligible list: E1, E2, E3; this implies z/VM has stopped dispatching some virtual machines to avoid over committing resources. Do not worry about the values in parenthesis.

INDICATE QUEUES EXP

Another useful command to understand the state of the system is the **INDICATE QUEUES EXP**. Following is an example:

```
=> ind q exp
DATAMGT1  Q3 AP  00000537/00000537 .... -2.025 A02
BITNER     Q1 R00  00000785/00000796 .... -1.782 A00
EDLNX4     Q3 PS  00007635/00007635 .... -1.121 A00
TCP1P      Q0 R01  00004016/00003336 .... -1.324 A01
APCTEST1   Q2 I0  0003556/00035122 .... -1.324 A01
EDLWRK20   Q3 AP  0001495/00014622 .... -1.696 A01
EDL         Q3 I0  00000918/00000902 .... -1.932 A00
EDLWRK11   Q3 AP  00002323/00002299 .... -2.409 A01
EDLWRK18   Q3 I0  00001052/00003864 .... -2.409 A01
EDLWRK4    Q3 AP  0004792/00002295 .... -2.409 A01
EDLWRK8    Q3 AP  0004804/0004797 .... -2.409 A01
EDLWRK16   Q3 AP  0002378/0002378 .... -2.409 A02
EDLWRK2    Q3 AP  0005544/0002956 .... -2.409 A00
EDLWRK12   Q3 AP  0004963/0002348 .... -2.409 A01
EDLWRK6    Q3 I0  0000750/0000302 .... -2.409 A02
EDLWRK19   Q3 AP  0005098/0005096 .... -2.409 A02
EDLWRK17   Q3 AP  0004786/0004766 .... -2.409 A01
EDLWRK9    Q3 AP  0002372/0002343 .... -2.409 A02
EDLWRK5    Q3 I0  0002376/0002376 .... -2.409 A01
EDLWRK14   Q3 AP  0002426/0002323 .... -2.409 A02
EDLLIB19   Q3 I0  0001226/0001100 .... -2.409 A02
EDLWRK19   Q3 AP  0002322/0002298 .... -2.409 A00
EDLWRK15   Q3 AP  0002839/0002781 .... -2.409 A02
EDLWRK1    Q3 AP  0002969/0002935 .... -2.409 A02
```

This is another class E command and displays the virtual processors (a single virtual machine may have multiple virtual processors) what queue (dispatch list, eligible, limit list) they are in and what state they are. This is a snapshot in time. Again you want to make sure there are not any virtual machines in the eligible list. Normal virtual processors in the dispatch list will be Q_x (x=1,2,3). Eligible list would be marked as E_x. The third column in the example also gives state of virtual processor. This can be helpful to get a feel for how the virtual processors might be constrained. Virtual processors that are actually running at the snapshot are marked with and RNN where NN is the processor number they are on. An R without a number means the virtual processor is ready to run but there is not an available processor. (Note: the virtual machine that issues the **INDICATE** command will always be one of the running machines). Other states are documented in the help for **IND Q EXP**. One doesn't have to be concerned about the other columns unless detailed analysis is required or if IBM support requests it. Also, always remember that is just a snapshot in time so often repeating this command over time can give a more accurate picture of your z/VM system.
13.1.2 Using other basic commands

Some other useful basic commands are briefly mentioned. All examples are shown from the MAINT user ID. The results will be different for users with fewer privileges.

Getting help

To get help on the system use the HELP command. Sometimes it's hard to find help for exactly the command you're looking for. Some useful help commands are as follow:

```plaintext
Rightarrow help  // for basic help
Rightarrow help cp menu  // for a menu of all CP commands
Rightarrow help cpquery  // for a menu of all CP QUERY command
Rightarrow help cpset  // for a menu of all CP SET commands
```

Determining who is logged on

To see who is logged on to the system use the QUERY NAMES command. For example:

```plaintext
Rightarrow q n
LINUX06 - DSC, LINUX04 - DSC, LINUX03 - DSC, LINUX07 - DSC
LINUX01 - DSC, SLES9 - DSC, FTPSERVE - DSC, DTCVSW2 - DSC
DTCVSW1 - DSC, TCP/IP - DSC, OPERSYMP - DSC, DISKACNT - DSC
EREP - DSC, OPERATOR - DSC, MAINT -L0005
VSM - TCPIP
```

Determining storage or memory

To see how much central and expanded storage (memory) use the QUERY STORAGE and QUERY XSTOR commands. For example:

```plaintext
Rightarrow q stor
STORAGE = 3G
```

```plaintext
Rightarrow q xstor
XSTORE= 1024M online= 1024M
XSTORE= 1024M userid= SYSTEM usage= 97% retained= OM pending= OM
XSTORE MDC min=0M, max=1024M, usage=96%
XSTORE= 1024M userid= (none) max. attach= 1024M
```

Determining processors or CPUs

To see how many processors (CPs, IFLs, CPUs) you have, use the QUERY PROCESSORS command. For example:

```plaintext
Rightarrow q proc
PROCESSOR 00 MASTER
PROCESSOR 01 ALTERNATE
PROCESSOR 02 ALTERNATE
PROCESSOR 03 ALTERNATE
```

Determining software level

To determine what level of CP your system is at, use the QUERY CPLEVEL command. For example:

```plaintext
Rightarrow q cplevel
z/VM Version 5 Release 1.0, service level 0401 (64-bit)
Generated at 08/31/04 17:33:32 EST
IPL at 03/10/05 14:42:02 EST
```

Determining system cylinder allocation

The QUERY ALLOC MAP command shows you the system's allocate of spool, paging and directory space. For example:

```plaintext
Rightarrow q alloc map
```
Chapter 13. Monitoring z/VM and Linux

13.2 The z/VM Performance Toolkit

To use the z/VM Performance Toolkit, the product must be ordered. You should only configure the product if you have ordered it.

Much more detail can be found in the following books:

- z/VM Performance Toolkit, SC24-6136, on the Web starting at the z/VM 5.2 bookshelf:

 http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/zvmpdf/zvm52.html

 Search for Toolkit on that page.

- The Program Directory for Performance Toolkit for VM, GI11-2854-00, on the Web at

- The IBM Redbook *Linux on IBM zSeries and S/390: Performance Toolkit for VM*, SG24-6059, on the Web at:

 http://www.redbooks.ibm.com/abstracts/sg246059.html

The section that follow describe how to set up and use the IBM Performance Toolkit very briefly:

- “Configuring the z/VM Performance Toolkit” on page 231
- “Using the z/VM Performance Toolkit” on page 235

13.2.1 Configuring the z/VM Performance Toolkit

The Performance Toolkit is installed with z/VM. Configuration is described in the Program Directory. Following is a summary of how to turn it on. Again, you should only configure the product if you have ordered it.

To enable it, **logon to MAINT** and enter the following command:

```plaintext
=> service perftk enable
VMFSRV2760I SERVICE processing started
...
VMFSUT2760I VMFSUFTB processing started
VMFSUT2760I VMFSUFTB processing completed successfully
```

Determining DASD, OSA and virtual resources

The **QUERY DASD** and **QUERY DASD FREE** commands will show you what DASD is assigned to the system and what DASD is free to be assigned. Similarly the **QUERY OSA** and **QUERY OSA FREE** commands will report on the OSA resources. Finally, the **QUERY VIRTUAL ALL** command can be useful. Following is the short form of these commands without any output shown:

- `=> q da`
- `=> q da free`
- `=> q osa`
- `=> q osa free`
- `=> q v all`
VMFSRV2760I SERVICE processing completed successfully

You should see a few screens of messages scroll by and finally the success messages shown above.

Alternatively you can edit the SYSTEM CONFIG file and uncomment the last two lines changing DISABLED to ENABLED and reIPL your system:

```
PRODUCT PRODID SVMPTK10 STATE DISABLED DESCRIPTION '00/00/00.00:00:00.$BASEDDR PERFORMANCE TOOLKIT FOR VM'
```

13.2.2 Configuring Web Browser support

Once the product is enabled, the TCPIP profile must be modified to add browser capabilities for the Performance Toolkit.

1. Logon to TCPMAINT. Edit the `<systemID>` TCPIP D file and search for the string reserve ports. This is where z/VM TCP/IP ports are reserved

```
==> x <systemID> tcpip d
====> /reserve port
```

2. Add the following line under the PORT entries:

```
69   UDP TFTP                ; TFTP (Trivial FTP) Server
81   TCP PERFSVM            ; Performance Toolkit
111 TCP PORTMAP            ; Portmap Server
```

3. Save your changes. The TCPIP user ID needs to be recycled in order for our changes to take effect. You can **FORCE** and **XAUTOLOG TCPIP** from a console, or if you are at an emulator session you can reIPL z/VM:

```
==> shutdown reipl iplparms cons=sysc
```

When the system comes back, logon to TCPMAINT and check if everything was successful by issuing the **NETSTAT CLIENTS** command. You want to see that the service PERFSVM is a client (listening). This should be shown after a few screens of output:

```
==> netstat clients
...
Client: PERFSVM           Authorization: {none}
   Notes Handled: none
   Last Touched:  0:00:25
   Vmcf error count: 0
...
```

The output of the command is lengthy, you want to make sure you have an entry for PERFSVM.

13.2.3 Configuring PERFSVM

The PERFSVM user ID is the Performance Toolkit service machine.

1. **Logon to PERFSVM.** If you successfully enabled the product, you should be put in a Performance Toolkit session and see the following text at the top of the screen:

```
FCX001 Performance Toolkit for VM
FCXBS500I Performance Toolkit for VM ESL00 BASE
Monitor event started -- recording is activated
Monitor sample started -- recording is activated
```

2. Press **PF12** twice to get to a CMS prompt.

3. Copy the PROFILE XEDIT from the MAINT 191 disk so XEDIT sessions will have a common interface among user IDs.
a. Use the VMLINK command to both link the disk read/only and access it as the highest available file mode. The default read password is read, however, if you changed your passwords as described in section 4.9.1, “Changing passwords in USER DIRECT” on page 55, then it will be lnx4vm.

```bash
type vmlink maint 191
ENTER READ PASSWORD:
lnx4vm
DMSVML2060I MAINT 191 linked as 0120 file mode Z
```

b. Copy the PROFILE XEDIT to the A disk:

```bash
type copy profile xedit z = = a
```

4. Make a backup of the original PROFILE EXEC and edit it.

```bash
type copy profile exec a = execorig =
type x profile exec
```

5. Copy the default configuration files, which are on PERFSVM's D disk, to your A disk:

```bash
type copy * * d = = a
```

6. The main configuration file is FCONX $PROFILE. Edit that file and search for the string VMCF. This should take you to line 173 where the next 4 lines are comments starting with an *.

Perform the following changes:
- Uncomment the second and fourth line by changing *C to FC
- Change IDTEST PASSFILE to IDTEST CP on the fourth line
- Add the text FC MONCOLL LINUXUSR ON after the fourth line

The modified lines should be as follows:

```bash
type x fconx $profile a
====>/vmcf
* Following command activates VMCF data retrieval interface
FC MONCOLL VMCF ON
* Following command activates Internet interface
FC MONCOLL WEBSERV ON TCPIP TCPIP 81 IDTEST CP
FC MONCOLL LINUXUSR ON
* Following command activates Internet interface with SSL
*C MONCOLL WEBSERV ON SSL TCPIP TCPIP 81 IDTEST RACF
...
```

7. Save your changes. The line you added tells the Performance Toolkit to collect Linux performance data.

8. Create a remote data retrieval authorization file – replace <systemID> with your system name:

```bash
type x fconrmt authoriz
====> a 2
<systemID> PERFSVM S&FSERV
<systemID> MAINT DATA CMD EXCPMSG
```

9. Create a system identification file – replace <systemID> with your system name:

```bash
type x fconrmt systems
====> a
<systemID> PERFSVM ESA N FCXRES00
```

10. Create a Linux system definition file. Add the TCP/IP addresses of your Linux system(s).

The following example shows adding two Linux virtual servers, LINUX01 and LINUX02:

Use port 8803 for Linux performance data:

```bash
type x fconx linuxusr
====> a 2
```
11. Edit the PROFILE EXEC file and uncomment the five MONITOR SAMPLE and the two MONITOR EVENT statements:

Before:

```plaintext
*** Once you have PERFKIT enabled and running uncomment the ***
*** following comments ***
/* 'CP MONITOR SAMPLE ENABLE PROCESSOR' */
/* 'CP MONITOR SAMPLE ENABLE STORAGE' */
/* 'CP MONITOR SAMPLE ENABLE USER ALL' */
/* 'CP MONITOR SAMPLE ENABLE I/O ALL' */
/* 'CP MONITOR SAMPLE ENABLE APPLDATA ALL' */
/* 'CP MONITOR EVENT  ENABLE STORAGE' */
/* 'CP MONITOR EVENT  ENABLE I/O ALL' */

'PERFKIT' /* Invoke the PERFKIT module @FC012BD*/
Exit

**After:**

```plaintext
*** Once you have PERFKIT enabled and running uncomment the ***
*** following comments ***
'CP MONITOR SAMPLE ENABLE PROCESSOR'
'CP MONITOR SAMPLE ENABLE STORAGE'
'CP MONITOR SAMPLE ENABLE USER ALL'
'CP MONITOR SAMPLE ENABLE I/O ALL'
'CP MONITOR SAMPLE ENABLE APPLDATA ALL'
'CP MONITOR EVENT ENABLE STORAGE'
'CP MONITOR EVENT ENABLE I/O ALL'

'PERFKIT' /* Invoke the PERFKIT module @FC012BD*/
Exit
```

12. Save your changes with the FILE subcommand.

You should now be ready to run the Performance Toolkit.

### 13.2.4 Starting the z/VM Performance Toolkit

To start the Performance Toolkit enter the following command:

```plaintext
=== perfkit
FCX001 Performance Toolkit for VM Autoscroll 12
```
Disconnect from PERFSVM now. The Performance Toolkit should now be configured and running.

13.2.5 Using the z/VM Performance Toolkit

The Performance Toolkit can be used via a Web browser or 3270 interface.

Using a Web browser interface

To use the Web-enabled Performance Toolkit, perform the following steps:

1. Point a browser to your z/VM system at port 81. For example:
   
   \[ \text{http://129.40.178.120:81} \]

2. You should see your system on the Web Session Setup screen. Click it and you will be presented with the Web Server Logon screen.

3. Enter any valid user ID and password. MAINT can be used but need not be.

4. You should see the Central Monitoring System Load Overview with your system name on the left side.

5. Click your system name and you should see the Initial Performance Data Selection Menu screen as shown in Figure 13-1 on page 235.

![Figure 13-1  Browser interface to the Performance Toolkit]
Using a 3270 interface

Logon to PERFSVM. Run the PROFILE EXEC and you should be put into the Performance Toolkit for z/VM environment. The subcommand monitor should present the panel shown below.

```plaintext
=> profile
FCXBA5500I Performance Toolkit for VM FL510 BASE
Monitor event started -- recording is activated
Monitor sample started -- recording is activated
...
FCX001 Performance Toolkit for VM
FCXBA5500I Performance Toolkit for VM FL510 BASE
HCPMOF6229E Monitor event collection is already active.
HCPMOG6229E Monitor sample collection is already active.
Command => monitor
```

![Performance Screen Selection (FL510 BASE)](image)

Drilling down into report screens

You should now be able to use the active report screens. To drill down into these screens, move the cursor to any of the titles that are active (active titles display the number or letter in white, inactive titles are in green). Some of the more useful report screens to drill down into are:

- 21. User resource usage
- 22. User paging load
- 23. User wait states
- 28. User configuration
- 29. Linux systems
13.3 Monitoring Linux

To monitor Linux performance data, a data gatherer process must be running. There are different ways of gathering this data. An important distinction is whether the data gathering will be done in the kernel or as a user application. SuSE SLES9 has been enabled for the kernel to gather performance data. There is a package called the Linux RMF PM Data Gatherer (also called rmfpms) that runs as a user application. Both of these data gatherers work in conjunction with the IBM z/VM Performance Toolkit.

13.3.1 Monitoring Linux with rmfpms

As a user application, the Linux RMF PM Data Gatherer (rmfpms) can be used. Currently it is not part of an IBM product and is intended for evaluation purposes only. A description of rmfpms is as follows:

“rmfpms is a modular data gatherer for Linux®. The gathered data can be analyzed using the RMF PM client application. The performance data is accessible through XML over HTTP so you can easily exploit it in your own applications.”

The following Web site is a starting point:


To download the data gatherer, scroll down and look for the following text and links:

Linux on zSeries -

* 31 bit data gatherer (kernel24 - 630 KB, kernel26 - 1040 KB).
* 64 bit data gatherer (kernel24 - 650 KB, kernel26 - 666 KB).

You can download the appropriate gatherer via a browser, or, if you have access to the Internet you can use an FTP client. You will want one of two files depending on whether you have a 31-bit or 64-bit kernel:

rmfpms_s390_kernel26.tgz - for 31-bit distributions
rmfpms_s390x_kernel26.tgz - for 64-bit distributions

Following is an example of downloading the tar file for 31-bit distributions directly from the Internet. Get an SSH session on the controller or any other virtual server. Change to the /opt/ directory and download the appropriate tar file with the wget command. This example is for a 64-bit distribution:

```
cd /opt
```

13:06:14 (827.64 KB/s) - `rmfpms_s390x_kernel26.tgz' saved [730,332]

Untar the file with the tar command and change to the rmfpsms/ directory:

```
tar xzf rmfpms_s390x_kernel26.tgz
cd rmfpsms/
ls -aF
./ .rmfpms_config README bin/ enable_autostart
../ .rmfpms_config_autostart autostart_rmfpms doc/
```

You should see the configuration file, rmfpms_config. Make a copy of the configuration file, edit it and change $HOME to /opt and save your changes:

```
cp .rmfpms_config .rmfpms_config.orig
vi .rmfpms_config // modify two lines with $HOME, commend out APACHE variables:
rmfpms_config - included in rmfpms bash shell script
```

Chapter 13. Monitoring z/VM and Linux  237
You can now start `rmfpms` in the `bin/` directory with the following command:

```
bin/rmfpms start
Creating /opt/IBM/rmfpms/.rmfpms ...
Starting performance gatherer backends ...
DDSRV: Functionality Level=2.008
DDSRV: Reading exceptions from gpmexcys.ini and gpmexusr.ini.
DDSRV: Server will now run as a daemon process.
done!
```

Once it is running, you can view the performance data from a browser pointing to the Linux image and port 8803 as shown in Figure 13-2. You can also register Linux images with the Performance Toolkit - see section 13.4, “Registering Linux images with the Performance Toolkit” on page 240.

![RMF DDS Browser Interface](image)

**Figure 13-2** Browser view of rmfpms-gathered Linux data

**13.3.2 Monitoring Linux performance data from the kernel**

To monitor Linux performance data directly from the kernel, the following must be true:
1. The APPLMON option must be set in the user directory.
2. Applmon data monitoring must be built into the kernel.

The first requirement should be true as the OPTION APPLMON was set for SLES9 in section 7.1, “Creating the user ID SLES9X” on page 86, and for the other Linux user IDs initially in section 9.1, “Defining a new user ID for a virtual server” on page 131.

With regards to the second requirement, SuSE SLES9 now has this function built in. Details of this function are described in Chapter 15, Linux monitor stream support for z/VM in the manual Device Drivers, Features, and Commands for the October 2005 stream, on the Web at:


A quick description of how to use this built-in monitoring function follows.

There are three modules that are built into the kernel but are not loaded by default. They are named appldata_mem, appldata_os and appldata_net_sum. You can verify that they are not loaded with the lsmod and grep commands:

```
lsmod | grep appldata
```

There is no output so no modules with the string appldata are loaded. Load those modules now via the modprobe command and verify they have been loaded:

```
modprobe appldata_mem
modprobe appldata_os
modprobe appldata_net_sum
```

Now if you repeat the lsmod command, you should see the following:

```
lsmod | grep appldata
appldata_net_sum 20064 0
appldata_os 21512 0
appldata_mem 20112 0
```

The directory in the virtual /proc/ file system where the monitoring variables exist is /proc/sys/appldata/. In this directory there are five files as follow:

- timer: Controls whether any data gathering is in effect.
- interval: Sets the interval, in milliseconds, that samples will be taken.
- mem: Controls the memory data gathering module
- os: Controls the CPU data gathering module
- net_sum: Controls the net data gathering module

To turn on the built in kernel monitoring, use the echo command to send a non-zero value into four of the five monitoring variables in the /proc/ virtual file system:

```
echo 1 > /proc/sys/appldata/timer
echo 1 > /proc/sys/appldata/mem
echo 1 > /proc/sys/appldata/os
echo 1 > /proc/sys/appldata/net_sum
```

Built-in kernel monitoring should now be turned on. You may only want to leave the monitoring on for specific periods of time. As Linux monitoring data is captured, the Performance Toolkit’s minidisk space can fill up relatively quickly.
13.4 Registering Linux images with the Performance Toolkit

To register Linux images that have performance data gathering enabled, logon to PERFSVM and create a file FCONX LINUXUSR A and add Linux user ID/IP address:port pairs. The following example shows adding the SLES9 and LINUX01 user IDs to this file:

```plaintext
==>
====> x fconx linuxusr a
====> a 3
*Linux-ID IP address for DDS Interface:Port
SLES9X <129.40.178.130>
LINUX01 <129.40.178.121>
```

 Restart the performance toolkit:

```plaintext
==>
profile
```

After the system has had some time to collect data, you should be able to use the Performance Toolkit to monitor Linux systems that have both monitoring data being captured and an entry in the FCONX LINUXUSR file. To view that data, drill down into menu 29, Linux systems.
Backup and restore

I never think of the future. It comes soon enough.
--Albert Einstein

This chapter addresses backing up and restoring systems. Given the opening quote, Albert Einstein would probably have not have made a good z/VM and Linux system administrator :))

Backup and restore can be divided into two fundamental issues. Each of these two issues must be able to answer a basic question:

- **Incremental back up**: How do I quickly get back a file that was accidentally deleted or corrupted?
- **Disaster recovery**: How do I restore my infrastructure if my entire data center is wiped out?

The key to incremental back up is self-service. Ideally, you as the system administrator should not have to restore individual files that have been deleted or corrupted, rather, you should be easily be able to tell end users how to do it themselves.

The key to disaster recovery is to have a plan and to practice it. There is no silver bullet. It takes planning and work. You should practice restoring your system at least twice a year, preferable more often. One rule of disaster recovery to consider is “For every backup you make, you should do one restore”.

Both your z/VM system and your Linux servers must be considered. Therefore, the following four permutations exist and are at least briefly addressed in this chapter:

- “Incremental backup of z/VM” on page 241
- “Incremental backup of Linux servers” on page 244
- “Disaster recovery of z/VM and virtual Linux servers” on page 245

### 14.1 Incremental backup of z/VM

If you completed section “Back up your z/VM system to tape” on page 56 and perhaps even 4.12, “Restoring your z/VM system from tape” on page 61, then you have a copy of your
system after it was first customized with networking. Since that time, you have customized at least the USER DIRECT file and possibly some of the other important configuration files on z/VM:

- SYSTEM CONFIG on the MAINT CF1 minidisk
- USER DIRECT on the MAINT 2CC minidisk
- <system_ID> TCPIP and SYSTEM DTCPARMS on the TCPMAINT 198 minidisk
- TCPIP DATA on the TCPMAINT 592 minidisk
- PROFILE EXEC on the AUTOLOG1 191 minidisk

You may find you can get access to your z/VM system, but for some reason may have lost or corrupted one or more of these files. Having nightly copies of them can get you out of a tight spot (remember that all the z/VM passwords are in the USER DIRECT file, so if back this file up be sure the directory where it is stored is secure).

In addition, it would be helpful to backup all files on the LNXMAINT 192 minidisk.

A simple script, named backup_vm has been included on the controller in the /etc/cron.daily/ directory to help you back up these files. This script should not be your only backup procedure, but it may help if you are in a pinch.

### 14.1.1 The backup_vm script

**Important:** This script backs up important z/VM data to a Linux system running under the same z/VM. If your z/VM system cannot be brought back, then this Linux system cannot be started. Therefore, you may consider running this script on a different LPAR or different physical server.

One way to back these up nightly are with the following script and corresponding input files. The script uses the ftp client to login to z/VM, four times for each of the MAINT, TCPMAINT, AUTOLOG1 and LNXMAINT user IDs.

Following is the content of the backup_vm script. Note the TCP/IP address of your z/VM system (n.n.n.n in the example) and the passwords to MAINT, TCPMAINT and AUTOLOG1 (lnx4vm in the example):

```bash
cd /etc/cron.daily/
tail -6 backup_vm

cd /backup/vm
getVMinfo > zVMinfo.txt
ftp ftp://maint:<lnx4vm>@n.n.n.n < /etc/cron.daily/MAINT.FTPcommands
ftp ftp://tcpmaint:<lnx4vm>@n.n.n.n < /etc/cron.daily/TCPMAINT.FTPcommands
ftp ftp://autolog1:<lnx4vm>@n.n.n.n < /etc/cron.daily/AUTOLOG1.FTPcommands
ftp ftp://lnxmaint:<lnx4vm>@n.n.n.n < /etc/cron.daily/LNXMAINT.FTPcommands

Edit the file and modify the four passwords and four TCP/IP addresses for your system.

```

There are also four FTP command files in the same directory.

**The FTP command files**

The MAINT.FTPcommands file backs up the USER DISKMAP, USER DIRECT and SYSTEM CONFIG files:
# cat MAINT.FTPcommands
ascii
get USER.DISKMAP
cd maint.2cc
get USER.DIRECT
cd maint.cf1
get SYSTEM.CONFIG
quit

The TCPMAINT.FTPcommands file backs up the <system_ID> TCPIP, SYSTEM DTCPARMS and TCPIP DATA files. The z/VM system name hard coded into this file must be modified:

# cat TCPMAINT.FTPcommands
ascii
cd tcpmaint.198
get <LNXVM52>.TCPIP
get SYSTEM.DTCPARMS
cd tcpmaint.592
get TCPIP.DATA
quit
# vi TCPMAINT.FTPcommands  // modify the line with <LNXVM52>.TCPIP
...

The AUTOLOG1.FTPcommands file backs up the AUTOLOG1 PROFILE EXEC as the file PROFILE.EXECAUT1:

# cat AUTOLOG1.FTPcommands
ascii
get PROFILE.EXEC PROFILE.EXECAUT1
quit

The LNXMAINT.FTPcommands file backs up files on the LNXMAINT 192 disk as they would exist at the end of the steps in this book. If additional files are added, this file may have to be modified depending upon the file names. Following is an example set of FTP commands that may be used to backup files off the LNXMAINT 192 disk:

# cat LNXMAINT.FTPcommands
ascii
cd lnxmaint.192
prompt
mget C*
mget D*
mget LINUX*
mget P*
mget SLES*
mget VSW*
quit

The getVMinfo script
There are some CP commands which also capture important information about the systems. A small script, getVMinfo is supplied to issue the CP commands. This file should have been copied to the directory /usr/local/sbin/:

# cat /usr/local/sbin/getVMinfo
#!/bin/bash
#
# getVMinfo - run 4 CP commands to report some useful system info
#
# *********************************************************************
# THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
# ...#
Because the `backup_vm` script is in the `/etc/cron.daily/` directory on the controller, it should run automatically once a day. Try running it now:

```
cd /backup/vm
/etc/cron.daily/backup_vm
```

You should see a large number of files being copied via ftp. When you are done investigate the files. All text files are converted to ASCII so you should be able to read them:

```
ls -F
./ LNXMAINT/ PROFILE.EXECAUT1 SYSTEM.DTCPARMS USER.DIRECT zVMinfo.txt
../ LNXVM52.TCPIP SYSTEM.CONFIG TCPIP.DATA USER.DISKMAP
```

### 14.2 Incremental backup of Linux servers

Your IT shop may have an existing backup/restore solution. For example:

- Computer Associates' Brightstor Enterprise Backup
- Innovation Data Processing's FDR/UPSTREAM
- IBM's Tivoli Storage Manager (TSM)
- SecureAgent Software's SecureBackup
- Veritas' Backup Exec

For details of these and other solutions, see the [Software Developer Products for Linux on zSeries and S/390](http://www-1.ibm.com/servers/eserver/zseries/solutions/s390da/linuxproduct.html) page on the Web at:


Descriptions of these products are outside the scope of this book, and they are a much more complete solution than what is described in the sections that follow.

Some simple `cron` scripts and configuration of `rsync` follow. These will result in the `/etc/` directories and other information of the virtual servers (clones) being backed up to the controller nightly.

### 14.2.1 Configuring rsync on the controller

Because the master image was set up to allow the controller to copy its `/etc/` directory, it can be copied with a single `rsync` command. For example, the following commands will copy the `/etc/` directory on LINUX01 at IP address 129.40.178.131:
A script named `backup_linux` is provided to back up the `/etc/` directory of each virtual server nightly. It is invoked nightly by being in the directory `/etc/cron.daily/` and iterates over the directories created by the clone script under `/backup/`:

```bash
cd /etc/cron.daily
tail -9 backup_linux
modify next line if the rsync backup directory is OTHER than /backup/:
backup_dir="/backup/linux"
cd $backup_dir
for i in LINUX*-on-* # iterate through directories starting with LINUX*-on-*
do
 IP_addr=${i#LINUX*-on-} # this chops the head off and grabs the IP address
 cd $backup_dir/$i # change directory
 rsync -r --timeout=30 $IP_addr:/etc . # use rsync to back up the /etc dir
done
```

This script should backup the `/etc/` directory of each Linux system cloned to the appropriate directory under `/backup/linux/`.

### 14.2.2 Configuring sitar to run nightly on the virtual servers

SITAR is a tool that creates documentation describing your system. It is an acronym for System InformaTion At Runtime. In addition to backing up the `/etc/` configuration files, a document describing your system might be helpful. If sitar is run once a day and the output is put in a file in `/etc/`, then you will have additional information about your system backed up.

This command can easily be run nightly via `cron`:

```bash
cd /etc/cron.daily
vi run-sitar // add two lines
#!/bin/bash
sitar --format=html --outfile=/etc/sitar.html
```

### 14.3 Disaster recovery of z/VM and virtual Linux servers

In addition to incremental backups, you should do regular system backups of your z/VM system. Sections 4.10, “Backing up your z/VM system to tape” on page 56 and 4.12, “Restoring your z/VM system from tape” on page 61 just touched on this.

You may choose to do a full volume backups of all DASD in the LPAR. Then in the event of a disaster, your entire system could be restored. This is the most thorough and best way to perform backups, and is one of the areas where the zSeries platform excels.

You may also choose to backup a subset of the volumes (or perhaps you may choose to backup all volumes once a quarter, but backup a subset once a month). Two critical user IDs are LNXMAINT and SLES9. If you have followed all steps in this book, then each of the virtual servers `/etc/` file system is being backed up to the `/backup/` file system. This file system is on `/dev/dasde1` which is the SLES9 203 minidisk. The master image (on SLES9 100 and 102) and the controller (on SLES9 200) are also critical. Given that these minidisks are vital to your system, you may choose to back them up more regularly or in a different fashion. You can look at the USER DISKMAP file, created on the `MAINT 191` disk by the `DISKMAP` command, to determine which volumes to back up. In the examples in this book, the three volumes MMA70C, MMA70A and MMA70B contain these minidisks:

<table>
<thead>
<tr>
<th>VOLUME</th>
<th>USERID</th>
<th>CUU</th>
<th>DEVTYPE</th>
<th>START</th>
<th>END</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMA70C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMA70A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMA70B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
You will probably have many more critical volumes than these three, but consider these especially in your hierarchy of backed up data.
References and source code

This book refers to additional material that can be downloaded from the Internet as described below.

A.1 Obtaining and using the Web material

This book is available in soft copy on the Internet at:

http://linuxvm.org/present/misc/virt-cookbook-2.pdf

The files associated with this book are available on the Internet at:

http://linuxvm.org/present/misc/virt-cookbook-2.tgz

Download the virt-cookbook-2.tgz file to your NFS server and use it as is described in section 6.1, “Downloading files associated with this book” on page 75. The hierarchy within both of the tar files named virt-cookbook-2/. Under that directory are the following file and directories:

- README.txt: The main README file
- linux-controller/: Files used on Linux controller
- linux-master/: Files used on Linux master image which will become cloned servers
- nfs-server/: Files used on the temporary NFS server
- vm/: Files used on z/VM

A.2 Related books

These publications are also relevant as further information sources:

- Linux for zSeries and S/390 Device Drivers, Features, and Commands, LINUX-1403
- SUSE LINUX Enterprise Server: INSTALLATION AND ADMINISTRATION
- SUSE LINUX Enterprise Server: ARCHITECTURE-SPECIFIC INFORMATION
- SUSE LINUX Enterprise Server: START-UP GUIDE
- z/VM Guide for Automated Installation and Service: Version 5 Release 1.0, GC24-6099
A.3 Online resources

These Web sites and URLs are also relevant as further information sources:

- The Linux for zSeries and S/390 portal:
  http://linuxvm.org/
- The linux-390 list server:
  http://www2.marist.edu/htbin/wlvindex?linux-390
- Linux for IBM eServer zSeries and S/390 developerWorks®:
- SUSE LINUX Enterprise Server 9 evaluation:
  http://www.novell.com/products/linuxenterpriseserver/eval.html
- z/VM publications:
- z/VM performance tips:
  http://www.vm.ibm.com/perf/tips/

A.4 Important z/VM files

z/VM differs from Linux in regard to the location and number of configuration files. In Linux, there are many configuration files and most of them are in or under the /etc/ directory. On z/VM, there are relatively few configuration files. However, they are on many different minidisks. Table 14-1 provides a summary and the location of important z/VM configuration files.

<table>
<thead>
<tr>
<th>File</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM CONFIG</td>
<td>MAINT CF1</td>
<td>This is the operating system's main configuration file. It defines the system name, the CP volumes, User volumes and other settings.</td>
</tr>
</tbody>
</table>
A.5  z/VM source code listings

This section lists the contents of the REXX EXECs and XEDIT macros described in the book.

A.5.1  The CPFORMAT EXEC

Following is the code for the EXEC that formats multiple disks via CPFMTXA (described in section 4.6.1, “Formatting the paging volumes” on page 43):

```c
/*+--*/
/*| EXEC: CPFORMAT - wrapper around CPFMTXA to format many DASD */
/*| retVal: 0 - success */
/*| 1 - help was asked for or given */
/*| 2 - user is not sure */
/*| 3 - DASD (minidisk) range is not valid */
/*| 4 - at least one DASD (minidisk) is reserved to MAINT */
/*+--*/

/*--
THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS
GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
--*/

firstChar = 'M' /* change this for an LPAR ID other than 'M' */
parse upper arg dasds "AS " type
if ((dasds = '') | (dasds = '?')) then call help
labelPrefix = getLabelPrefix(firstChar type)
numDasd = parseDasd(dasds)
answer = areYouSure(type)
if (answer = 'Y') then /* the user is sure */
do
```

<table>
<thead>
<tr>
<th>File</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER DIRECT</td>
<td>MAINT 2CC</td>
<td>This file defines the user directory. All user IDs or virtual machines known to the system are defined here (assuming a directory maintenance product is not being used).</td>
</tr>
<tr>
<td>&lt;System_ID&gt; TCPIP</td>
<td>TCPMAINT 198</td>
<td>This file defines the resources for the primary z/VM TCP/IP stack, including TCP/IP address, OSA resources, subnet mask and gateway. It is initially created by the IPWIZARD tool as PROFILE TCPIP.</td>
</tr>
<tr>
<td>SYSTEM DTCPPARMS</td>
<td>TCPMAINT 198</td>
<td>This file is created to define the TCP/IP stacks on the system. It is initially created by the IPWIZARD tool.</td>
</tr>
<tr>
<td>TCPIP DATA</td>
<td>TCPMAINT 592</td>
<td>This file defines the DNS server, the domain name and some other settings. It is initially created by the IPWIZARD tool.</td>
</tr>
<tr>
<td>PROFILE EXEC</td>
<td>AUTOLOG1 191</td>
<td>This file is a REXX EXEC that is run when the system starts up. It is analogous to the /etc/inittab file in Linux.</td>
</tr>
</tbody>
</table>
retVal = doFormat(labelPrefix numDasd type)
call doReport
end
else
  retVal = 2
exit retVal

else
retVal = 2
exit retVal

帮助: procedure
/*+---------------------------------------------------------------*/
parse source . . fn .
say 'Synopsis:'
say ''
say '  Format one or a range of DASD as page, perm, spool or temp disk space'
say '  The label written to each DASD is V<t><xxxx> where:'
say '  <t> is type - P (page), M (perm), S (spool) or T (temp disk)'  
say '  <xxxx> is the 4 digit address'
say ''
say 'Syntax is:'
say ' ' . -PAGE-.'
say ' ' >>--CPFORMAT--.--rdev1----.--AS---+-PERM++---------><''
say ' ' | ---------------------- | ' -SPOL-''
say ' ' '-rdev1-rdev2-------''
say ''
exit 1

确认：procedure
/*| Show minidisks, ask are you sure                                 |
/*|  parm 1: type - PERM, PAGE, or SPOL                              |
/*|  retVal: firstChar - LPAR identifier, 'V' by default             |
/*+---------------------------------------------------------------*/
arg type
say ''
say 'WARNING - this will destroy data!'
say 'ARE YOU SURE you want to format the DASD as' type 'space (y/n)'
parse upper pull answer
return substr(answer, 1, 1) /* from areYouSure */

获取标签前缀: procedure
/*| Return first two characters of label                             |
/*|  parm 1: firstChar - LPAR identifier, 'V' by default             |
/*|  retVal: the two character label prefix                          |
/*+---------------------------------------------------------------*/
arg firstChar type
select
  when (type = PERM) then
    labelPrefix = firstChar||'M' /* for VM Minidisk */
  when (type = PAGE) then
    labelPrefix = firstChar||'P' /* for VM Page */
  when (type = SPOL) then
    labelPrefix = firstChar||'S' /* for VM Spool */
  otherwise
    do
      say 'Error: "AS" must be present and type must be PERM, PAGE or SPOL'
call help
    end /* otherwise */
end /* select */

250  z/VM and Linux on IBM System z: The Virtualization Cookbook
return labelPrefix /* from getLabelPrefix */

parseDasd: procedure expose dasdList.
/*| parse all dasd into an array verifying all are attached          |*/
/*| parm 1: dasds - the list of dasd passed in                      |*/
/*| retVal: number of DASD in dasdList                              |*/
/*+------------------------------------------------------------------+*/
arg dasds
numDasd = 0
say ''
say 'Format the following DASD:'
do while (dasds <> '')
    parse upper var dasds dasd dasds
dashPos = pos('-', dasd)
if (dashPos = 0) then /* there is just one DASD */
do
    numDasd = numDasd + 1
dasdList.numDasd = dasd
    'CP Q MDISK' dasdList.numDasd 'LOCATION'
    if (rc <> 0) then
        do
            say 'Return code from Q MDISK =' rc
            say 'Are all DASD ATTached?'
            exit 3
        end
        call checkReserved(dasdList.numDasd)
    end /* do */
else /* process the range of DASD */
do
    startRange = substr(dasd, 1, dashPos - 1)
    endRange = substr(dasd, dashPos + 1, length(dasd) - dashPos)
    do i = x2d(startRange) to x2d(endRange)
        numDasd = numDasd + 1
dasdList.numDasd = d2x(i)
        'CP Q MDISK' dasdList.numDasd 'LOCATION'
        if (rc <> 0) then
            do
                say 'Return code from Q MDISK =' rc
                exit 3
            end
            call checkReserved(dasdList.numDasd)
        end /* do i */
d/* do while */
return numDasd /* from parseDasd */

doFormat: procedure expose dasdList.
/*| Format all DASD specified using CPFMTXA                          |*/
/*| parm 1: labelPrefix - the two character label prefix            |*/
/*| parm 2: numDasd - number of DASD in the array dasdList          |*/
/*| parm 3: type - the type of DASD format                          |*/
/*| retVal: 0 = success                                             |*/
/*+------------------------------------------------------------------+*/
arg labelPrefix numDasd type
'CP TERM MORE 1 1'
do i = 1 to numDasd
    label = getLabel(labelPrefix dasdList.i)
call formatOne(dasdList.i type label)
end /* do i = */
'CP TERM MORE 50 10'
return 0 /* from doformat */

/**************************
checkReserved: procedure
/* Try copying an already formatted DASD then relabelling it */
/* parm 1: source */
/* parm 2: target */
/* parm 3: label */
/**************************
arg dasd
/* create a list of reserved dasd - this is somewhat hokey to be sure
but it's better to be hokey than to format system minidisks! */
resvd1 = "0122 0123 0124 0125 0190 0191 0193 0190 019E 0201 02A2"
resvd2 = "02A4 02A6 02C2 02C4 02CC 02D2 0319 03A2 03A4 03A6 03B2 03C2"
resvd3 = "03C4 03D0 0400 0401 0402 0405 0493 049B 049E 04A2 04A4"
resvd4 = "04A6 04B2 04C2 04C4 04D2 0500 051D 05A2 05A4 05A6 05B2 05C2"
resvd5 = "05C4 05D0 05E5 05E6 06A2 06A4 06A6 06B2 06C2 06C4 06D2 07A2"
resvd6 = "07A4 07A6 07B2 07C2 07C4 07D2 0CF1 0CF2 0CF3"
reserved = resvd1 resvd2 resvd3 resvd4 resvd5 resvd6
if (index(reserved, dasd) <> 0) then /* MAINT minidisk - ABORT! */
do
  say 'Minidisk' dasd 'is a reserved MAINT minidisk'
say 'This must be formatted manually using a different vaddr'
  exit 4
end /* if dasd is reserved */
return /* from checkReserved */

/**************************
doReport: procedure expose dasds
/* Report on the newly labelled DASD */
/* retval: 0 = success */
/**************************
'DETACH' dasds
'ATTACH' dasds '*'
say ''
say 'DASD status after:'
'CP Q MDISK' dasds 'LOCATION'
return 0 /* from doReport */

/**************************
formatOne: procedure
/* Format a DASD via DDR */
/* parm 1: disk - the vaddr to be formatted */
/* parm 2: type - PAGE, SPOL or PERM */
/* parm 3: label - the six character label */
/**************************
arg disk type label
queue 'FORMAT'
queue disk
queue '0 END'
queue label
queue 'YES'
queue type '0 END'
queue 'END'
'CPFMTXA'
return /* from formatOne */
A.5.2 The CHPW52 XEDIT macro

Following is the code for the XEDIT macro that changes all passwords in the z/VM 5.2 USER DIRECT file:

```plaintext
/* CHPW52 XEDIT - change all passwords in z/VM 5.2 USER DIRECT file */

parse arg fn ft fm '(' options ')' newPass .
if (length(newPass) > 8) then
do
 say "Error: new password must be 8 characters or fewer"
ext
end
say ''
say 'Changing all passwords to:' newPass
say ''

/*/ set some values */
'command set stay on'
'command set num on'
'command set nulls on'
'command set serial off'
'command set cmdline bottom'
'command set curline on 3'
'command set serial off'
```

The program is provided on an "as is" basis, without warranties or conditions of any kind, either express or implied including, without limitation, any warranties or conditions of title, non-infringement, merchantability or fitness for a particular purpose. Neither recipient nor any contributors shall have any liability for any direct, indirect, incidental, special, exemplary, or consequential damages (including without limitation lost profits), however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use or distribution of the program or the exercise of any rights granted hereunder, even if advised of the possibility of such damages.

Appendix A. References and source code 253
'command set scale off'
'command set case m i'
'command set pre off'
'command set v 1 80'

/* change user ID passwords */
'command c/CMS/CMS1 CMS1/CMS1 newPass'/*'
'command c/LGLOPR LGLOPR/LGLOPR newPass'/*'
'command c/MAINT MAINT/MAINT newPass'/*'
'command c/CMSBATCH CMSBATCH/CMSBATCH newPass'/*'
'command c/AVSVM AVSVM/AVSVM newPass'/*'
'command c/TSAFVM TSAFVM/TSAFVM newPass'/*'
'command c/VMSERV1 VMSERV1/VMSERV1 newPass'/*'
'command c/VMSERV2 VMSERV2/VMSERV2 newPass'/*'
'command c/VMSERV3 VMSERV3/VMSERV3 newPass'/*'
'command c/GCS/GCS GCS/GCS newPass'/*'
'command c/GCSXAG/GCSXAG/GCSXAG newPass'/*'
'command c/SYSMAINT SYSMAINT/SYSMAINT newPass'/*'
'command c/OPERATOR OPERATOR/OPERATOR newPass'/*'
'command c/OP1 OP1/OP1 newPass'/*'
'command c/EREPEP EREP/EREPEP newPass'/*'
'command c/OPERATNS OPERATNS/OPERATNS newPass'/*'
'command c/AUTOLOG1 AUTOLOG1/AUTOLOG1 newPass'/*'
'command c/DISKACNT DISKACNT/DISKACNT newPass'/*'
'command c/OPERSYMP OPERSYMP/OPERSYMP newPass'/*'
'command c/VMUTIL VMUTIL/VMUTIL newPass'/*'
'command c/SYSDUMP1 SYSDUMP1/SYSDUMP1 newPass'/*'
'command c/56840421J 56840421J/56840421J newPass'/*'
'command c/4OSASF40 4OSASF40/4OSASF40 newPass'/*'
'command c/OSASF OSASF/OSASF newPass'/*'
'command c/OSMAINT OSMAINT/OSMAINT newPass'/*'
'command c/OSADMIN1 OSADMIN1/OSADMIN1 newPass'/*'
'command c/OSADMIN2 OSADMIN2/OSADMIN2 newPass'/*'
'command c/OSADMIN3 OSADMIN3/OSADMIN3 newPass'/*'
'command c/P684096K P684096K/P684096K newPass'/*'
'command c/RSCS RSCS/RSCS newPass'/*'
'command c/XCHANGE XCHANGE/XCHANGE newPass'/*'
'command c/RSCDNS RSCDNS/RSCDNS newPass'/*'
'command c/TCPMAINT TCPMAINT/TCPMAINT newPass'/*'
'command c/SWMTCP2 SWMTCP2/SWMTCP2 newPass'/*'
'command c/TCPIP TCPIP/TCPIP newPass'/*'
'command c/IMAP IMAP/IMAP newPass'/*'
'command c/FTPFTP FTPSERVE/FTPSERVE newPass'/*'
'command c/SMTPSMTP SMTP newPass'/*'
'command c/NAMESRV NAMESRV/NAMESRV newPass'/*'
'command c/RXEXC RXEXC/RXEXC newPass'/*'
'command c/RXAGENT1 RXAGENT1/RXAGENT1 newPass'/*'
'command c/X25IPX X25IPX/X25IPX newPass'/*'
'command c/PORTMAP PORTMAP/PORTMAP newPass'/*'
'command c/NDMPMGR NDMPMGR/NDMPMGR newPass'/*'
'command c/NDNBRV01 NDNBRV01/NDNBRV01 newPass'/*'
'command c/SNMPQNSNMPQNSNMPQ newPass'/*'
'command c/SNMPDSNMPD/SNMPD newPass'/*'
'command c/ROUTE ROUTED/ROUTE newPass'/*'
'command c/LPSERVE LPSERVE/LPSERVE newPass'/*'
'command c/SNAHKA SNALKA/SNALKA newPass'/*'
'command c/VMNFS VMNFS/VMNFS newPass'/*'
'command c/VMMKERV VMKERV/VMKERV newPass'/*'
'command c/ADMSERV ADMSERV/ADMSERV newPass'/*'
'command c/UFTDUFTD/UFTD newPass'/*'

254 z/VM and Linux on IBM System z: The Virtualization Cookbook
command c/BOOTPD BOOTPD/BOOTPD newPass'/*
command c/TFTPD TFTPD/TFTPD newPass'/*
command c/DHCPD DHCPD/DHCPD newPass'/*
command c/MPRROUTE MPRROUTE/MPROUTE newPass'/*
command c/SSLSEVR SSLSEVR/SSLSEVR newPass'/*
command c/MONWRITE MONWRITE/MONWRITE newPass'/*
command c/5VMDIRT0 5VMDIRT0/5VMDIRT0 newPass'/*
command c/BLDNUC BLDNUC/BLDNUC newPass'/*
command c/BLDCMS BLDCMS/BLDCMS newPass'/*
command c/AUDITOR AUDITOR/AUDITOR newPass'/*
command c/SYSMON SYSMON/SYSMON newPass'/*
command c/VMRMSVM VMRMSVM/VMRMSVM newPass'/*
command c/VMRMADMN VMRMADENM/VMRMADMN newPass'/*
command c/5767002P 5767002P/5767002P newPass'/*
command c/RACFVM RACFVM/RACFVM newPass'/*
command c/RACFSMF RACFSMF/RACFSMF newPass'/*
command c/RACMAINT RACMAINT/RACMAINT newPass'/*
command c/AUTOLOG2 AUTOLOG2/AUTOLOG2 newPass'/*
command c/IBMUSER IBMUSER/IBMUSER newPass'/*
command c/SYSADMIN SYSADMIN/SYSADMIN newPass'/*
command c/BLDRACF BLDRACF/BLDRACF newPass'/*
command c/5VMPTK20 5VMPTK20/5VMPTK20 newPass'/*
command c/PERFSVM PERFSVM/PERFSVM newPass'/*
command c/5VMHD20 5VMHD20/4VMHCD40 newPass'/*
command c/CBIDOISP CBIDOISP/CBIDOISP newPass'/*
command c/VSMSEVR VSMSEVR/VSMSEVR newPass'/*
command c/IMAPAUTH IMAPAUTH/IMAPAUTH newPass'/*
command c/DTCVSW1 DTCVSW1/DTCVSW1 newPass'/*
command c/DTCVSW2 DTCVSW2/DTCVSW2 newPass'/*
command c/MIGMAINT MIGMAINT/MIGMAINT newPass'/*
command c/LNXMAINT LNXMAINT/LNXMAINT newPass'/*
command c/BLDSEG BLDSEG/BLDSEG newPass'/*

/* change mindisk passwords */
command c/ALL WRITE MULTIPLE/ALL newPass newPass'/*
command c/ALL WTCPMAIN MTCPMAIN/ALL newPass newPass'/*
command c/RADMSERV WADMSERV MADMSERV newPass newPass newPass'/*
command c/RAUDITOR WAUDITOR MAUDITOR newPass newPass newPass'/*
command c/AUTOLOG2 AUTOLOG2/AUTOLOG2 newPass newPass'/*
command c/IBMUSER IBMUSER/IBMUSER IBMUSER newPass newPass'/*
command c/SYSADMIN SYSADMIN SYSADMIN newPass newPass newPass'/*
command c/BLDRACF BLDRACF/BLDRACF newPass newPass'/*
command c/5VMPTK20 5VMPTK20/5VMPTK20 newPass newPass newPass'/*
command c/PERFSVM PERFSVM PERFSVM newPass newPass newPass'/*
command c/5VMHD20 5VMHD20/4VMHCD40 newPass newPass newPass newPass'/*
command c/CBIDOISP CBIDOISP/CBIDOISP newPass newPass newPass newPass'/*
command c/VSMSEVR VSMSEVR/VSMSEVR newPass newPass newPass newPass'/*
command c/IMAPAUTH IMAPAUTH/IMAPAUTH newPass newPass newPass newPass'/*
command c/DTCVSW1 DTCVSW1/DTCVSW1 newPass newPass newPass newPass'/*
command c/DTCVSW2 DTCVSW2/DTCVSW2 newPass newPass newPass newPass'/*
command c/MIGMAINT MIGMAINT/MIGMAINT newPass newPass newPass newPass'/*
command c/LNXMAINT LNXMAINT/LNXMAINT newPass newPass newPass newPass'/*
command c/BLDSEG BLDSEG/BLDSEG newPass newPass newPass newPass'/*
A.5.3 The LABEL520 EXEC

Following is the code for the EXEC that changes the system labels of a z/VM 5.2 system:

```c
/*+--*/
/*| EXEC: LABEL520 wrapper around CPFMTXA to LABEL and ALLOC DASD |
/*| retVal: 0 - success |
/*| 1 - help was asked for or given |
/*| 2 - user is not sure |
/*| 3 - DASD (minidisk) range is not valid |
/*| 4 - at least one DASD (minidisk) is reserved to MAINT |
/*+--*/

parse upper arg res spl pag w01 w02 .
if (w02 = '') then call help
/* Construct the two character label prefix */
firstChar = 'M' /* change this for an LPAR ID other than 'M' */
labelPrefix = firstChar'V'
/* Construct the 5 labels */
```

THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NONINFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES

parse upper arg res spl pag w01 w02 .
if (w02 = '') then call help
/* Construct the two character label prefix */
firstChar = 'M' /* change this for an LPAR ID other than 'M' */
labelPrefix = firstChar'V'
/* Construct the 5 labels */
resLabel = getLabel(labelPrefix res)
splLabel = getLabel(labelPrefix spl)
pagLabel = getLabel(labelPrefix pag)
w01Label = getLabel(labelPrefix w01)
w02Label = getLabel(labelPrefix w02)

/* Ask "Are you sure?" */
say 'The volumes are:
' 'CP Q' res spl pag w01 w02
say ''
say 'The system volume labels will become:'
say resLabel splLabel pagLabel w01Label w02Label
say ''
say 'ARE YOU SURE you want to relabel the DASD (y/n)?'
parse upper pull answer
ansFirstChar = substr(answer, 1, 1)
if (ansFirstChar ^= 'Y') then exit 2

/* Label the 4 volumes: RES is 123, W01 is 124, W02 is 125, SPL is 122 */
'CP TERM MORE 1 1'
'CPFMTXA 123' resLabel 'LABEL'
'CPFMTXA 124' w01Label 'LABEL'
'CPFMTXA 125' w02Label 'LABEL'
'CPFMTXA 122' splLabel 'LABEL'

/* LINK the 520PAG volume which is $PAGE$ A03, label it, DETACH it */
'CP LINK $PAGE$ A03 A03 MR'
'CPFMTXA A03' pagLabel 'LABEL'
'CP DET A03'
'CP TERM MORE 50 10'
exit

help: procedure
/*----------------------------------------*/
parse source .. fn .
say ==
say "Synopsis:"
say ==
say "Relabel the five system volumes (520RES, 520W01, ...) to VV<xxxx>"
say " where <xxxx> is the 4 digit address"
say ==
say "Syntax is:"
say ==
say " >>>---LABEL520--res--spl--pag--w01--w02----------------------------------""
say ==
say " where res, spl, pag, w01 and w02 are 4 digit virtual addresses"
say " of the volumes that z/VM 5.2 is installed onto"
say ==
exit 1

getLabel: procedure
/* Compose the six character label of a minidisk */
/* parm 1: labelPrefix - first two characters of label */
/* parm 2: disk - vaddr of length 1, 2, 3 or 4 */
/* return: the 6 character label */
/*----------------------------------------*/
arg labelPrefix disk
if (DATATYPE(disk, 'X') = 0) then
do
  say "Error:" disk "is not a hexadecimal number"
call help
end

diskLen = length(disk)
select
  when (diskLen = 1) then /* insert 3 zeros */
    label = labelPrefix||'000'||disk
  when (diskLen = 2) then /* insert 2 zeros */
    label = labelPrefix||'00'||disk
  when (diskLen = 3) then /* insert a zero */
    label = labelPrefix||'0'||disk
  otherwise /* it must be length 4 or query would have failed */
    label = labelPrefix||disk
end /* select */
return label /* from getLabel */

A.5.4 The LABEL520 XEDIT macro

Following is the code for the XEDIT macro that changes all passwords in the z/VM 5.2 USER DIRECT file:

/* LABEL520 - change '520xxx' labels in SYSTEM CONFIG or USER DIRECT */
/*------------------------------------------------------------------
THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS
GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
---------------------------------------------------------------------*/

firstChar = 'M' /* change this for an LPAR ID other than 'M' */
parse upper arg res spl pag w01 w02 .
parse upper arg fn ft fm '(' options ')' res spl pag w01 w02 .
if (w02 = '') then
do  
say "5 arguments required - exiting"
exit
end
'command set stay on'
'command set num on'
'command set nulls on'
'command set serial off'
'command set cmdline bottom'
'command set curline on 3'
'command set serial off'
'command set scale off'
'command set case m i'
'command set pre off'
'command set v 1 80'
'command top'
'command c/520RES/firstChar''V''res/*'

A.6 Linux source code listings

This section lists the contents of the two shell scripts described in the book.

A.6.1 The mksles9root.sh script

This section lists the `mksles9root.sh` script. See section 6.2.5, “Creating the SLES9 install tree” on page 80 for a description:

```bash
#!/bin/bash
#
mksles9root.sh - a script to build a SLES9 install tree
--
THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY
WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.
NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR
DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
--
#
#+--+
function usage
Give help
#+--+
{
 scriptName=`basename $0`
 echo ""
 echo "$scriptName: Create a SLES9 install tree "
 echo ""
 echo "Usage: $scriptName [option] <arch>"
 echo "where [option] can be:"
 echo " -m, --mounts "
 echo " Mount ISO images loopback, don't copy"
 echo "where <arch> must be one of:"
 echo " s390"
 echo " s390x"
 echo " For 32-bit SLES9 install tree"
 echo " s390x"
 echo " For 64-bit SLES9"
 echo ""
 echo "The 6 ISO images for vanilla SLES9 must exist in the current directory"
 echo "If 3 SP3 ISO images exist, they will be built into the tree sles9[x]sp3root/"
 echo "else if 3 SP2 ISO images exist, they will be built into the tree sles9[x]sp2root/"
 echo "else if 2 SP1 ISO images exist, they will be built into the tree sles9[x]sp1root/"
 echo "else the vanilla SLES9 tree will be sles9[x]root/"
```
function check_for_discs
# Check if the 6 SLES9 ISO images exist - if any are missing then exit
# Check for the 2 SLES9 SP1 and the 3 SP2 ISO images
# return:
#     0: Only the 6 SLES9 ISO images are found
#     1: The 2 SP1 ISO images are found
#     2: The 3 SP2 ISO images are found
#     3: The 3 SP3 ISO images are found
#
{ for i in $cd1 $cd2 $cd3 $cd4 $cd5 $cd6; do # check for the 6 SLES9 ISO images
    if [ ! -f $i ]; then
        echo "The file $i is not found"
        echo "Error: cannot proceed without the following 6 SLES9 ISO images:"
        echo "$cd1"
        echo "$cd2"
        echo "$cd3"
        echo "$cd4"
        echo "$cd5"
        echo "$cd6"
        echo ""
        usage
    fi
done
retVal="0"
if [[ -f $sp3cd1 && -f $sp3cd2 && -f $sp3cd3 ]]; then
    echo "SP3 ISO images found ..."
    retVal=3
elif [[ -f $sp2cd1 && -f $sp2cd2 && -f $sp2cd3 ]]; then
    echo "SP2 ISO images found ..."
    retVal=2
elif [[ -f $sp1cd1 && -f $sp1cd2 ]]; then # SP1 ISOs found
    echo "SP1 ISO images found ..."
    retVal=1
fi
return $retVal
}

function mount_copy
# Mount an ISO image over the directory tmpCD/ and copy its contents
# arg 1: the ISO image to mount
# arg 2: the temporary directory over which to mount
# arg 3: the directory to copy to
#
{ ISO_image=$1
temp_dir=$2
target_dir=$3
echo " Mounting and copying $ISO_image ..."
mount -o loop,ro $ISO_image $temp_dir
if [ $? != 0 ]; then # unable to mount
    echo "Error: unable to mount $ISO_image over $temp_dir - exiting"
rmdir $temp_dir
    exit
fi
cd $temp_dir
rsync -HiogptrS * ../$target_dir
cd ..
umount $temp_dir
}

#+--------------------------------------------------------------------------+
function copy_CDs
# Mount and copy appropriate CDs
# arg 1: service pack level (0 = vanilla)
#+--------------------------------------------------------------------------+
{
echo "Copying SLES9 ISO images ..."
temp_dir=tmpCD
if [ ! -d $temp_dir ]; then mkdir $temp_dir; fi
mount_copy $cd1 $temp_dir $rdir/$sles/CD1/
mount_copy $cd2 $temp_dir $rdir/$core/CD1/
mount_copy $cd3 $temp_dir $rdir/$core/CD2/
mount_copy $cd4 $temp_dir $rdir/$core/CD3/
mount_copy $cd5 $temp_dir $rdir/$core/CD4/
mount_copy $cd6 $temp_dir $rdir/$core/CD5/
if [ $1 = 1 ]; then # then SP1 ISO images exist
  echo "Copying SLES9 SP1 ISO images ..."
  mount_copy $sp1cd1 $temp_dir $rdir/$sp1/CD1
  mount_copy $sp1cd2 $temp_dir $rdir/$sp1/CD2
elif [ $1 = 2 ]; then # then SP2 ISO images exist
  echo "Copying SLES9 SP2 ISO images ..."
  mount_copy $sp2cd1 $temp_dir $rdir/$sp2/CD1
  mount_copy $sp2cd2 $temp_dir $rdir/$sp2/CD2
  mount_copy $sp2cd3 $temp_dir $rdir/$sp2/CD3
elif [ $1 = 3 ]; then # then SP3 ISO images exist
  echo "Copying SLES9 SP3 ISO images ..."
  mount_copy $sp3cd1 $temp_dir $rdir/$sp3/CD1
  mount_copy $sp3cd2 $temp_dir $rdir/$sp3/CD2
  mount_copy $sp3cd3 $temp_dir $rdir/$sp3/CD3
fi
echo "Removing temporary mount point ..."
rmdir $temp_dir
}

#+--------------------------------------------------------------------------+
function mk_directory_structure
# Make the directory structure
# arg 1: service pack level (0 = vanilla)
# The directory structure is as follows:
# /sles9root/
# boot -> sles9/CD1/boot
# content -> sles9/CD1/content
# control.xml -> sles9/CD1/control.xml
# media.1 -> sles9/CD1/media.1
# core9/
# CD1/
# CD2/
# CD3/
# CD4/
# CD5/
# sles9/
# CD1/
# spl1-9/ // if the 2 SP1 ISO images exist
# CD1/
#          CD2/
#     sp2-9/ // if the 3 SP2 ISO images exist
#          CD1/
#          CD2/
#          CD3/
#     sp3-9/ // if the 3 SP3 ISO images exist
#          CD1/
#          CD2/
#          CD3/
#          yast/
#          instorder
#          order
#
#+--------------------------------------------------------------------------+
{
  echo "Making the directory structure ..."
  if [ -d $rdir ]; then # the subdirectory already exists - don't overwrite it
    echo "Error: root directory $rdir exists - must be removed first (rm -fr $rdir)"
    exit
  fi
  if [ ! -d $rdir/$sles/CD1 ]; then mkdir -p $rdir/$sles/CD1; fi
  if [ ! -d $rdir/$core/CD1 ]; then mkdir -p $rdir/$core/CD1; fi
  if [ ! -d $rdir/$core/CD2 ]; then mkdir -p $rdir/$core/CD2; fi
  if [ ! -d $rdir/$core/CD3 ]; then mkdir -p $rdir/$core/CD3; fi
  if [ ! -d $rdir/$core/CD4 ]; then mkdir -p $rdir/$core/CD4; fi
  if [ ! -d $rdir/$core/CD5 ]; then mkdir -p $rdir/$core/CD5; fi
  if [ ! -d $rdir/yast ]; then mkdir -p $rdir/yast; fi
  if [ $1 = 1 ]; then # SP1 ISO images exist
    if [ ! -d $rdir/$sp1/CD1 ]; then mkdir -p $rdir/$sp1/CD1; fi
    if [ ! -d $rdir/$sp1/CD2 ]; then mkdir -p $rdir/$sp1/CD2; fi
  elif [ $1 = 2 ]; then # SP2 ISO images exist
    if [ ! -d $rdir/$sp2/CD1 ]; then mkdir -p $rdir/$sp2/CD1; fi
    if [ ! -d $rdir/$sp2/CD2 ]; then mkdir -p $rdir/$sp2/CD2; fi
    if [ ! -d $rdir/$sp2/CD3 ]; then mkdir -p $rdir/$sp2/CD3; fi
  elif [ $1 = 3 ]; then # SP3 ISO images exist
    if [ ! -d $rdir/$sp3/CD1 ]; then mkdir -p $rdir/$sp3/CD1; fi
    if [ ! -d $rdir/$sp3/CD2 ]; then mkdir -p $rdir/$sp3/CD2; fi
    if [ ! -d $rdir/$sp3/CD3 ]; then mkdir -p $rdir/$sp3/CD3; fi
  fi
#
#+--------------------------------------------------------------------------+
function mk_symbolic_links
# Make symbolic links as specified in the SLES9 install manual
#  arg 1: service pack level (0 = vanilla)
#
#+--------------------------------------------------------------------------+
{
  echo "Making symbolic links ..."
  cd $rdir
  ln -fs $sles/CD1/boot boot
  ln -fs $sles/CD1/content content
  ln -fs $sles/CD1/control.xml control.xml
  ln -fs $sles/CD1/media.1 media.1
  if [ $1 = 1 ]; then # the SP1 ISO images exist
    ln -fs $sp1/CD1/driverupdate
    ln -fs $sp1/CD1/linux
  elif [ $1 = 2 ]; then # the SP2 ISO images exist
    ln -fs $sp2/CD1/driverupdate
    ln -fs $sp2/CD1/linux
  elif [ $1 = 3 ]; then # the SP3 ISO images exist
    ln -fs $sp3/CD1/driverupdate

ln -fs $sp3/CD1/linux
fi
cd ..
}

#+--------------------------------------------------------------------------+
function clean_mounts
# Clean up loopback mount points
# arg 1: service pack level (0 = vanilla)
#+--------------------------------------------------------------------------+
{
    echo "Cleaning up mount points ..."
    umount $rdir/$sles/CD1/
    umount $rdir/$core/CD1/
    umount $rdir/$core/CD2/
    umount $rdir/$core/CD3/
    umount $rdir/$core/CD4/
    umount $rdir/$core/CD5/
    # check for Service Packs
    if [ $1 = 1 ]; then # then SP1 ISO images exist
        umount $rdir/$sp1/CD1/
        umount $rdir/$sp1/CD2/
    elif [ $1 = 2 ]; then # then SP2 ISO images exist
        umount $rdir/$sp2/CD1/
        umount $rdir/$sp2/CD2/
        umount $rdir/$sp2/CD3/
    elif [ $1 = 3 ]; then # then SP3 ISO images exist
        umount $rdir/$sp3/CD1/
        umount $rdir/$sp3/CD2/
        umount $rdir/$sp3/CD3/
    fi
    echo "Cleaning up remains of $rdir ..."
    rm -fr $rdir
    echo "Cleaned up - exiting"
    echo "You may need more loopback devices"
    exit
}

#+--------------------------------------------------------------------------+
function mount_CDs
# Check that the 6 ISO images exist then mount and copy them
# arg 1: service pack level (0 = vanilla)
#+--------------------------------------------------------------------------+
{
    echo "Mounting ISO images loopback ..."
    echo "  Mounting $cd1 over $rdir/$sles/CD1/ ..."
    mount -o loop,ro $cd1 $rdir/$sles/CD1/
    if [ $? -ne 0 ]; then clean_mounts $1; fi
    echo "  Mounting $cd2 over $rdir/$core/CD1/ ..."
    mount -o loop,ro $cd2 $rdir/$core/CD1/
    if [ $? -ne 0 ]; then clean_mounts $1; fi
    echo "  Mounting $cd3 over $rdir/$core/CD2/ ..."
    mount -o loop,ro $cd3 $rdir/$core/CD2/
    if [ $? -ne 0 ]; then clean_mounts $1; fi
    echo "  Mounting $cd4 over $rdir/$core/CD3/ ..."
    mount -o loop,ro $cd4 $rdir/$core/CD3/
    if [ $? -ne 0 ]; then clean_mounts $1; fi
    echo "  Mounting $cd5 over $rdir/$core/CD4/ ..."
    mount -o loop,ro $cd5 $rdir/$core/CD4/
    if [ $? -ne 0 ]; then clean_mounts $1; fi
echo " Mounting $cd6 over $rdir/$core/CD5/ ..."
mount -o loop,ro $cd6 $rdir/$core/CD5/
if [ $? -ne 0 ]; then clean_mounts $1; fi

# check for Service Packs
if [ $1 = 1 ]; then # then SP1 ISO images exist
    echo "Mounting SLES9 SP1 ISO images loopback ..."
    echo " Mounting $sp1cd1 over $rdir/$sp1/CD1/ ..."
    mount -o loop,ro $sp1cd1 $rdir/$sp1/CD1
    if [ $? -ne 0 ]; then clean_mounts $1; fi
    echo " Mounting $sp1cd2 over $rdir/$sp1/CD2/ ..."
    mount -o loop,ro $sp1cd2 $rdir/$sp1/CD2
    if [ $? -ne 0 ]; then clean_mounts $1; fi
elif [ $1 = 2 ]; then # then SP2 ISO images exist
    echo "Mounting SLES9 SP2 ISO images loopback ...
    echo " Mounting $sp2cd1 over $rdir/$sp2/CD1/ ..."
    mount -o loop,ro $sp2cd1 $rdir/$sp2/CD1
    if [ $? -ne 0 ]; then clean_mounts $1; fi
    echo " Mounting $sp2cd2 over $rdir/$sp2/CD2/ ...
    mount -o loop,ro $sp2cd2 $rdir/$sp2/CD2
    if [ $? -ne 0 ]; then clean_mounts $1; fi
    echo " Mounting $sp2cd3 over $rdir/$sp2/CD3/ ...
    mount -o loop,ro $sp2cd3 $rdir/$sp2/CD3
    if [ $? -ne 0 ]; then clean_mounts $1; fi
elif [ $1 = 3 ]; then # then SP3 ISO images exist
    echo "Mounting SLES9 SP3 ISO images loopback ...
    echo " Mounting $sp3cd1 over $rdir/$sp3/CD1/ ...
    mount -o loop,ro $sp3cd1 $rdir/$sp3/CD1
    if [ $? -ne 0 ]; then clean_mounts $1; fi
    echo " Mounting $sp3cd2 over $rdir/$sp3/CD2/ ...
    mount -o loop,ro $sp3cd2 $rdir/$sp3/CD2
    if [ $? -ne 0 ]; then clean_mounts $1; fi
    echo " Mounting $sp3cd3 over $rdir/$sp3/CD3/ ...
    mount -o loop,ro $sp3cd3 $rdir/$sp3/CD3
    if [ $? -ne 0 ]; then clean_mounts $1; fi
fi

#+--------------------------------------------------------------------------+
function mk_order_files
# Create yast/instorder and yast/order files per SLES Install manual
# arg 1: service pack level (0 = vanilla)
#+--------------------------------------------------------------------------+
{
    echo "Creating yast/*order files ...
    cd $rdir
    if [ $1 = 0 ]; then # the SP1 ISO images exist - add 3 entries
        echo " Creating files for SLES9..."
        echo -e "/$sles/CD1 /$sles/CD1" > yast/instorder
        echo -e "/$core/CD1 /$core/CD1" >> yast/instorder
    elif [ $1 = 1 ]; then # the SP1 ISO images do not exist - add 2 entries
        echo " Creating files for SLES9 + SP1..."
        echo -e "/$sp1/CD1 /$sp1/CD1" > yast/instorder
        echo -e "/$sles/CD1 /$sles/CD1" >> yast/instorder
    elif [ $1 = 2 ]; then # the SP2 ISO images do not exist - add 2 entries
        echo " Creating files for SLES9 + SP2..."
        echo -e "/$sp2/CD1 /$sp2/CD1" > yast/instorder
        echo -e "/$sles/CD1 /$sles/CD1" >> yast/instorder
    elif [ $1 = 3 ]; then # the SP3 ISO images do not exist - add 2 entries
        echo " Creating files for SLES9 + SP3..."
        echo -e "/$sp3/CD1 /$sp3/CD1" > yast/instorder
        echo -e "/$sles/CD1 /$sles/CD1" >> yast/instorder
    fi
}
elif [ $1 = 3 ]; then # the SP3 ISO images do not exist - add 2 entries
echo " Creating files for SLES9 + SP3..."
echo -e "/$sp3/CD1 /$sp3/CD1" >> yast/instorder
echo -e "/$sles/CD1 /$sles/CD1" >> yast/instorder
echo -e "/$core/CD1 /$core/CD1" >> yast/instorder
fi
cp yast/instorder yast/order
cd ..
}

function merge_patches
# Merge patches from $rdir/sp-<n>/CD[1-3]/s390x/update/SUSE_CORE/9 to $rdir
# arg 1: service pack level
#
{ echo "Merging patches for service pack $1 ..."
cd $rdir
if [ $1 = 1 ]; then # merge service pack 1
  for i in 1 2; do
    rsync -HlogptrS $sp1/CD$i/$arch .
    rm -fr $sp1/CD$i/$arch
  done
elif [ $1 = 2 ]; then # merge service pack 2
  for i in 1 2; do
    rsync -HlogptrS $sp2/CD$i/$arch .
    if [ $mounts = "no" ]; then rm -fr $sp2/CD$i/$arch; fi
  done
  echo "Hacking mediamap file for service pack $1 ..."
cd $arch/update/SUSE-CORE/9/patches
cp mediamap mediamap.orig
sed -e 's/ 2/ 1/g' mediamap.orig > mediamap
cd ../../..
elif [ $1 = 3 ]; then # merge service pack 3
  for i in 1 2; do
    rsync -HlogptrS $sp3/CD$i/$arch .
    if [ $mounts = "no" ]; then rm -fr $sp3/CD$i/$arch; fi
  done
  echo "Hacking mediamap file for service pack $1 ..."
cd $arch/update/SUSE-CORE/9/patches
cp mediamap mediamap.orig
sed -e 's/ 2/ 1/g' mediamap.orig > mediamap
cd ../../..
fi
cd $arch/update
ln -fs SUSE-CORE SUSE-SLES
cd ..
}

function process_args
#
# args: all arguments passed to the script - valid values are:
#   s390  31-bit architecture
#   s390x 64-bit architecture
#   -m use loopback mounts for CDs, don't copy
#   --mounts use loopback mounts for CDs, don't copy
#
{ while (( "$#" )); do
case $1 in
  "s390")
    arch=$1
    ;;
  "s390x")
    arch=$1
    ;;
  "-m")
    mounts="yes"
    ;;
  "--mounts")
    mounts="yes"
    ;;
  *)
    echo "Error: Unrecognized parameter: $1"
    usage
    esac
    shift
done # while there are more parms
#
# main() - mainline code starts here - modify file names below if necessary
# mounts="no"
arch="not set"
process args $@
if [[ $arch = "s390" ]]; then # set the SLES9 s390 .iso file names
  # hard-coded file names for the 6 31-bit SLES9 CD .iso images
  cd1="SLES-9-s390-RC5a-CD1.iso"
  cd2="SLES-9-s390-RC5-CD2.iso"
  cd3="SLES-9-s390-RC5-CD3.iso"
  cd4="SLES-9-s390-RC5-CD4.iso"
  cd5="SLES-9-s390-RC5-CD5.iso"
  cd6="SLES-9-s390-RC5-CD6.iso"
  # hard-coded file names for the 2 31-bit SLES9 Service Pack 1 CD .iso images
  sp1cd1="SLES-9-SP-1-s390-RC5-CD1.iso"
  sp1cd2="SLES-9-SP-1-s390-RC5-CD2.iso"
  # hard-coded file names for the 3 31-bit SLES9 Service Pack 2 CD .iso images
  sp2cd1="SLES-9-SP-2-s390-GM-CD1.iso"
  sp2cd2="SLES-9-SP-2-s390-GM-CD2.iso"
  sp2cd3="SLES-9-SP-2-s390-GM-CD3.iso"
  # hard-coded file names for the 3 31-bit SLES9 Service Pack 3 CD .iso images
  sp3cd1="SLES-9-SP-3-s390-GM-CD1.iso"
  sp3cd2="SLES-9-SP-3-s390-GM-CD2.iso"
  sp3cd3="SLES-9-SP-3-s390-GM-CD3.iso"
elif [[ $arch = "s390x" ]]; then # set the SLES9 s390x .iso file names
  # hard-coded file names for the 6 64-bit SLES9 CD .iso images
  cd1="SLES-9-s390x-RC5a-CD1.iso"
  cd2="SLES-9-s390x-RC5-CD2.iso"
  cd3="SLES-9-s390x-RC5-CD3.iso"
  cd4="SLES-9-s390x-RC5-CD4.iso"
  cd5="SLES-9-s390x-RC5-CD5.iso"
  cd6="SLES-9-s390x-RC5-CD6.iso"
  # hard-coded file names for the 2 64-bit SLES9 Service Pack 1 CD .iso images
  sp1cd1="SLES-9-SP-1-s390x-RC5-CD1.iso"
  sp1cd2="SLES-9-SP-1-s390x-RC5-CD2.iso"
  # hard-coded file names for the 3 64-bit SLES9 Service Pack 2 CD .iso images
  sp2cd1="SLES-9-SP-2-s390x-GM-CD1.iso"
  sp2cd2="SLES-9-SP-2-s390x-GM-CD2.iso"
  sp2cd3="SLES-9-SP-2-s390x-GM-CD3.iso"
  # hard-coded file names for the 3 64-bit SLES9 Service Pack 3 CD .iso images
  sp3cd1="SLES-9-SP-3-s390x-GM-CD1.iso"
  sp3cd2="SLES-9-SP-3-s390x-GM-CD2.iso"
  sp3cd3="SLES-9-SP-3-s390x-GM-CD3.iso"
A.6.2 The clone.sh script

This section lists the clone.sh script. See section 9.3, "Cloning a virtual server automatically" on page 137 for a description:

```bash
#!/bin/bash
```

```bash
sp3cd1="SLES-9-SP-3-s390x-GM-CD1.iso"
sp3cd1="SLES-9-SP-3-s390x-GM-CD1a.good.iso"
sp3cd2="SLES-9-SP-3-s390x-GM-CD2.iso"
sp3cd3="SLES-9-SP-3-s390x-GM-CD3.iso"
else # the one required parameter is not correct - give help
 echo "Error: Missing parameter 's390' or 's390x'"
 usage
fi

set the directory names that will be created beneath the root
sles="sles9"
core="core9"
sp1="sp1-9"
sp2="sp2-9"
sp3="sp3-9"

```bash
echo "Making a SLES9 install tree ..."
```
clone.sh <LinuxUserID> - clone a Linux server running under z/VM
#
For details on how this script works see the book:
"z/VM and Linux on IBM System z: The Virtualization Cookbook"
on the Web at: http://linuxvm.org/present/misc/virt-cookbook-1.pdf
#
THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY
WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.
NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR
DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
--

#+--+
function help()
give help
#+--+
{
 echo "Usage: clone [options] target_linux_ID"
 echo ""
 echo " Clone Linux system from $master_mnt_pt to target_linux_ID"
 echo " options:"
 echo " -v or --verbose: verbose"
 echo " -w or --was: enable WebSphere server"
 echo " -d or --db2: enable DB2 server"
 echo " -m or --mqs: enable MQ Series server"
 exit 1
}

#+--+
function process_arguments()
give help
#+--+
{
 verbose="off"
 if [$# = 0]; then # user did not pass an argument
 echo "whoops: at least one argument is needed"
 echo ""
 help
 fi
 for arg in *
 do
 case $arg in
 -v|--verbose)
 verbose="on"
 ;;
 -w|--was)
 was="yes"
 ;;
 -d|--db2)
 db2="yes"
 ;;
 -m|--mqs)
 exit 1
 esac
 esac
}
mqs="yes"
"
clone_id=`echo $arg | tr '[a-z]' '[A-Z]'` # fold target user ID to upper

if [$clone_id = "none"]; then # new linux user ID was not passed
 echo "Error: new Linux user ID must be an argument"
 echo ""
 help
fi

function cp_cmd()
echo a CP command and invoke it via the vmcp module/command
Arg1-n: the command to issue
Return: the command's return code
#
{
 echo "Invoking CP command: $@"
 # parse output to get return code: awk -F# splits line at '#' with rc at end
 output=`vmcp $@ 2>&1`
 echo "$output"
 ret_val=0
 ret_val=`echo $output | grep "Error: non-zero CP response" | awk -F# '{print $2}'`
 return $ret_val
}

function check_target_id()
Verify user ID exists and is logged off
#
{
 cp_cmd QUERY $clone_id
 case $? in
 0) # user ID is logged on or disconnected
 echo "$clone_id user ID must be logged off"
 exit 2
 ;;
 3) # user ID does not exist
 echo "$clone_id user ID does not exist"
 exit 3
 ;;
 45) # user ID is logged off - this is correct
 ;;
 *) # unexpected
 echo "$clone_id user ID must exist and be logged off"
 exit 4
 esac
 esac
}

function prepare_ipaddr()
Prepare an IP address by adding a backslash before any "."s
to make it 4 digits
Arg 1: The IP address to be modified
Return:
The new value is written to the global variable new_ipaddr
#
#
{ new_ipaddr=`echo $1 | sed -e 's:\.\::\\.:g'`
}
#
#
function prepare_vaddr()
Prepare a z/VM virtual address by folding to lower case and prepending leading zeros
to make it 4 digits
Arg 1: The vaddr to be modified
Return:
The new value is written to the global variable new_vaddr
#
{
 new_vaddr=`echo $1 | tr '[A-Z]' '[a-z]'` # fold to lower case
 let leadingZeros=4-${#1} # determine number of zeros to add
 let i=0
 while [$i -lt $leadingZeros]; do
 new_vaddr="0$new_vaddr"
 i=$[i+1]
 done
}
#
#
function copy_disk()
Try to use z/VM FLASHCOPY to copy one disk to another.
Arg 1: Source minidisk vaddr
Arg 2: the word "to"
Arg 3: Target user ID
Arg 4: Target virtual address
Return code
0: success with FLASHCOPY
1: success with dasdfmt and dd
2: Target vaddr already in use?
3: CP LINK failed
4: unable to enable target minidisk
5: can't find source disk in /dev/dasd/devices
6: can't find target disk in /dev/dasd/devices
7: dasdfmt failed
8: dd failed
#
{
 ret_val=0
 source_mdisk=$1
 target_userid=$3
 target_vaddr=$4
 cp_cmd QUERY VIRTUAL $target_vaddr
 rc=$?
 if [$rc != 40]; then
 echo "Error: CP QUERY VIRTUAL $target_vaddr failed with $rc"
 echo "The target device address is already in use"
 return 2
 fi
 cp_cmd LINK $target_userid $source_mdisk $target_vaddr MR
 rc=$?
 if [$rc != 0]; then # LINK failed
 echo "Error: CP LINK $target_userid $source_mdisk $target_vaddr failed with $rc"
 return 3
 fi

Appendix A. References and source code

```bash
cp_cmd FLASHCOPY $source_mdisk 0 END $target_vaddr 0 END
rc=$?
if [ $rc != 0 ]; then # FLASHCOPY failed
    echo "FLASHCOPY $source_mdisk $target_vaddr failed with $rc"
    echo "Falling back to dasdfmt and dd copy"
# enable target disk
    sleep 1
    chccwdev -e $target_vaddr
rc=$?
    if [ $rc != 0 ]; then # unable to enable target disk
        echo "Error: unable to enable 0.0.$target_vaddr, rc from chccwdev = $rc"
        cp_cmd DETACH $target_vaddr
        return 4
    fi
# get device name of source disk
    source_dev=`cat /proc/dasd/devices | grep "$source_mdisk(ECKD)" | awk '{ print $7 }'`
    if [ "$source_dev" = "" ]; then
        cat /proc/dasd/devices
        echo "Error: can't find $source_mdisk(ECKD) in /proc/dasd/devices"
        chccwdev -d $target_vaddr # clean up
        cp_cmd DETACH $target_vaddr
        return 5
    fi
# get device name of target disk
    target_dev=`cat /proc/dasd/devices | grep "$target_vaddr(ECKD)" | awk '{ print $7 }'`
    if [ "$target_dev" = "" ]; then
        cat /proc/dasd/devices
        echo "Error: can't find $target_vaddr(ECKD) in /proc/dasd/devices"
        chccwdev -d $target_vaddr # clean up
        cp_cmd DETACH $target_vaddr
        return 6
    fi
# dasdfmt target disk
    echo "Invoking command: dasdfmt -b 4096 -y -f /dev/$target_dev"
    dasdfmt -b 4096 -y -f /dev/$target_dev
rc=$?
    if [ $rc != 0 ]; then # dasdfmt failed
        echo "Error: dasdfmt -b 4096 -y -f /dev/$target_dev failed with $rc"
        chccwdev -d $target_vaddr # clean up
        cp_cmd DETACH $target_vaddr
        return 7
    fi
# copy from source disk to target via dd
    echo "Invoking command: dd bs=4096 if=/dev/$source_dev of=/dev/$target_dev"
    dd bs=4096 if=/dev/$source_dev of=/dev/$target_dev
rc=$?
    if [ $rc != 0 ]; then # dd failed
        echo "Error: dd bs=4096 if=/dev/$source_dev of=/dev/$target_dev failed with $rc"
        chccwdev -d $target_vaddr # clean up
        cp_cmd DETACH $target_vaddr
        return 8
    fi
    chccwdev -d $target_vaddr
    echo "Copying disk via dasdfmt/dd succeeded ..."
    ret_val=1 # success with dasdfmt and dd
fi # if FLASHCOPY failed
sync # sync disks
cp_cmd DETACH $target_vaddr
```
echo "Copying disk via FLASHCOPY succeeded ..."
return $ret_val
copy_disk()

#+--+
function get_parmfile_info()
Bring 191 minidisk online to be read by cmsfs and check for two PARMFILEs
#+--+
{
 # recycle 191 to pick up latest changes
 chccwdev -d 191
 chccwdev -e 191
 rc=$?
 if [$rc != 0]; then # unable to enable 191 disk
 echo "unable to enable 191, rc from chccwdev = $rc"
 exit 5
 fi
 csmdevice=$(cat /proc/dasd/devices | grep 0191 | awk '{print $7}')
 cmsfslst -d /dev/$csmdevice | grep -i $clone_id | grep PARMFILE
 rc=$?
 if [$rc != 0]; then
 echo "Error: $clone_id PARMFILE not found on 191 minidisk. Exiting"
 exit 6
 fi

 # get information about target
 export local $(cmsfscat -a -d /dev/$csmdevice $clone_id.parmfile)
 target_hostname=$IP_HOST
 target_IP=$IP_ADDR
 target_DNS=$IP_DNS
 target_GW=$IP_GATEWAY
 target_mask=$IP_NETMASK
 target_MTU=$IP_MTU
 prepare_vaddr $READ_DEVNO
 target_readdev=$new_vaddr
 prepare_vaddr $WRITE_DEVNO
 target_writedev=$new_vaddr
 prepare_vaddr $DATA_DEVNO
 target_datadev=$new_vaddr

 # get information about source
 source_guestID=$(cat /proc/sysinfo | grep "VM00 Name" | awk '{print $3}')
 export local $(cmsfscat -a -d /dev/$csmdevice $source_guestID.parmfile)
 prepare_ipaddr $IP_HOST
 source_hostname=$new_ipaddr
 prepare_ipaddr $IP_ADDR
 source_IP=$new_ipaddr
 prepare_ipaddr $IP_DNS
 source_DNS=$new_ipaddr
 prepare_ipaddr $IP_GATEWAY
 source_GW=$new_ipaddr
 prepare_ipaddr $IP_NETMASK
 source_mask=$new_ipaddr
 source_MTU=$IP_MTU
 prepare_vaddr $READ_DEVNO
 source_readdev=$new_vaddr
 prepare_vaddr $WRITE_DEVNO
 source_writedev=$new_vaddr
 prepare_vaddr $DATA_DEVNO
 source_datadev=$new_vaddr
source_domain=$(cat /etc/resolv.conf | grep domain | awk '{print $2}')

#+--+
function ask_are_you_sure()
Ask "Are you sure?" - if not, then exit
#+--+
{
 echo ""
 echo "WARNING!!: this will copy 100 and 102 disks to $clone_id 100 and 102"
 echo "New host name will be: $target_hostname"
 echo "New TCP/IP address will be: $target_IP"
 echo "Other network data is retrieved from $clone_id PARMFILE on 191 disk"
 if [$was = "yes"]; then
 echo "A WebSphere system will be cloned"
 fi
 if [$db2 = "yes"]; then
 echo "A DB2 system will be cloned"
 fi
 if [$mqs = "yes"]; then
 echo "An MQ Series system will be cloned"
 fi
 echo -n "Are you sure you want to overwrite these disks (y/n):
 read ans
 if [$ans != "y"]; then
 exit 7
 fi
}

#+--+
function copy_system()
copy master image on 100 (root fs) and 102 (swap) to target user ID
#+--+
{
 echo "Copying 0102 swap space to $clone_id ..."
 copy_disk 0102 to $clone_id 1102 # copy swap space
 rc=$?
 if [$rc -gt 1]; then # both FLASHCOPY and dasdfmt/dd failed
 echo "Copying disk failed with $rc"
 exit 8
 elif [$rc = 0]; then # FLASHCOPY succeeded
 echo "Sleeping 10 seconds for FLASHCOPY to catch up ..."
 sleep 10
 fi
 echo "Copying 0100 root file system to $clone_id ..."
 copy_disk 0100 to $clone_id 1100 # copy /sles9master to target root file system
 rc=$?
 if [$rc -gt 1]; then # both FLASHCOPY and dasdfmt/dd failed
 echo "Copying disk failed with $rc"
 exit 9
 fi
}

#+--+
function modify_cloned_image()
Mount newly copied system over /mnt/sles9cloned and modify networking info
Arg 1: target userid
Arg 2: target minidisk
Return code
0: success

Appendix A. References and source code 273
```bash
{ target_userid=$1
target_mdisk=$2
target_vaddr=$3
echo "Mounting newly cloned image over $cloned_mnt_pt ..."
cp_cmd LINK $target_userid $target_mdisk $target_vaddr MR
rc=$?
if [ $rc != 0 ]; then # LINK failed
echo "Fatal error: CP LINK $target_userid $target_mdisk $target_vaddr MR failed with $rc"
exit 10
fi
if [ ! -d $cloned_mnt_pt ]; then
mkdir $cloned_mnt_pt
rc=$?
if [ $rc != 0 ]; then
echo "Fatal Error: mkdir $cloned_mnt_pt failed with $rc"
exit 10
fi
sleep 1
chccwdev -e $target_vaddr
rc=$?
if [ $rc != 0 ]; then
echo "Fatal error: chccwdev -e $target_vaddr failed with $rc"
exit 10
fi
cloned_DASD=`cat /proc/dasd/devices | grep "$target_vaddr(ECKD)" | awk '{ print $7 }'`
if [ "$cloned_DASD" = "" ]; then
cat /proc/dasd/devices
echo "Fatal error: can't find $target_vaddr(ECKD) in /proc/dasd/devices"
chccwdev -d $target_vaddr
exit 10
fi
cloned_fs="/dev/$cloned_DASD1"
echo "Mounting $cloned_fs over $cloned_mnt_pt ..."
mount $cloned_fs $cloned_mnt_pt
rc=$?
if [ $rc != 0 ]; then
echo "Fatal error: mount $cloned_fs $cloned_mnt_pt failed with $rc"
exit 10
fi
echo "Modifying cloned image under $cloned_mnt_pt ..."
if [ $verbose = "on" ]; then set -vx; fi
cat $master_mnt_pt/etc/HOSTNAME | sed \-
-e "s/$source_hostname/$target_hostname/g" > $cloned_mnt_pt/etc/HOSTNAME
cat $master_mnt_pt/etc/hosts | sed \-
-e "s/$source_IP/$target_IP/g" \-
-e "s/$source_guestID/$clone_id/g" \-
-e "s/$source_domain/$source_domain/g" > $cloned_mnt_pt/etc/hosts
cat $master_mnt_pt/etc/defaultdomain | sed \-
-e "s/$source_domain/$source_domain/g" > $cloned_mnt_pt/etc/defaultdomain
cat $master_mnt_pt/etc/sysconfig/network/routes | sed \-
-e "s/$source_GW/$target_GW/g" > $cloned_mnt_pt/etc/sysconfig/network/routes
cat $master_mnt_pt/etc/sysconfig/network/ifcfg-qeth-bus-ccw-0.0.$source_readdev | sed \-
-e "s/$source_IP/$target_IP/g" \-
-e "s/$source_MTU/$target_MTU/g" \-
-e "s/$source_mask/$target_mask/g" \
```
```bash
$cloned_mnt_pt/etc/sysconfig/network/ifcfg-qeth-bus-ccw-0.0.$target_readdev
cat $master_mnt_pt/etc/resolv.conf | sed \
-e "s/$source_domain/$source_domain/g"\n-e "s/$source_DNS/$target_DNS/g" > $cloned_mnt_pt/etc/resolv.conf
if [ $verbose = "on" ]; then set +vx; fi

# Regenerate SSH keys
echo "Regenerating SSH keys in $cloned_mnt_pt/etc/ssh/ ..."
rm $cloned_mnt_pt/etc/ssh/ssh_host*
ssh-keygen -t rsa -N "" -q -f $cloned_mnt_pt/etc/ssh_host_rsa_key
ssh-keygen -t dsa -N "" -q -f $cloned_mnt_pt/etc/ssh_host_dsa_key
ssh-keygen -t rsa1 -N "" -q -f $cloned_mnt_pt/etc/ssh_host_rsa_key

# Remove any old entry, then copy clone's public key to known_hosts file
echo "Adding $target_IP to known_hosts file"
cd /root/.ssh
grep -v $target_IP known_hosts > known_hosts.temp
mv known_hosts.temp known_hosts

# construct known_hosts entry with three fields: IP@ "ssh-rsa" clones_public_key
new_key=`cat $cloned_mnt_pt/etc/ssh/ssh_host_rsa_key.pub | awk '{print $2}'`
echo "$target_IP ssh-rsa $new_key" >> known_hosts

# see if IBM middleware servers need to be created
if [ $was = "yes" ]; then # create a WebSphere server
    clone_was $cloned_mnt_pt
fi
if [ $db2 = "yes" ]; then # create a DB2 server
    clone_db2 $cloned_mnt_pt
fi
if [ $mqs = "yes" ]; then # create a MQ Series server
    clone_mqs $cloned_mnt_pt
fi

# clean up
sync # sync disks
umount $cloned_mnt_pt
chccwdev -d $target_vaddr
cp_cmd DETACH $target_vaddr
return 0
}

#+--------------------------------------------------------------------------+
function make_backup_dir()
# Create a directory /backup/<VM-ID>-on-<IP.addr> if it doesn't exist
# e.g. LINUX04 with IP@ 129.40.178.44 would create /backup/LINUX04-on-129.40.178.44/
#+--------------------------------------------------------------------------+
{
if [ -d $backup_dir ]; then # main backup directory exists
echo "Creating a directory under $backup_dir"
cd $backup_dir
backup_subdir=$clone_id-on-$target_IP
if [ ! -d $backup_subdir ]; then # backup subdirectory does not exist
    mkdir $backup_subdir
    if [ ! $? = 0 ]; then # there was an error from mkdir command
        echo "Error creating directory $backup_dir/$backup_subdir/"
    else
        echo "Created directory $backup_dir/$backup_subdir/
    fi
fi
}
function clone_was()
# Arg 1: Mount point of the newly cloned server
# Clone a WebSphere Application Server
{
    echo "Cloning WebSphere ..."
    echo "Modifying zipl.conf and running zipl ..."
    cd $1/etc
    cp zipl.conf zipl.conf.orig
    sed -i -e 's:dasd=100-102:dasd=100-102,300(ro),400(ro):g' zipl.conf
    chroot $1 zipl
    echo "Modifying fstab ..."
    cp fstab fstab.orig
    sed -i -e '4a LABEL=was-prod /opt/IBM/WebSphere ext2 ro,acl,user_xattr
    0 0' fstab
    cd $1/etc/init.d/rc5.d
    ln -s ../wasprofile S99wasprofile
    cd
}

function clone_db2()
# Arg 1: Mount point of the newly cloned server
# Clone a DB2 Server
{
    echo "Cloning DB2 ...
    echo "Modifying zipl.conf and running zipl ..."
    cd $1/etc
    cp zipl.conf zipl.conf.orig
    sed -i -e 's:dasd=100-102:dasd=100-102,301(ro),401(ro):g' zipl.conf
    chroot $1 zipl
    echo "Modifying fstab ..."
    cp fstab fstab.orig
    sed -i -e '4a LABEL=db2-prod /opt/IBM/db2 ext2 ro,acl,user_xattr
    0 0' fstab
    echo "Making symlink to /etc/init.d/db2instance ..."
    cd $1/etc/init.d/rc5.d
    ln -s ../db2instance S98db2instance
    cd
}

function clone_mqs()
# Clone a MQ Series Server
{
    echo "Cloning MQ Series ...
    echo "Modifying zipl.conf and running zipl ..."
    cd $1/etc
    cp zipl.conf zipl.conf.orig
    sed -i -e 's:dasd=100-102:dasd=100-102,302(ro),402(ro):g' zipl.conf
chroot $1 zip
    echo "Modifying fstab ..."
    cp fstab fstab.orig
    sed -i -e '4a LABEL=mqs-prod /opt/mqm ext2 ro,acl,user_xattr
0 0' fstab
    echo "Making symlink to /etc/init.d/mqmuser ..."
    cd $1/etc/init.d/rc5.d
    ln -s ../mqmuser S97mqmuser
    cd

# main() # some important global variables
clone_id="none"
was="no"
db2="no"
mqs="no"
master_mnt_pt="/sles9master"  # set directory of master root file system
cloned_mnt_pt="/mnt/sles9cloned"  # set directory of temporary mount point
backup_dir="/backup/linux"  # set directory of Linux backups

process_arguments $0  # process arguments passed by user
check_target_id  # be sure user ID exists and is logged off
get_parmfile_info  # get information from source and target parm files
ask_are_you_sure  # confirm that disks will be overwritten
modify_cloned_image $clone_id 100 1100  # modify newly copied system
cp_cmd XAUTOLOG $clone_id  # bring new clone to life
make_backup_dir  # make a backup directory

echo "Successfully cloned $master_mnt_pt to $clone_id"

Following are the possible return codes:
0  Success
1  Missing arg1 - target ID
2  Target ID not logged off
3  Target ID does not exist
4  Unexpected rc from QUERY target ID
5  191 disk not found
6  Target ID PARMFILE not found
7  User decided not to proceed
8  Can't copy target ID 102 disk
9  Can't copy target ID 100 disk
10  Error modifying networking info

A.6.3 The xipinit script

This section lists the xipinit script. See section 12.2, “Creating a DCSS/XIP2 shared file system” on page 216 for a description:

#!/bin/sh
#
#/sbin/xipinit: use read only files from another file system
#
###########################################################
#########  Change RODIRS to add the directories you are sharing. ###############
#########  Make sure you end RODIRS in a comma.   ###############
Change ROMOUNT to the mount point of your choice.

Change DCSSNAME for the name of your DCSS.

RODIRS=/lib,/usr/lib,/bin,/usr/bin,/sbin,/usr/sbin,
ROMOUNT=/dcss
DCSSNAME=BC05DCSS

mount -t xip2 -o ro,memarea=$DCSSNAME none $ROMOUNT
# bind mount all ro dirs into rw filesystem
while [ -n "$RODIRS" ]; do
  dir="${RODIRS%%,*}"
  RODIRS="${RODIRS#*,}"
  test -d "$dir" || continue
  echo "binding directory" $dir
  mount --bind "$ROMOUNT/$dir" "$dir"
done
# run real init
exec /sbin/init "$@"
Cheat sheets

This section contains quick references or “cheat sheets” for the XEDIT and vi editors

A.7 XEDIT cheat sheet

XEDIT has line commands which are typed on the command line (===>) and prefix commands which are typed over the line numbers on the left side of the screen.

Line Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Add a line</td>
</tr>
<tr>
<td>a&lt;n&gt;</td>
<td>Add ‘n’ lines</td>
</tr>
<tr>
<td>c/&lt;old&gt;/&lt;new&gt;/&lt;n&gt;</td>
<td>Search for string ‘old’ and replace it with ‘new’ for ‘n’ lines below the current line and ‘m’ times on each line. ‘*’ can be used for ‘n’ and ‘m’</td>
</tr>
<tr>
<td>/&lt;string&gt;</td>
<td>Search for ‘string’ from the current line</td>
</tr>
<tr>
<td>-/&lt;string&gt;</td>
<td>Search backwards for ‘string’</td>
</tr>
<tr>
<td>all /&lt;string&gt;/</td>
<td>Show all occurrences of ‘string’ and hide other lines</td>
</tr>
<tr>
<td>bottom</td>
<td>Move to the bottom of the file</td>
</tr>
<tr>
<td>top</td>
<td>Move to the top of the file</td>
</tr>
<tr>
<td>down &lt;n&gt;</td>
<td>Move down ‘n’ lines</td>
</tr>
<tr>
<td>up &lt;n&gt;</td>
<td>Move up ‘n’ lines</td>
</tr>
<tr>
<td>file</td>
<td>Save the current file and exit XEDIT</td>
</tr>
<tr>
<td>ffile</td>
<td>Save the current file and exit but don’t warn of overwrite</td>
</tr>
<tr>
<td>save</td>
<td>Save the current file but don’t exit</td>
</tr>
<tr>
<td>quit</td>
<td>Exit XEDIT if no changes have been made</td>
</tr>
<tr>
<td>qquit</td>
<td>Exit XEDIT even if changes have not been saved</td>
</tr>
<tr>
<td>left &lt;n&gt;</td>
<td>Shift ‘n’ characters to the left</td>
</tr>
<tr>
<td>right &lt;n&gt;</td>
<td>Shift ‘n’ characters to the right</td>
</tr>
<tr>
<td>get &lt;file&gt;</td>
<td>Copy file and insert past the current line</td>
</tr>
<tr>
<td>;&lt;n&gt;</td>
<td>Move to line ‘n’</td>
</tr>
<tr>
<td>?</td>
<td>Display last command</td>
</tr>
<tr>
<td>=</td>
<td>Execute last command</td>
</tr>
<tr>
<td>x &lt;file&gt;</td>
<td>Edit ‘file’ and put it into the XEDIT “ring”</td>
</tr>
<tr>
<td>x</td>
<td>Move to the next file in the ring</td>
</tr>
</tbody>
</table>

Prefix Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Add one line</td>
</tr>
<tr>
<td>a&lt;n&gt;</td>
<td>Add ‘n’ lines</td>
</tr>
<tr>
<td>c</td>
<td>Copies one line</td>
</tr>
<tr>
<td>cc</td>
<td>Copies a block of lines</td>
</tr>
<tr>
<td>d</td>
<td>Deletes one line</td>
</tr>
<tr>
<td>dd</td>
<td>Deletes a block of lines</td>
</tr>
<tr>
<td>f</td>
<td>Line after which a copy (c) or a move (m) is to be inserted</td>
</tr>
<tr>
<td>p</td>
<td>Line before which a copy (c) or a move (m) is to be inserted</td>
</tr>
<tr>
<td>i</td>
<td>Insert a line</td>
</tr>
<tr>
<td>i&lt;n&gt;</td>
<td>Insert ‘n’ lines</td>
</tr>
<tr>
<td>m</td>
<td>Move one line</td>
</tr>
<tr>
<td>mm</td>
<td>Move a block of lines</td>
</tr>
<tr>
<td>*</td>
<td>Replicate a line</td>
</tr>
<tr>
<td>*&lt;n&gt;</td>
<td>Replicate a line ‘n’ times</td>
</tr>
<tr>
<td>**</td>
<td>Replicate a block of lines</td>
</tr>
</tbody>
</table>
A.8 vi cheat sheet

Following is a small subset of vi commands, but those most commonly used. The vi editor has three modes:

1. Input mode - the Insert key, i, o (add a line below), O (add a line above) and other commands put you in this mode. When you are in this mode you will see the text --INSERT-- in the last line.

2. Command mode - 'Esc' gets you out of input mode and into command mode

   i brings you back to input mode
   dd deletes a line and puts it in the buffer
   <n>dd delete <n> lines
   x delete a character
   dw delete a word
   p add the buffer past the current location
   P add the buffer before the current location
   o add a line and go into insert mode
   /string - search for string
   n do the last command again (this can be powerful)
   jkl; cursor movement
   A add text at the end of the line
   <nn>G go to line <nn>
   G go to the last line in the file
   yy yank a line (copy into buffer)
   <n>yy yank n lines

3. Command line mode - pressing the colon : key brings you to this mode

   :wq save (write & quit)
   :q! quit and discard changes
   :<nn> go to line number <nn>
   :r <file> read <file> into the current file
   :1,$s/old/new/g globally replace <old> with <new>
   :help give help
Symbols
$ALLOC$, z/VM user ID 49, 87, 131, 142
.rmfpms_config file 237
.backup/ directory 138
/etc/apache2/httpd.conf file 150
/etc/apache2/vhosts.d/ directory 150
/etc/Bastille/config file 120
/etc/cron.daily/ 103
/etc.exports file 124
/etc/fstab 214
/etc/init.d/boot.local script 105, 120
/etc/ldap.conf file 157
/etc/nsswitch.conf file 157
/etc/ntp.conf file 104, 117
/etc/openldap/ldap.conf file 157
/etc/passwd file 155
/etc/rsyncd.conf file 102
/etc/rsyncd.secrets file 102
/etc/samba/smb.conf file 160
/etc/samba/smbpasswd file 160
/etc/sysconfig/apache2 file 150
/etc/trusted.hosts 103
/etc/zap.conf 107
/opt/ directory 237
/proc/cmdline 222
/proc/mounts 224
/proc/sys/appldata/ directory 239
/proc/sys/kernel/hz_timer 105
/root/.ssh/authorized_keys file 120
/usr/share/doc/ directory 160

Numerics
3270 emulators 23, 37
520RES 32

A
Aduva’s Onstage 2
Albert Einstein 2, 241
Alt-Tab sequence 26
Apache 147
   Enabling for SSL 148
   Virtual hosts 149
Apache resources 151
appldata_mem module 239
appldata_net_sum module 239
appldata_os module 239
appletviewer command 165
application development resources 166
application development server 162
APPLMON option 239
ATTACH command 30
Attachmate Extra! 23
AUTOLOG1, z/VM user ID 249

B
backup_vm script 242, 244
Bastille 160
Bastille Linux 101, 105, 120
Bill of materials, for entire project 7
boot.local 105

C
C/C++ compiler 164
C/C++ development 164
Certificate
   Self-signed 148
   signing request 149
Certificate Authority 148
CHANGEPW XEDIT 55
CHANGEPW XEDIT macro 55
choices made
   in the book 5
chkccwdev command 211
chkconfig command 82, 102, 117, 161
cloning 131
   Six more virtual servers 140
cmsfs package 116
cmsfscat command 116
cmsfslist command 116
Common UNIX Printing System (CUPS) 159
Computer Aided Design (CAD) 163
Computer Associates VM Secure 54
Computer Associates’ Brightstor Enterprise Backup 244
Computer Associates’ VM Direct 2
Computer Associates’ VM Monitor 227
Control Program 2
Controller 85
   Configuration 114
   Copying files to 115
   Disk partitioning 110
   Hardening 120
   Installing 108
   Modifying master image 125
   NTP server configuration 117
   Verify your changes 121
controller 5, 140
   changing source of installation 127
conventions
   command retrieval 10
   in the book 9
naming backup files 10
volume labeling 9
CP 2
CPACCESS command 39
CPFMTXA command 43
CPFORMAT EXEC 43
using it 44
CPSYNTAX 47
CPSYNTAX command 39
CUPS 162

D
DASD
3390 3
activating in a SLES9 install 93
ECKD 3
formatting in a SLES9 install 93
labeling convention 9
dasd= parameter
in zipl.conf 107
dasdfmt command
using in a for loop 211
DCSS
creating 216
directories to be shared 217
testing 222
DCSS/XIP2 shared file system 216
dd command 138, 219
DEFINE command 218
DEFINE STORAGE command 91
desktop computer
configuring 17
df command 108
diff command 157
DIRECTXA command 50, 55, 87, 142
DirMaint 2
Disconnect Timeout 37
Disconnect_Timeout 38
Discontiguous Saved Segments (DCSS) 216
DISKMAP command 48
distributions
31-bit and 64-bit xi

E
egrep command 159
envelope files 66
Execute-in-Place Technology 216
exportfs command 125
ext2 file system 112
creating 220
ext3 file system
creating 214

F
FCONX LINUXUSR file 240
fdas command 211
fdisk command 218
Features statement 38
FILELIST command 88
findutils-locate package 101
FLASHCOPY command 86, 138
FORMAT command 50
formatting DASD fast 43
FTP
site fix 80 subcommand 88
FTP server 41

G
gcc 164
gdb 164
GeoTrust 149
getVMinfo script 243
GNU compiler collection (gcc) 164
GNU debugger (gdb) 164
gq package 155

H
hardware resources 7
HELP command 230
HMC 25
CD-ROM/DVD 27
Load icon 31
Operating System Messages 42
Single Object Operations 26
SYSG 32
System Console (SYSC) 42
Hummingbird Host Explorer 23
hypervisor 2
hz_timer 105, 120

I
IBM Personal Communications 23
IBM RACF 54
IBM Tivoli Provisioning Manager 2
IBM z/VM Performance Toolkit 227
monitor subcommand 236
IBM’s Tivoli Storage Manager (TSM) 244
id command 156
INDICATE command 228
INDICATE LOAD command 228
INDICATE QUEUES EXP command 229
infrastructure
block diagram 4
infrastructure design 3
init= parameter 224
initial RAMdisk 88
Innovation Data Processing’s FDR/UPSTREAM 244
INSTPLAN 29
INSTVM EXEC 33
Integrated 3270 Console 26, 28
IPL CMS 33, 91
IPWIZARD command 34

J
jar command 165
Java 164
Java development
  tool 164
Java Runtime Environment (JRE) 164
jdb command 165

K
  kernel 88
  kernel.hz_timer 105

L
  LABEL520 EXEC source code 256
  LAMP 163
  LDAP client 154, 156
  LDAP RPMs 156
  ldapadd command 155
  ldapsearch command 155–156
  Levanta 2
  Lightweight Directory Access Protocol (LDAP) 151
Linux
    manual installation 3
    monitoring 227, 238
    monitoring from the kernel 238
  Linux distribution 151, 162, 164
  Linux PC 75
  Linux RMF PM Data Gatherer (rmfpms) 237
  LINUX01 131, 147
  LINUX02 152
  LNXDFLT profile 86
  LNXMAINT 48, 85
    copying files to 52
  LNXMAINT 192 242
  Load icon 31
  locate command 101
  logical partition xi, 1
  logical volume 87, 111
    adding 209
  Logical Volume Manager (LVM) 111
  LPAR
    requirements 7
  lscss command 211
  lsdasd command 211
  lsmod command 239
  lvcreate command 213
  lvdisplay command 213
  LVM 209
    block diagram 212
    physical extents 213
  lvm2 RPM 210

M
  MAINT 2CC 249
  MAINT CF1 248
  make command 164
  Map Network Drive 161
  Master image 85
    Add additional RPMs 101
    Changing source of installation 125
  Configuration 97
  Copying files to 100
  Installation 89
  Modifying while controller is running 125
  Remove unnecessary RPMs 101
  Turn off unneeded services 102
  Verifying changes 108
  master image 5, 140, 152
  MDISK statement 48
  mem= parameter 222
  Minidisk cache (MDC) 228
  Minidisk passwords 54
  mke2fs command 214
  mkinitrd command 215
  mksles9root.sh script
    source code 259
  modprobe command 239
  monitoring Linux 237–238
  mount command 114, 214
  MySQL 163

N
  Network File System (NFS) 75, 123
  Network Time Protocol (NTP) 101, 117
  Network Time Protocol daemon (NTPD) 103
  networking resources 8
  NFS server
    configuration on controller 123
    configuration on Linux PC 82
  nmbd daemon 161
  nss_ldap 154, 156
  ntpd command 103
  ntpdate command 117
  ntpq command 118
  ntptrace command 118

O
  OpenLDAP
    configuration 155
    pointing virtual server to LDAP server 156
  OpenLDAP server 152
  openmotif 102
  openssh command 149
  OPTION APPLMON 131, 141
  overlaps
    searching for 49
  over-mount 223
  Over-mounting a directory 223

P
  paging space 43
  paging volumes 43
    location 44
  pam_ldap 154, 156
  parameter file 88–89
    changing source of installation 128
    copying 143
    copying for new user ID 133
SSL
  with Apache 148
Standalone Program Loader 32
Standard Development Kit (SDK) 164
Storage Area Network (SAN) 3
SuSE Linux Enterprise Server xi
SuSE Linux Enterprise Server (SLES) 88–89
swap space 90
swapon command 114
sysctl command 105
SYSG 32
system administration
  roles 10
SYSTEM CONFIG 39, 57, 248
    customizing 37
SYSTEM CONFIG file
    adding PAGE and PERM disks 46
    Features statement 38
System Console (SYSC) 42
SYSTEM DTCPARMS 249
system shutdown 52
system startup 52
System status
  DASD view 145
System_Identifier_Default 38

T
tar command 237
TCL 163
TCP/IP
  z/VM configuration 34
TCP/IP resources 8
TCPCMSU 48
TCP/IP Data 249
TCPMAINT 198 249
TCPMAINT 592 249
Thawte 149
timer pop 105
Tool Command Language (TCL) 163

U
UM97510 70
UM97520 70
Universal Naming Convention (UNC) 161
updatedb command 101
usability tests
  on the book 4
USER DIRECT 249
USER DIRECT file 48, 86, 141
  APPLMON option 239
  INCLUDE statement 86
  profile 86
USER DISKMAP file 49
User_Volume_Include 46, 141
User_Volume_List 46
useradd command 160
userid() function 89

V
VDISK 38
Vdisk
  allowing creation of 38
Velocity Software’s ESALPS 227
VeriSign 149
Veritas’ Backup Exec 244
vgcreate command 213
virtual disk (VDISK) 37, 218
Virtual hosts 149
virtual NIC 86
Virtual server
  application development 162
  File and print 159
  LDAP 151
  LDAP configuration 155
  Web server 147
virtual server 2
virtual servers 2
virtual switch (VSWITCH) 1, 37
vmcp command 121
VMLINK command 45
VNC 91
volume group 213
VSWITCH 1, 40, 42, 143

W
wget 102
which command 137
Windows workstation 75
worksheets
  examples in the book 11

X
XAUTOLOG command 40, 52, 138
XEDIT
  "" prefix command 86, 141
  ? subcommand 10
  add subcommand 38
  BOTTOM subcommand 38
  CHANGE subcommand 56
  FILE subcommand 39
  PREFIX OFF subcommand 49
  search subcommand (/) 38
XEDIT command 37
XEDIT PROFILE 37
xip2 file system 222
xipinit script 220, 223
xntpd package 101
xntpd daemon 103

Y
yast
  activating DASD 218
  applying maintenance 98
  changing source of installation 126
  graphical versus curses mode 98
  Installing RPMs 101
installing software  210
Search function  210
Setting LDAP client  156
YaST Online Update (YOU)  97

Z
z/VM
  adding paging volumes  43
  backing up to tape  56
  cons-sysg  32
  conventions  9
  CPFMTXA command  43
  customizing shutdown  52
  customizing startup  52
  DCSS  216
  DIRECTXA command  50
  Disconnect Timeout  37
  DISKMAP command  48
  envelope files  66
  FORMAT command  50
  FTP server  41
  HELP command  230
  RELEASE command  39
  RESTORE command  32
  Restoring from tape  61
  security issues  54
  servicing  63
  SET SIGNAL command  52
  shutting down  42
  Standalone Program Loader  32
  STEAL value  229
  strengths  1
  system name  38
  TCP/IP configuration  34
  TCPI/IP at IPL time  39
  userid() function  89
  virtual switch  1

VSWITCH  1
XEDIT PROFILE  37
XSTORE rate  228
z/VM CPACCESS command  39
z/VM QUERY NAMES command  54
z/VM system
  backup Copy  56
z/VM user IDs
  default password  34
zipl command  215, 222
zSeries
  virtualization capabilities  2