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Abstract 
This paper combines the efforts and talents of the IBM System z New Technology Center, the 
eServer High Availability Center of Competence, and Linux on System z Integration Test to produce a 
set of reference architectures that provide High Availability for applications running on Linux for 
System z. 
 
This paper focuses on those architectures that cover the following scenarios: 

• Where the application runs on Linux virtual servers under z/VM. The database may be on 
Linux for System z or on z/OS. 

• Of highest interest to our customers.  
• Unique to System z. Not covered are scenarios and architectures that have already been 

documented on other distributed platforms. WebSphere HA has been extensively covered in 
many documents. Although our architectures will use HA features of WebSphere, we will not 
concentrate on documenting WebSphere. (Please see the references section for more 
WebSphere HA documentation). Rather, we will concentrate on the HA aspects of the 
database servers that WebSphere applications would use and how System z HA features can 
benefit database servers. 

• Have not been documented before on System z. 
 
This paper does not cover: 

• All the details necessary to implement the reference architectures. For those details, please 
refer to “System z Platform Test Report for z/OS and Linux Virtual Servers” written by the IBM 
Poughkeepsie Test and Integration Center for Linux. 

• HA networking considerations. We cover the major components and flow between them. We 
have not covered how to create a highly available network. 

• How to HA-enable your storage subsystem. 
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Introduction. Definition of High Availability 
For the purpose of this paper, we have adopted the definition used by the HA Center of Competence 
in Poughkeepsie, NY. 
 
• High Availability – Designed to provide service during defined periods, at acceptable or agreed 

upon levels, and masks unplanned outages from end-users. It employs  Fault Tolerance; 
Automated Failure Detection, Recovery, Bypass Reconfiguration, Testing, Problem and Change 
Management  

• Continuous Operations  (CO) -- Designed to continuously operate and mask planned outages 
from end-users. It employs non-disruptive hardware and software changes, non-disruptive 
configuration, and software coexistence.  

• Continuous Availability (CA) – Designed to deliver non-disruptive service to the end user 7 days 
a week, 24 hours a day (there are no planned or unplanned outages). 

 
Our architectures strive to provide Continuous Availability. Note that in some architectures this is 
not possible due to delays in the automated recovery of some system components. These delays can 
be long enough to cause user transactions to fail and have to be re-entered. 

Chapter 1: Introduction to High Availability with  z/VM and LPARs 

When Linux runs on distributed architectures it is often running directly on the hardware of a single 
server. Although pSeries servers can now have logical partitions, their virtualization capabilities are 
not as extensive as System z, where z/VM allows all system resources to be dynamically shared. 
 
Linux on System z is always running in a logical partition (LPAR). So we have introduced two new 
layers between Linux and the hardware, namely z/VM and LPAR. These layers play prominently in 
the availability of your applications, because they provide services that the Linux systems use. 

Where are the Single Points of Failure (SPoFs)? 
Consider an example where a System z server has several LPARs running z/OS, and one LPAR 
running z/VM to host Linux guests. You have installed an application on a single Linux server. Where 
are the points of failure? There are several: 
• The System z hardware could experience multiple unrecoverable failures, causing the entire 

server to fail. 
• The disk subsystem could fail. Note that this paper does not include any information on HA-

enabling the disk subsystem. 
• The LPAR microcode could fail. 
• z/VM could fail. 
• Linux could fail. 
• Application A could fail. 
 
The odds of each failure are different. In this case, the probability of an application failure is highest, 
while the probability of the System z hardware failure is lowest. The others fall on a continuum 
between those extremes.  
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So how do we eliminate these single points of failure? An easy and effective method is to eliminate 
them by duplicating them. Duplicating the application is usually easy, but duplicating the System z 
hardware can be expensive, with the cost and difficulty of the others falling on a continuum between 
these extremes. 
 
The following table summarizes these points: 
Single Point of Failure Probability of Failure Cost to fix SPoF 
System z hardware Very Low High 
Disk Subsystem   Very Low  Medium  
LPAR Very Low Low 
z/VM Low Low 
Linux Low Very Low 
Application High Very Low 
 
Besides hardware and software failures, the following can also cause downtime for the application: 
• System z hardware upgrades requiring Power On Reset POR 
• LPAR configuration changes requiring reboot of the LPAR 
• z/VM maintenance 
• Linux kernel maintenance that requires reboot 
• Application maintenance 
 
There are no probabilities that can be assigned to these since they are directly under the control of 
the customer. The customer’s policies will dictate how often these will occur.  
 
In order of increasing availability, the following examples examine some possible architectures and 
their single points of failure. 

Example 1: High Availability not needed 
In this example, an application is installed on a single Linux server that runs under z/VM. The SPoFs 
for the application are: 
• System z hardware 
• LPAR 
• z/VM 
• Linux 
• Application 

 
Each small box represents a virtual Linux server running as a guest of z/VM, in a single z/VM LPAR 
 

z/VM running in LPAR 1 

DB2 
Server

HTTP 
Server 

WAS 
Server 

WAS 
Dmgr 

zSeries System A 
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The most likely to fail is the application. When this happens, the application can be restarted and 
recovery time will be a few minutes. Or perhaps Linux has to be rebooted and recover time could be 
around 5 minutes. Recovery requires that some manual or automatic method be implemented to 
detect the failure and initiate recovery. 
 
If this recovery time is sufficient then there is nothing more that needs to be done. If not then higher 
availability is needed. 

Example 2: Moderate Availability Needed 
In this example, the application is installed on multiple Linux servers that run under z/VM. The SPoFs 
for the application are reduced to: 
• System z hardware 
• LPAR 
• z/VM 

 
Each small box represents a virtual Linux server running as a guest of z/VM, in a single z/VM LPAR.  
 
By simply replicating the application across two or more Linux servers, we have removed the most 
likely points of failures. Workload is distributed to the duplicated servers so that a failure in any server 
still leaves another server available to process the workload. 
 
A failure in any Linux server still allows the application to run with the full resources available to it 
before on the remaining virtual servers. This feature is unique to Linux on System z. Because all of 
the CPU and memory is shared among the Linux servers under z/VM, a failure of one Linux server or 
application frees up its memory and CPU for use by other Linux servers. For example, if the two WAS 
servers are both 80% CPU utilized (using 80% of one CPU), then if one of them fails the other can 
increase it’s CPU utilization to 80% of two CPUs. This allows the remaining server to process the full 
workload immediately, without having to reconfigure the server.  
 
This is very different from failover scenarios in distributed architectures, where each server must be 
sized to handle significantly more than its own workload so that the server can have the capacity to 
handle additional workload if another server fails. 
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Why use only two WebSphere servers? On System z there is usually little reason to use more than 
two production servers in a WebSphere cluster. Usually the entire workload can be accomplished 
with one server; the second is added only for failover. In Linux on System z, adding more virtual 
servers does not add any more processing resources (CPU, memory) to the application, but instead 
makes z/VM work harder to run all of the production servers in memory simultaneously. For these 
reasons we recommend only two production servers.  
 
Some bottlenecks do exist that can be lessened by duplicating the WebSphere application server. 
Application Servers can be cloned either horizontally (on another Linux server) or vertically (on the 
same Linux server). Bottlenecks that can be helped by this include: 
• Not enough JVM heap to run the application at the desired workload 
• Not enough connections in the connection pool 
 
Another consideration for running two WebSphere servers is that if one is unavailable due to either a 
planned or unplanned outage, you have only one server left to handle the entire workload. This is 
usually not a problem on Linux on System z because all of the resources (CPU and memory) that 
were available to both servers before the failure are now available to the remaining server. This does 
leave you with a single point of failure, however, during the time when one of the servers is 
unavailable. For these reasons, it is recommended that you use three servers instead of two when 
higher availability is required. 

Example 3: High Availability Needed 
In this example the application is installed on multiple Linux servers that run under multiple z/VM 
systems on multiple LPARs. The SPoFs for the application are reduced to: 
• System z hardware 

 
We have eliminated most of the SPoFs by creating a second LPAR that will run z/VM and Linux 
guests. The application is installed on Linux servers in each LPAR. The cost for doing this is still low, 
since both LPARs will share the same IFLs, and the real memory can be split between the two 
LPARs.  
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A failure in the application, the Linux server, VM, or LPAR still allows the application to run on the 
remaining virtual servers with the full resources available to it before the failure. Should one server, 
VM, or LPAR fail, the other LPAR can use all of the IFLs that were being shared by both.  
 
Because you are running the same software on the same number of IFLs, software costs do not 
increase. For all these reasons, this is one of the most cost-effective High Availability architectures for 
Linux on System z. 

Example 4: Continuous Availability Needed 
In this example, the application is installed on multiple Linux servers that run under multiple z/VM 
systems on multiple LPARs on multiple System z servers. No SPoFs for the application remain. 

 
We have eliminated the SPoFs by using a second System z server (System B) to host our second 
LPAR that will run z/VM and Linux guests. The application is installed on Linux servers in each LPAR. 
During normal operations, each LPAR receives 50% of the workload of the application. 
 
However, the cost of adding a second System z server is to run 100% of the workload should the 
other server fail. Software costs increase because of this.  
 
It is more cost-effective to run a System z LPAR near 100% CPU utilization.  But the above 
architecture would run each LPAR nearer to 50% utilization, so that it has extra capacity in case of a 
failure of the other LPAR. Some alternatives to bring the utilization nearer to 100%: 
• Configure fewer IFLs than are needed to run 100% of the workload in the LPAR. Configure other 

IFLs as standby IFLs that can be brought online quickly with Capacity Upgrade on Demand. When 
extra capacity is needed: 
1. The standby IFLs are defined as “active” to the LPAR. 
2. VM varies the new IFLs online. 
This process is non-disruptive and can be automated or completed manually in a few minutes. 
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• Run other lower-priority work in each LPAR. Configure the Linux guests so that those running the 
WebSphere workload have a higher priority than those running the “other” work. If a failover 
occurs VM will give the system’s CPU and memory to the WebSphere guests and withhold CPU 
and memory from the other workloads.  

Summary 
Examples 2 - 4, and all of the reference architectures in this paper, use clusters containing two 
members. You can always choose to instead create a cluster of three servers. In our examples that 
use one server type per LPAR, you could instead define three LPARs. The advantage of a three-
member cluster over a two-member cluster is that should one cluster member fail, you still retain a 
cluster of two members, and a good degree of High Availability. With a two-member cluster, if one 
member fails then you are now running in non-HA mode on the single remaining member, until the 
failed cluster member can be brought back online. 
 
When the absolute highest levels of availability must be maintained at all times, it is recommended to 
use a cluster of three LPARs. Otherwise a cluster of two LPARs is sufficient. 
 
The above exampleSection “Example 3: High Availability Needed”,shows the most cost-effective 
solution for architecting LPARs and VM for High Availability. The following is recommended: 
• Use a single System z server so that your z/VM and Linux LPARs can share the same IFLs. 
• Use two LPARs to run your production workload.  
• Create clusters of applications split between Linux servers running in each LPAR. 
• Run your test and development Linux servers either in: 

o Their own LPAR. You can use the following LPAR weights as starting values:  
 Production1: 35% 
 Production2: 35% 
 Test/Dev: 30% 

o One of the two production LPARs. Give that LPAR more resources than the other 
production LPAR.  You must ensure that the production guests have priority in getting 
system resources. You can use the following z/VM SHARE values as starting values for the 
Linux guests: 

 Production guests: SHARE 400 relative limitsoft 
 Test guests: SHARE 200 relative limitsoft 
 Development guests: SHARE 100 relative limitsoft 

Chapter 2: Scenarios 

The reference architectures in this document address five typical customer scenarios. Each scenario 
builds on the last, increasing in complexity. Note that most of these scenarios concentrate on where 
the data is. We have chosen to concentrate on such scenarios because: 
• A key strength of System z is its ability to be a highly-available database server. 
• High Availability in distributed WebSphere applications is well documented already, but a need 

exists for architectures where WebSphere on z/Linux is using DB2 on z/OS. 
 
For all scenarios, our goal is to provide a reference architecture that: 
• Is rapidly scalable to support increases or decreases in business volume. Many times this can be 

accomplished simply by bringing more IFLs online to the existing architecture. 
• Provides near-instantaneous failover, with almost no loss of user transactions. 
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Scenario: A non-WebSphere application 
You have a critical application that runs on Linux on System z. This application does not use 
WebSphere or any database. The application may have been written by the customer, bought from 
an ISV, or be a server that is part of Linux, but it has no HA features itself. 

Scenario: WebSphere with DB2 database on Linux 
You have a critical WebSphere application that runs on Linux on System z. The primary database for 
this application is DB2 UDB also running on Linux on System z. The database files are on SCSI 
disks. 

Scenario: WebSphere with Oracle database on Linux 
You have a critical WebSphere application that runs on Linux on System z. The primary database for 
this application is Oracle also running on Linux on System z. The database files are on Extended 
Count Key Data (ECKD) disks. 

Scenario: WebSphere with DB2 database on z/OS 
You have a critical WebSphere application that runs on Linux on System z. The primary database for 
this application is DB2 running on z/OS. Some of the application logic runs as DB2 stored 
procedures. 

Scenario: WebSphere with DB2 database on z/OS, in separate sites 
You have several critical WebSphere applications that run on Linux on System z. The primary 
database for these applications is DB2 running on z/OS. You also need to ensure that if an entire 
data center is lost, another data center in a separate site can assume the work of the first data center. 

Chapter 3: Reference Architecture: Non-WebSphere application 

Scenario Being Solved 
You have a key application that runs in Linux on System z in a Non-WebSphere environment and 
does not require a database.  This could be a homegrown application.   

Architecture Principles  
This architecture is designed to follow these principles: 
• Software is generally considered less reliable than hardware. The System z hardware contains  

redundant components, making its MTBF (Mean Time Between Failure) in the range of years. 
Because the System z hardware is so reliable, we allow the System z server to be a single point 
of failure in this architecture. We duplicate all the software environments (LPAR, VM, Firewalls, 
and Linux) so that none of them is a single point of failure. 

• Any failure will not be noticeable to the user. The current transaction may fail, but subsequent 
transactions succeed. After any single failure, transactions continue at the same rate with no 
degradation in throughput or response time.  

• The base architecture anticipates a low enough volume that it can be managed by a single server, 
but can scale if necessary to support increases and decreases in business volume. 

Reference Architecture 
The example scenario here will use an HTTP server as the example application.  We will use a 
Service IP for availability purposes. A Service IP address is a single IP address by which the HTTP 
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server is known to the outside world.  In the event of a failover, this IP address must be reassigned to 
the new server. This choice offers the following benefits as an example: 
• HTTP serving is a common application for Linux, yet is lightweight enough that another application 

could be easily substituted. 
• The use of a Service IP not only illustrates solid availability, it also represents an additional 

required resource for the example.  Even the simplest of web-serving arrangements requires at 
least one additional resource for dynamic content.  Demonstrating the failover considerations 
afforded by a Service IP will provide a multi-resource example that can generalize to other 
examples requiring multiple resources.  

 
Because this architecture is the simplest example in this document, we will demonstrate two different 
approaches to achieving high availability with an HTTP server and Service IP: 
• Using IBM Tivoli System Automation for Multiplatforms (SA): SA allows the abstraction of 

resources in resource groups and has a powerful, policy-based mechanism for easily defining 
dependencies among resource-group elements.  It is an appropriate choice for simplicity of 
service, as it is a fully-supported IBM product.  Note that the SA example will demonstrate the use 
of a cold standby HTTP server and is thus not continuously available.  In a failover event, there 
will be some downtime associated with bringing up the backup server. 

• Using Open Source packages, namely Linux-HA and Linux Virtual Server (LVS):  This 
approach allows the creation of a load-balancing cluster of server nodes.  The Service IP in this 
case is associated with an LVS Director instance, which sprays incoming requests over multiple 
HTTP Server instances.  Because the server instances are clustered, one server going down will 
simply cause it to be fenced from the cluster.  The LVS Director will not route any requests to it.  
Note that the LVS Director in this case is a single point of failure.  We set up a second LVS 
Director as a standby, and use Linux-HA (also known as “Heartbeat”) between the two LVS 
Directors.  The secondary LVS Director can be live, and thus failover times would be considered 
within an acceptable tolerance for continuous availability of the system.  Note that this example 
uses a mix of open source applications from IBM and non-IBM projects and could thus represent 
additional service overhead.  IBM Support for Linux-HA is available.  IBM Support is not available 
for Linux Virtual Server.  Note also that WebSphere Edge Components provide essentially the 
same function as LVS. The Edge Components Load Balancer can be configured with a hot 
standby. See “Chapter 4:  Reference Architecture: WebSphere with DB2 Database on Linux” in 
this document for more information about WebSphere Edge Components. 

 

First Example: Tivoli System Automation 
In this architecture, the HTTP Server and Service IP are defined as virtual resources in a SA resource 
group.  The Service IP acts as a floating IP address.  Its value remains fixed even if the Linux 
instance to which it points changes (such as through a failover).  A Service IP is a single virtual IP 
address by which the currently-active HTTP Server is known to the router.  The concept of a Service 
IP is not specific to SA, but SA can view a Service IP address as a virtual resource in a SA resource 
group.  SA will handle the management of a Service IP by assigning the IP to the proper machine as 
needed.  For example, the failure of the currently-active HTTP Server will cause SA to assign the 
Service IP to the assigned backup. 
 
The HTTP Server depends on the Service IP for the address by which the router knows the server.  
The HTTP Server and Service IP instance are each known as “resources” in the SA Resource Group 
as shown in the diagram below. The 1,2 designation under each of the resources is a nodelist that 
designates the nodes on which the resource can exist.  The strict “Depends On” relationship between 
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the resources will cause SA to enforce collocation of the resources.  SA also supports a “Depends on 
Any” relationship, in which resources in a resource group can be located on separate nodes. 
 
The Depends On relationship also enforces a startup order between the two resources.  A Service IP 
instance must point to a node before an HTTP Server can be started on that node.  If either instance 
goes down, the Service IP will be assigned to the backup node, and then the HTTP Server will be 
started on the backup node.  The nodelist as mentioned above refers to the two Linux instances that 
can run the resources managed by SA.  These instances must be setup as members of an IBM 
Reliable Scalable Cluster Technology (RSCT) cluster.  RSCT is an IBM software package that 
provides cluster monitoring and management services.  SA installation includes installation of the 
RSCT package.  RSCT provides the underlying resource monitoring (heartbeating) that SA uses to 
keep track of the state of nodes in the cluster.  After the cluster is established, command-line 
commands are issued to manage the resources under SA. 

 
By virtue of this relationship SA will manage the IP address, associating it with the secondary server if 
anything goes wrong with the primary server, either the HTTP server application, the Linux O/S, or 
zVM.   After the IP address has been assigned to the backup node, SA will start the HTTP server on 
that node. The initial state will be as shown in the following diagram: 

Note that the RSCT/SA combination is strictly managing the HTTP Server and Service IP address.  
Neither RSCT nor SA is involved in the flow of processing actual HTTP services requests.  If the 
RSCT/SA subsystem itself were to fail, the active HTTP Server would continue to function, albeit 
without the protection afforded by RSCT and SA.  
 

Depends On 

1,2 1,2

 
HTTP 
Server 

 

Service IP 

SA 
Resource 

Group 
 

“webrg” 

z/VM LPAR 1 

z/VM LPAR 2 

Router 

Fir
e
w
all

Fir
e
w
all

Service IP points  
here 

R
SC

T H
eartbeat

 
HTTP 
Server 

 
SAMP 

 
SAMP 



 

High Availability Architectures for Linux on IBM System z   13 

In the event of a failure of the primary HTTP server, SA will assign the Service IP address to the 
secondary LPAR and bring up an HTTP Server on the LPAR.  The resulting configuration is as 
shown: 

 
Note that in this scenario, the standby server is cold.  This could result in a service interruption as the 
server is started. 

Flow of requests through this architecture 
1. Service IP. Requests enter a router that is aware of a single IP address for the HTTP Server.  The 

Service IP is associated with the active HTTP Server.  In the event of a failure on the primary, SA 
will automatically assign the Service IP to the secondary.  

 
2. HTTP Server. The HTTP server serves static content.  The secondary is cold until started by SA. 

Product Versions 
• Any version of HTTP Server 
• Tivoli System Automation for MultiPlatforms, V1.2 
• Any version of z/VM 

Planned Outages 
This section discusses how each of the components can be taken down for software upgrades or any 
other planned outage.  SA requires managed resources to be brought up and down under its control.  
In this example, all resources are together in a single group, and as a result, bringing either active 
resource down will cause SA to failover to the other LPAR.  To bring a resource down under SA, use 
the rgmbrreq command.  
 
As mentioned above, SA and RSCT are in place to manage the cluster and have no impact on the 
serving of HTTP content.  Either or both of the SA or RSCT software can be brought down for 
maintenance without impacting the operation of the HTTP Server, except for the removal of RSCT/SA 
monitoring and failover “protection” for the HTTP Server. 
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What We Learned in Testing 
When this architecture was set up and tested for planned and unplanned outages, we learned the 
following: 
• Did the software failover as expected? Yes. 
• Did users experience any outage time or transactions that they needed to retry?  Yes 
• Did users experience any permanent data loss?  No 
• How long did the failover take? (How long did users experience outages): Approximately 6 

seconds to failover. Failover of the virtual ip is about 2 seconds, failover to http service is around 4 
more seconds. Most of this time was to bring up a new HTTP server. 

Architectural Decisions 
Architectural decisions were made based on the following key criteria: 
• High Availability 
• Cost 
• Simplicity 
 

 
As mentioned above, SA as an architectural choice affords a robust support structure.  While IBM 
support is available for Linux-HA, it is not available for Linux Virtual Server.  IBM has found that 
System z customers in general prefer supported software.   In addition, while this example is simple, 
SA scales well and so is suitable for managing availability in very complex environments with 
intertwined dependencies. 
 

Second Example: Linux Virtual Server and Linux-HA  
For the open source design, we rely on Linux Virtual Server (LVS).  LVS requires a single director 
node as well as any number of application instance, or cluster, nodes.   All requests for services 
come through the director and are assigned to cluster nodes to process the actual workload (for 

Architectural Decisions 
Decision Point Pros/Cons 
Use two separate 
System z servers 
to host the two 
LPARs. 

This architecture can easily be run on two separate System z servers. The 
resource group can be simply failed over in its entirety to an LPAR on another 
physical server. 
 
If the two servers are in separate data centers, or in separate cities, then this 
solution will cover the “Disaster Recovery” situation, where one data center is 
lost and the other can take over the workload immediately.  

Use of a Service 
IP Address 

The use of a Service IP was chosen for two reasons.  First, it abstracts the HTTP 
Server instances in the same way as Virtual IP Addressing (VIPA), resulting in a 
more simple failover.  Second, it allows the illustration of how to handle multiple 
dependent resources in a group.  It is expected that user applications will 
typically be comprised of multiple software components.  The example, as 
illustrated, will be easier to draw upon in such situations.  

Maintaining the 
“Depends On” 
relationship 
between 
resources 

The HTTP Server is dependent on the Service IP instance for obvious reasons.  
The choice of “Depends On” results in forced collocation.  “Depends On Any” 
would allow for the HTTP Server to exist on a separate LPAR than the Service IP 
instance.    
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example, by round robin).  High availability among the cluster nodes is implicit, since the failure of 
one of those nodes will cause it to be removed from consideration by the LVS director, and the 
remaining cluster nodes will simply assume responsibility for the workload. 
 
For the open source design, we use a passive secondary LVS director node.  Linux-HA manages the 
director nodes, including automated failover.  This failover capability eliminates the single point of 
failure. 
 

 
In this architecture, the single IP address is associated with and managed by the active LVS Director.   
The HTTP Server instances are both hot, which allows for load balancing of requests across them.  If 
one of the HTTP server nodes goes down, the LVS Director will remove it from the list of active 
servers.   LVS and Heartbeat can also work together to monitor the HTTP servers using Ldirector.  An 
excellent description of how to setup LVS and Heartbeat in this configuration can be found at 
http://mail1.cula.net/cluster/index.html.  See also “System z Platform Test Report for z/OS and Linux 
Virtual Servers” for more details. 
 

Flow of requests through this architecture 
1. LVS Director. Requests enter a router that is aware of a single IP address for the HTTP Server.  

The IP address is associated with the LVS Director.  The LVS Director will route requests to the 
HTTP Servers (for example, by round robin). 

 
2. HTTP Server. The HTTP server serves static content.   Should any of the HTTP servers fail, the 

failing server will no longer receive requests from the LVS Director.  If Ldirector is used as 
described above, than HTTP Servers that come back online will be automatically placed back into 
the cluster of active servers by the LVS Director. 

Product Versions 
• Any version of HTTP Server 
• Linux-HA (Heartbeat) version 2.0, which includes support for many new features   
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• Any version of LVS 
• Any version of Ldirector compatible with the Linux-HA and LVS versions chosen (Ldirector is 

available through the Linux-HA site.) 
• Any version of LVS 
• Ultra Monkey version 3 (if Ultra Monkey is to be used) 
• Any version of z/VM 
 
Note that the implementation and configuration details provided at 
http://mail1.cula.net/cluster/index.html also describe the specific software packages to download.  
The versions are workable but rather outdated.  IBM recommends that this description be used as a 
guideline but that more recent versions of all packages be used.  

Planned Outages 
This section discusses how each of the components can be taken down for software upgrades or any 
other planned outage.  There are two sets of redundant elements, namely the HTTP servers and the 
LVS Directors.  In either case, the system is set up such that a single element of either set can be 
brought down manually without impacting the system.  In the case of the HTTP servers, either server 
could be brought down and LVS would simply stop sending requests to that server.  Using Ldirector, 
the server would be returned to the cluster upon startup. 
 
The LVS Directors are slightly different since only one is in active state.  Bringing down the secondary 
is trivial because it is not active.  Bringing down the primary will cause Heartbeat to failover to the 
secondary.   
 
Note that multiple backup LVS Directors can be configured.  If only a single backup Director is 
deployed, bringing down that backup will make the primary a single point of failure.  A description of 
the management of redundant LVS Directors using Heartbeat and Ldirector can be found at 
http://www.austintek.com/LVS/LVS-HOWTO/HOWTO/LVS-HOWTO.failover.html.  The UltraMonkey 
project is an Open Source project that implements such management.  See 
http://www.ultramonkey.org/ for more information about UltraMonkey. 

What we Learned in Testing 
When this architecture was set up and tested for planned and unplanned outages, we learned the 
following: 
• Did the software failover as expected? Yes. 
• Did users experience any outage time or transactions that they needed to retry?  No 
• Did users experience any permanent data loss?  No 
• How long did the failover take? (How long did users experience outages): No user outages were 

seen. Failover happened in approximately 1 second. As long as this remains below the TCP/IP 
timeout value, no transactions are lost. 

Architectural Decisions 
Architectural decisions were made based on the following key criteria: 
• High Availability 
• Cost 
• Simplicity 
 
Architectural Decisions 
Decision Point Pros/Cons 
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The choice of LVS and Linux-HA provides the benefits of server load balancing.  Clusters of load-
balanced servers afford better utilization and continuous server availability. 

Chapter 4: Reference Architecture: WebSphere with DB2 database on Linux 

Scenario Being Solved 
You have a key WebSphere application that runs in Linux on System z. The primary database for this 
application is DB2 UDB, also running on Linux on System z. The database files are on ECKD disks. 

Architecture Principles  
This architecture is designed to follow these principles: 
• Software is generally considered less reliable than hardware. The System z hardware contains all 

redundant components, making its Mean Time Between Failure (MTBF) in the range of decades. 
Because the System z hardware is so reliable, we allow the System z server to be a single point 
of failure in this architecture. We duplicate all of the software environments (LPAR, VM, Firewalls, 
Linux, WebSphere, DB2) so that none of them is a single point of failure. 

• No failure should be noticeable to the end user. The current transaction may fail, but subsequent 
transactions succeed. After any single failure, transactions continue at the same rate with no 
degradation in throughput or response time.  

• The architecture must be rapidly scalable to support increases and decreases in business volume. 
 

Use of Linux 
Virtual Server 
(LVS) 

LVS is a standard, robust open-source package for load balancing and high 
availability in Linux clusters.   

Use of Multiple 
LVS Directors  

All requests must go through the LVS Director, making it a single point of failure 
without redundancy.  Simple heartbeating between the primary and secondary 
LVS Directors allows for a highly-available configuration. 

Use of Linux-
HA/Heartbeat 

Linux-HA is a standard, robust open-source package for heartbeating in Linux 
clusters.         
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Reference Architecture  

 
Each box represents a virtual Linux server running as a guest of z/VM, in two z/VM LPARs.  
 
In this architecture, all software servers are duplicated on two Logical Partitions (LPARs) on the same 
System z server. Outer and inner firewalls form a DMZ for the Edge servers and HTTP servers.  
 

Flow of requests through this architecture 
1. Communications within the LPAR. All communications between Linux guests within a z/VM 

LPAR are completed through a z/VM Virtual Switch (vswitch). The vswitch is a fast and scalable 
communication infrastructure. We recommend setting up one vswitch with two vswitch controllers 
(VM user ids) in each z/VM LPAR. (Note that z/VM 5.2 comes with two VSWITCH controllers 
defined. We recommend that you XAUTOLOG the two of them: DTCVSW1 and DTCVSW2.)  
 
Each vswitch should be set up to use multiple real devices, so that if one OSA fails, the VSWITCH 
will fail over to the other. 
 

2. Load Balancer. Requests enter a router that is connected to the Virtual IP Address (VIPA) of the 
Primary Load Balancer. Should this load balancer fail, the backup load balancer will detect the 
failure and take over. The router will detect this failure and route requests to the backup load 
balancer. 
 

3. HTTP Server. The load balancer sprays requests between the two HTTP servers. Should one of 
the HTTP servers fail, the load balancer detects this and will not route requests to it. The HTTP 
server serves static pages. It also routes WebSphere requests via the WebSphere plugin to the 
two WebSphere servers in the cluster. Should one of the WebSphere servers fail, the plugin will 
detect this and not route requests to it. 
 

z/VM LPAR 1 

Fir
e
w
all 

z/VM LPAR 2 

Router 

Fir
e
w
all 

Fir
e
w
all

WebSphere Cluster

DB2 
Server 
(Pri) 

Primary 
Load 

Balancer 

Backup 
Load 

Balancer 

HTTP
Server

HTTP
Server

WAS 
Server

WAS 
ServerFir

e
w
all

DB2 
Server 
(Bkup) 

HADR 

WAS 
Dmgr 



 

High Availability Architectures for Linux on IBM System z   19 

4. WebSphere. The application is deployed to a WebSphere cluster consisting of two nodes. 
WebSphere manages the deployment of the application onto the nodes of the cluster and can 
upgrade the application on the fly. 
 
User session data is replicated among the cluster members so that if a cluster member fails the 
transaction can be continued on the other cluster member. We recommend configuring 
WebSphere to replicate session data and hold it in memory in the cluster members. This option 
performs well and can scale well, and is more simple to configure than using a database to hold 
session data. 
 
In flight Two Phase Commit (2PC) transactions can be recovered by the WebSphere HA 
manager. The HAManager is a new feature of WebSphere v6. It enhances the availability of 
WebSphere singleton services like transaction services or JMS message services. It runs as a 
service within each application server process that monitors the health of WebSphere clusters. In 
the event of a server failure, the HAManager will failover the singleton service and recover any in-
flight transactions. In order to do this the transaction logs written by each application server must 
be on network-attached storage or a storage SAN so that they are readable to the remaining 
cluster members. Note that this setup is optional and is not depicted in our reference architecture. 
When the HAmanager coordinator detects that an application server is down, it can initiate 
recovery of in-flight transactions from the transaction logs. This recovery will release any locks 
held in the database. 
  
The following steps are required to accomplish this setup: 
• Make the transaction logs sharable by all members of the cluster. By default these are located 

in the <WASinstallroot>\profiles\<profilename>\tranlog\<cellname>\<nodename>\<servername>\transaction 
directory, but should be configured for another directory that you will make sharable. 

• After you configure the logs, the only other setup is to “Enable high availability for persistent 
services“ by checking the box by that name in the ServerCluster. 

Refer to Redbook SG24-6392: WebSphere Application Server V6 Scalability and Performance 
Handbook, section 9.7 “Transaction Manager High Availability” for details about how to set up the 
HAmanager in this way.  
 

5. DB2 Client (JDBC). WebSphere runs the application and sends DB2 data requests to the Primary 
DB2 Server. HADR communicates to the DB2 clients (the JDBC driver in our case) when they first 
connect to DB2 to inform them of the address of the backup server. If any communication to the 
primary DB2 server fails, the clients automatically route requests to the backup server. This is the 
Automatic Client Reroute feature. Configure the WebSphere connection pool settings in the DB2 
data source to use purge.policy=pool.  This will cause WebSphere to empty out the entire pool 
upon a single connection failure.  Without this option, WAS will hand out stale connections until it 
purges the pool of all connections. 
 

6. DB2. The DB2 HADR (High Availability Disaster Recovery) feature is used to provide failover in 
case of a DB2 failure. HADR uses two DB2 servers and two databases to mirror the data from the 
primary database to the backup. Tivoli System Automation running on both DB2 Servers 
automatically detects a failure of the primary and issues commands on the backup for the DB2 
there to become the primary. Since it has been mirroring all data from the primary, the backup 
does not need to do any database recovery before becoming primary. So the database takeover 
is accomplished as fast as can be detected by TSA. 
 
Details on the DB2 failover setup: 
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• DB2 provides the TSA MP scripts to automate the HADR takeover. Install these scripts into 
each TSA server. See the “Automating DB2 HADR Failover on Linux using Tivoli System 
Automation” whitepaper for more information. 

• The WebSphere application needs to look for a specific SQL return code that indicates that the 
primary DB2 server has failed. This return code means that any transactions prior to COMMIT 
have been rolled back.  The application needs to reissue the previous transactions. 

• Use the DB2 “update alternate server for database” command at each DB2 node to identify the 
other DB2 server. With this setup, all connecting clients will become aware of the backup 
server after connecting to the primary. This is only necessary for type2 drivers. 

• HADR is included in DB2 UDB 8.2 Enterprise Server Edition. 
• HADR ACR (automatic client reroute) works with type 2 and type 4 JDBC clients, but for XA 

transactions the type 4 client is required. 
On WebSphere Linux, the XA implementation for two-phase commit is the only one available 
for WebSphere managed transactions.  As a result, resources need to be specifically declared 
as XA (that is, XADataSource) if you want to participate in 2PC. The type 4 JDBC client is 
needed for XA-type transactions that need automatic client reroute. (XA is supported for both 
type2 and type4 clients, but XA and ACR only works for type4.) 
 

7. Disk Multipathing. The database volumes are configured for multipathing, so that if one path 
fails, access to the device is maintained through the surviving paths. For ECKD DASD devices 
accessed over FICON or ESCON channels, multipathing is handled invisibly to the Linux 
operating system. A single device is presented to the operating system on which to do I/O 
operations. Multipathing happens automatically and is handled by the System z I/O subsystem. All 
that is required is for multiple paths to be defined to the device in the active I/O Definition File 
(IODF), and for those paths to be online. The complexity of choosing among the multiple paths is 
hidden from the Linux OS.  

Product Versions 
This architecture requires the following software versions: 
• WebSphere Network Deployment V6.0 or newer. This architecture can be done with WebSphere 

v5, but it lacks some of the HA features of WebSphere v6. For these reasons we recommend v6. 
• DB2 UDB 8.2 is needed for the HADR function. You also need the JDBC driver that comes with 

8.2, to get the Automatic Client Reroute feature. 
• Tivoli System Automation for MultiPlatforms, V1.2. This is included with DB2 8.2 at no cost for use 

with DB2. 
• z/VM 4.4 or above, to get vswitch. 

Planned Outages 
This section describes how each of the components can be taken down for software upgrades or any 
other planned outage. 
Planned Outages 
Component Procedure 
Load Balancer 1. Stop the network dispatcher component on the server you need to 

upgrade. The backup detects that the primary is stopped and 
becomes the primary. The router detects that the primary is down 
and routes requests to the backup. 

2. After the primary has been upgraded, start the Network Dispatcher 
component and make it primary again. 

3. Go to the backup server and apply the upgrade there. 
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What we Learned in Testing 
When this architecture was set up and tested for planned and unplanned outages, we learned the 
following: 
• Did the software failover as expected? Yes. 
• Did users experience any outage time or transactions that they needed to retry?  Yes 
• Did users experience any permanent data loss?  No 
• How long did the failover take? (How long did users experience outages): Approximately 1 minute 

for HADR to failover and WebSphere to stop sending requests to the failed DB2 server and 
redirect to the alternate. 

 
HTTP Server 1. Stop the HTTP Server on the server you need to upgrade. The load 

balancer detects that this HTTP server is not responding and will 
stop sending requests there.  

2. After the HTTP Server has been upgraded, restart the HTTP 
Server. As soon as it is started, the load balancer detects that it is 
available and starts sending requests to it. 

3. Go to the other HTTP server and repeat steps 1 and 2. 
WebSphere Application 
Server 

To upgrade the application running in the cluster, simply perform the 
“Rolling upgrade” function from the WAS ND administrative panels. 
This drains each request queue, stops the application server, upgrades 
the application, and starts the app server again. WAS will make sure 
the upgraded app server is up and handling requests before upgrading 
the next cluster member. 
If session replication in enabled between the cluster members, then 
this method will cause no loss of transactions. 
 
To apply service to WebSphere 
1. From the WAS ND administrative panels, stop one application 

server in the cluster. This process ensures that no in-flight 
transactions are interrupted by the stop by first notifying the 
WebSphere plug-in running in the HTTP server that WAS is down 
and to stop sending new requests. Then WebSphere finishes 
bringing down the application server.  

2. Upgrade WAS or do whatever other planned outage work needs to 
be done on that server. 

3. Start the WAS application server again. Wait until the app server is 
again handling work. 

4. Repeat this process on the other application server in the cluster. 
 

DB2 1. On the backup DB2 server, stop HADR mirroring.  
2. Apply the upgrades. 
3. Start HADR again and allow the DB2 server to catch up with the 

changes made on the primary.  
4. After this process is complete, tell the backup to become the 

primary, using the TAKEOVER command. 
5. Repeat this process on the primary DB2 server. 
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Architectural Decisions 
Architectural decisions were made based on the following key criteria: 
• High Availability 
• Cost 
• Simplicity 
 
Architectural Decisions 
Decision Point Pros/Cons 
Use two separate 
System z servers 
to host the two 
LPARs. 

This architecture can easily be run on two separate System z servers. All 
communication between cluster members is through TCP/IP, and the DB2 HADR 
mirroring can be done in asynchronous mode so that network delays between 
System z systems will not be a problem. 
 
This removes the System z hardware as a single point of failure. However, it 
significantly increases the cost of the solution. There must be the same number 
of IFLs available on the second System z as there is on the first, since either 
must be able to run 100% of the workload without degrading response time. So 
the number of IFLs needed to run the workload is double the number needed to 
run the workload on two LPARs who share the same System z server. 
 
If the two servers are in separate data centers, or in separate cities, then this 
solution will cover the “Disaster Recovery” situation, where one data center is 
lost and the other can take over the workload immediately. See the architecture 
for Scenario 5 for more information. 
 
Another con is that encryption of all of the data traffic is now required. When all 
of the data traffic was on the same CEC, there was no need for encryption 
because no communication ever left the System z machine. 

Use WebSphere 
memory 
replication to save 
user session data 

WebSphere gives you three levels of HTTP session persistence: 
• No persistence 
• Harden session data to a database 
• Keep session data in memory in all cluster members. 
 
Hardening session data to a database is the most robust and scalable solution, 
but also requires that the database be HA-enabled itself. Memory replication 
means that session data from each cluster member is available to all of the other 
cluster members, but not hardened to disk. The session data is kept in JVM 
memory. This means that session data is lost only if the entire cluster fails.  
 
For moderate workloads, memory replication performs well but uses more 
memory than database hardening. But as WebSphere scales to very large 
numbers of users and large session data, memory replication can perform worse 
than hardening to disk because of the following: 
• WebSphere spends lots of CPU time synching the session data on all the app 

servers.  
• The amount of JVM memory needed to store session data increases, leaving 

less for the application, and requiring larger JVM heaps. 
 
WebSphere offers several ways to set up memory replication so that either of the 
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following is true: 
• All of the session data is in memory in each application server in the cluster. 
• The session data is held in memory in a separate application server that is 

dedicated to this task. This configuration can work well with very high 
transaction rates or large amounts of session data, because all of the session 
data does not have to be replicated in each application server. However, this 
separate server becomes a new single point of failure. 

 
WebSphere v6.0.2 increased the performance of memory-to-memory session 
replication to equal that of database replication. For this and the reasons above 
we recommend using TBW (time-based write) memory replication of session 
data for an HA configuration. 
 
Refer to the June 2005 edition of “WebSphere Technical Journal”, available at 
http://www.ibm.com/developerworks/websphere/techjournal/0506_col_alcott/0506_col_alcott.html
, and the book “WebSphere Deployment and Advanced Configurations”  for an 
excellent article on this subject.  

Where to run the 
WebSphere 
Deployment 
Manager 

In WebSphere v6, the deployment manager is only used for deployment and 
configuration, and does not perform any HA monitoring of the cluster like it did in 
v5. So we feel that it is not required to HA-enable it. Therefore we recommend 
you run the Dmgr in a separate Linux guest on either of the Linux LPARs. 

Use TSA alone 
(without  DB2 
HADR) to provide 
failover for DB2 

Tivoli System Automation can be set up to manage the availability of the DB2 
instance in a 2-node cluster. A whitepaper and TSA scripts can be downloaded 
for this solution from http://www.ibm.com/software/tivoli/products/sys-auto-
linux/downloads.html.   
 
In the event of a database failure, TSA activates the backup DB2 instance (which 
is an active but idle Linux guest with DB2 already started) and triggers the DB2 
recovery mechanisms. DB2 provides the TSA scripts to do this. The DB2 
transaction log is used to replay committed transactions and undo in-flight 
transactions, in order to bring the on-disk image to a consistent state in the event 
of a crash. Because the DB2 server node and the spare node are both 
connected to the same disk subsystem, when DB2 on the spare node is 
activated during failover, it can simply start the recovery process using the 
database storage, transaction logs, and configuration information written to disk 
by the original DB2 node. No transfer of logs or database images is required 
between the failing system and the spare system, enabling faster recovery time. 
 
An issue with this is the speed of recovery. Using HADR, failover from the 
primary to the secondary DB2 server takes only a few seconds, and client 
requests will not time out due to this delay. Using TSA alone to kickoff DB2 
recovery can take up to 60 seconds to start and recover DB2. 
 
HADR can also easily handle rolling upgrades to DB2. Simply upgrade the 
backup server, and then use the DB2 Control center to switch the backup to 
become the primary, and upgrade the other server. 

Use SCSI devices 
instead of ECKD. 

SCSI devices accessed over FCP paths can be used instead. The FCP/SCSI 
approach is described in Chapter 5. Each is used once in this document in order 
to articulate the differences in configuring multipathing and device sharing for 
each. 
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Key problem areas 
Non-functional requirements: 
• Data integrity. No data loss is permitted, even in disaster (site fail-over) scenario. 
• Security. The Architecture can be used for systems with stringent security requirements. It 

provides layered defenses against internal and external threats. 
• Performance and Scalability. This Architecture supports  systems with medium throughput 

requirements and allows for  additions to scale to greater volumes. 

Solution estimating guidelines 
Use the “WebSphere on Linux on System z Sizing” process to estimate the number of IFLs required 
for HTTP, WebSphere, and DB2. 

Chapter 5: Reference Architecture: WebSphere with Oracle database on Linux 

Scenario Being Solved 
You have a key WebSphere application that runs in Linux on System z. The primary database for this 
application is Oracle, also running on Linux on System z. The database files are on SCSI disks. 

Architecture Principles  
This architecture is designed to follow these principles: 
• Software is generally considered less reliable than hardware. The System z hardware contains all 

redundant components, making its MTBF in the range of years. Because the System z hardware 
is so reliable, we allow the System z server to be a single point of failure in this architecture. We 
duplicate all of the software environments (LPAR, VM, Firewalls, Linux, WebSphere, Oracle) so 
that none of them is a single point of failure. 

• Failure should not be noticeable to the end user. The current transaction may fail, but subsequent 
transactions succeed. After any single failure, transactions continue at the same rate with no 
degradation in throughput or response time.  

• The architecture must be rapidly scalable to support increases and decreases in business volume. 
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Reference Architecture  

 
Each box represents a virtual Linux server running as a guest of z/VM, in two z/VM LPARs.   
 
In this architecture, all software servers are duplicated on two Logical Partitions (LPARs) on the same 
System z server. Outer and inner firewalls form a DMZ for the Load Balancers and HTTP servers.  

Flow of requests through this architecture 
1. Load Balancer. The router and Load Balancer are configured the same as it is described on page 

18. 
2. HTTP Server. The HTTP server is configured the same as it is described on page 18. 
3. WebSphere.  WebSphere is configured the same as it is described on page 19. 

 
4. Oracle Client (JDBC). WebSphere runs the application and sends requests to the Oracle 

database server (Oracle calls this an “instance”). Communication with Oracle is via the Oracle 
Thin Client, which is a type 4 JDBC driver. It uses a self contained, light weight version of 
SQL*Net to communicate over TCP/IP with the Oracle database instance. The WebSphere 
datasource lists the instances that make up the Oracle RAC cluster. If the primary instance is 
unavailable, the driver will use an alternate instance. The thin client should be defined to use 
“session” failover, meaning that if a connection is lost from the client to the instance, a new 
session is automatically created with another instance (session failover does not attempt to 
recover selects.) Since the thin client handles the reestablishment of connections to an alternate 
instance, no purging of the WebSphere connection pool is necessary. 
 

5. Oracle. The servers are configured using Oracle Real Application Cluster (RAC) in an 
active/active configuration with two instances. This means that each instance is active and 
updates a common database. Should one of the Oracle instances fail, the in-flight transactions are 
lost, but the other instance in the RAC can receive all JDBC requests immediately. Configuration 
data is in the tnsnames.ora file on each instance. 
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6. Disk Multipathing. The database volumes are configured for multipathing, so that if one path 
fails, access to the device is maintained through the surviving paths. Unlike FICON-attached 
ECKD DASD devices, when SCSI DASD devices are accessed over System z FCP channels, 
each path to each LUN appears to the operating system as a different device. For example, if 
there are four paths to five LUNs, the Linux system sees 20 SCSI devices. This means that there 
must be another layer of code between the Linux filesystem layer and the subsystem. This extra 
layer handles all of the coordination between the raw paths and the higher level subsystem. On 
Red Hat Linux, this extra layer is handled by software RAID and mdadm. On SUSE Linux it is 
handled by LVM (SLES 8) or the Device Mapper subsystem in the 2.6 kernel in conjunction with 
EVMS (SLES 9). So, unlike the FICON/ECKD case, FCP/SCSI multipathing is managed by the 
Linux OS. There is no global multipathing scheduler that works across the entire System z system 
for FCP.  
 
The mdadm approach used by Red Hat currently does not balance loads among available paths 
to LUNs. Rather, it uses a primary path to the LUN, then fails over to a secondary path if there are 
any problems with the primary path. When an active path fails, the md subsystem detects the 
failure, marks the path failed, then makes a secondary path active. If the failed path comes back, 
the md subsystem recognizes this and brings it back as a secondary path. 
 
For information about configuring FCP multipathing for Red Hat or SUSE systems, see the 
Redbooks SG24-6344, Linux for System z: Fibre Channel Protocol Implementation Guide and 
SG24-6694, Linux for IBM System z9 and System z.  
 

Product Versions 
This architecture requires the following software versions: 
• WebSphere Network Deployment V6.0 or newer. This architecture can be done with WebSphere 

v5 but lacks some of the HA features of WebSphere v6. For these reasons we recommend v6. 
• Oracle Database 10g Release 1 (10.1.0.3) with RAC feature. Oracle thin client JDBC type 4 

driver. 

Planned Outages 
This section discusses how each of the components can be taken down for software upgrades or any 
other planned outage. 

What we Learned in Testing 
When this architecture was set up and tested for planned and unplanned outages, we learned the 
following: 
• Did the software failover as expected? Yes. 

Planned Outages 
Component Procedure 
Load Balancer Same as in previous architecture. 
HTTP Server Same as in previous architecture. 
WebSphere Application 
Server 

Same as in previous architecture. 

Oracle Use the SHUTDOWN TRANSACTIONAL command with the LOCAL option 
to make an instance (RAC Server) shutdown after all active 
transactions on the instance have either committed or rolled back. 
Transactions on other instances do not block this operation. 
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• Did users experience any outage time or transactions that they needed to retry?  Yes 
• Did users experience any permanent data loss?  No 
• How long did the failover take? (How long did users experience outages): Approximately 2 

minutes for RAC to failover and WebSphere to stop sending requests to the failed Oracle instance 
and redirect to the alternate. The active/passive configuration of RAC may fail over faster. 

• Problems were experienced during failback (when the primary instance was restarted and the 
alternate stopped). Transaction throughput dropped significantly or stopped. We assumed this 
was a configuration error that we could not find. 

Architectural Decisions 
Architectural decisions were made based on the following key criteria: 
• High Availability 
• Cost 
• Simplicity 
 
Since this architecture is so similar to the previous one, we have not duplicated all of the discussion 
of the architectural decisions here. Only those that are unique to this architecture are described 
below. 
 

Key problem areas 
Non-functional requirements are the following: 
• Data integrity. No data loss is permitted, even in a disaster (site fail-over) scenario. 

Architectural Decisions 
Decision Point Pros/Cons 
Using Oracle 
DataGuard 

While RAC provides a cluster of Oracle instances all sharing one 
database, DataGuard provides for mirroring of the database itself using 
a primary and standby database. To duplicate both the instances and 
the database requires both RAC and DataGuard. 
 
Using DataGuard with “transaction integrity”, if there is a disk failure 
then the standby database will be current to the last committed 
transaction. If there is a disk failure when using RAC only, then a 
database recovery is needed (Oracle 10g keeps recent transactions in 
a flash-back area making that kind of recovery very quick.) 
 
Dataguard is a good solution to provide high availability for RAC 
clusters on separate System z servers. The dataflow between the 
clusters is minimal because redo log shipping is used. There are 
several choices as to how current to keep the backup cluster, including 
transactional integrity.  

Using an Active/Passive 
configuration instead of 
Active/Active 

There is a high CPU cost for an active/active RAC configuration. Using 
active/passive RAC uses less CPU, and allows faster failovers, but 
does not support load balancing since only one RAC instance is active. 

Use ECKD devices 
instead of SCSI 

ECKD devices accessed over FICON or ESCON paths can be used 
instead. The ECKD approach is described in the previous architecture. 
Each is used once in this document in order to articulate the 
differences in configuring multipathing and device sharing for each. 
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• Security. The architecture can be used for systems with stringent security requirements. It 
provides layered defenses against internal and external threats. 

• Performance and scalability. This Architecture supports  systems with medium throughput 
requirements and allows for additions to scale to greater volumes. 

• Cost. Oracle RAC is quite costly, but provides good function. 
 

Solution estimating guidelines 
Use the “WebSphere on Linux on System z Sizing” process to estimate the number of IFLs required 
for HTTP, WebSphere, and Oracle. The sizing actually uses DB2, but the cycles for DB2 and Oracle 
are similar enough that the sizing will be valid. 

Chapter 6: Reference Architecture: WebSphere with DB2 database on z/OS 

Scenario Being Solved 
You have a key WebSphere application that runs in Linux on System z. The primary database for this 
application is a DB2 data sharing group running in a Parallel Sysplex on z/OS.  

Architecture Principles  
This architecture is designed to follow these principles: 
• Software is generally considered less reliable than hardware. The System z hardware contains all 

redundant components, making its MTBF in the range of years. Because the System z hardware 
is so reliable, we allow the System z server to be a single point of failure in this architecture. We 
duplicate all of the software environments (VM, Firewalls, Linux, WebSphere, DB2) so that none 
of them is a single point of failure. 

• No failure should be noticeable to the end user. The current transaction may fail, but subsequent 
transactions succeed. After any single failure, transactions continue at the same rate with no 
degradation in throughput or response time.  

• The architecture must be rapidly scalable to support increases and decreases in business volume. 
• The architecture should leverage the high availability capabilities and features of z/OS Parallel 

Sysplex. 
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Reference Architecture  

 
Each box on the left represents a virtual Linux server running as a guest of z/VM, in two z/VM LPARs. On the right are two 
z/OS LPARs. The boxes within them represent z/OS processes.  
 
 
This architecture introduces the use of a DB2 z/OS data sharing group as the data store. The data 
sharing function of DB2 z/OS enables applications that run on different DB2 subsystems to read and 
write the same data concurrently. DB2 subsystems that share data must belong to a DB2 data 
sharing group, which runs in a Parallel Sysplex cluster. A data sharing group is a collection of one or 
more DB2 subsystems that access shared DB2 data. Each DB2 subsystem that belongs to a 
particular data sharing group is a member of that group. All members of a data sharing group use the 
same shared DB2 catalog and directory, share user data, and behave as a single logical server with 
the benefit of higher scalability and availability. The maximum number of members in a data sharing 
group is 32. 
 

Flow of requests through this architecture 
1. Load Balancer. The router and Load Balancer are configured the same as described on page 18. 
2. HTTP Server. The HTTP server is configured the same as described on page 18. 
3. WebSphere.  WebSphere is configured the same as described on page 19. 

 
4. JDBC Type 4 Driver. Each WAS server is configured to use a pure Java driver for connectivity to 

DB2 UDB on z/OS, called the DB2 Universal JDBC Driver type 4 (JDBC T4).  JDBC T4 is sysplex-
aware and can intelligently route workload across a DB2 data sharing group in a Parallel Sysplex.   
 
On z/OS, Sysplex Distributor provides an initial contact single cluster IP address (known as a 
group Dynamic VIPA) for the data sharing group, which has built-in redundancy across network 
adapters and z/OS images. Each DB2 data-sharing group member is also addressable by its own 
Dynamic VIPA (Virtual IP Address) to insulate it from outages of any individual network adapter, 
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and from potential restarts of the DB2 group member on other z/OS images in the parallel sysplex.  
z/OS WLM (Workload Manager) works with DB2 z/OS and JDBC T4 to direct subsequent traffic to 
the DB2 group member with the most available capacity on a transaction-by-transaction basis.  
 

5. DB2. Should a DB2 z/OS group member fail, in-flight work to that DB2 will fail and be backed out, 
but subsequent transactions will be automatically rerouted to surviving DB2 group members. z/OS 
ARM (Automatic Restart Manager) can automatically restart a failed DB2, either in-place if its host 
z/OS is still available, or on another z/OS system in the sysplex if its original z/OS host is no 
longer active (based upon whatever restart policy the user has previously specified). If an entire 
z/OS host has either failed or appears hung, z/OS SFM (Sysplex Failure Management) can 
perform system isolation to cleanly remove the z/OS system from the sysplex, either automatically 
or based upon operator request (based on whatever policy the user has previously specified).  

More detail on these components 
Let’s look at each of the components in this architecture in more detail. The focus here is on the flow 
from Linux on System z to DB2 on z/OS. A comprehensive view of z/OS Parallel Sysplex high 
availability configurations and options is beyond the scope of this document, though a few aspects of 
z/OS Parallel Sysplex high availability that are particularly relevant to this discussion are covered. 
 
DB2 UDB for z/OS: Each DB2 member in the Parallel Sysplex interfaces with z/OS WLM to obtain a 
prioritized list of DB2 data sharing group members based on their availability and useable capacity. 
After a sysplex-aware JDBC T4 client has made initial contact with DB2 UDB for z/OS, DB2 returns 
this list to the JDBC T4 client. 
 
JDBC T4:  JDBC T4 is configured to be sysplex-aware, and to use connection concentrator in 
addition to the connection pooling available within WebSphere. This function provides improved load 
balancing in Parallel Sysplex DB2 data sharing configurations. With only the standard connection 
pooling included in WebSphere, an application must disconnect before another one can reuse a 
pooled connection.  In a Connection Concentrator implementation, without any change in application 
behavior, the physical database connection is released at the end of a transaction (commit or 
rollback), instead of the closeConnection() call.  This allows increased connection sharing and higher 
connection utilization because connections are not held by applications while not actively participating 
in a DB2 unit of work. The JDBC T4 sysplex workload balancing feature also implements a 
sophisticated scheduling algorithm that uses z/OS WLM information (passed back by DB2 UDB for 
z/OS) to distribute workload across members of the DB2 data sharing group at the transaction 
boundary.  
 
In addition, connection concentrator will detect failed database connections and allocate a valid 
database connection when the application begins a new unit of work. This availability and workload 
management capability enables JDBC T4 to transparently relocate work away from failed or 
overloaded members to those that are up and underused, and to do so on a transaction-basis, rather 
than on a connection-basis. Also, unlike ordinary connection pooling, when an outage occurs on one 
of the members in the DB2 data sharing group, only those client connections that were actually 
processing transactions in that failing member receive connection failures. With ordinary connection 
pooling, all client connections to that member would receive connection failures regardless of whether 
the clients were active in the database server.  Note that JDBC T4 sysplex and connection 
concentrator support is distinct from WebSphere Application Server connection pooling. Both can be 
used simultaneously as they don’t conflict with one another. 
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Dynamic VIPA (DVIPA): Each link to an IP network must have an IP address. However, if a server’s 
physical adapter or the link associated with a source or destination IP address fails, all TCP/IP 
relationships are broken until the adapter (and its IP address) is restored to service.  
 
Virtual IP address, or VIPA, provides an IP address that is owned by a TCP/IP stack, but not 
associated with any particular physical adapter. Because the VIPA is associated with a virtual device, 
it is always available as long as the TCP/IP stack is functioning and accessible. This is useful for 
large systems such as System z machines that have multiple IP adapters, including OSA-Express 
and Hipersockets. As long as one IP adapter is working and connected to the IP network, others can 
fail without disrupting service to the DB2 data-sharing group.  
 
But what happens if the TCP/IP stack itself becomes unavailable (for example, if a system loses 
power)? In this case, the VIPA goes away with the TCP/IP stack and is unavailable until the TCP/IP 
stack can be restarted.  
 
Unlike a static VIPA, a DVIPA can move from one TCP/IP stack in the sysplex to another, 
automatically. TCP/IP stacks exchange information about DVIPAs, their existence, and their current 
location, and the stacks are continuously aware of whether their partner sysplex stacks are still alive 
and functioning so that they can back each other up. There are two different types of DVIPAs: 
multiple instance and application-specific. DB2 exploits both types: multiple instance DVIPA for DB2 
group-wide new workload requests and the application-specific DVIPA for member-specific requests.  
The member-specific DVIPA is used by JDBC T4 to route workload to a specific member and a 
second member-specific port is used to allow two-phase commit failure and recovery processing.  
 
In a member-specific DVIPA, if a DB2 data sharing group member is started on any system in the 
sysplex, the TCP/IP stack on that system will detect DB2 trying to bind a socket to the DVIPA. The 
properly configured z/OS TCP/IP stack (through the BIND parameter on the PORT statement) is 
smart. It will verify that the DVIPA is not active elsewhere in the sysplex, then will activate the DVIPA 
automatically before reporting successful completion back to DB2. If the DB2 member later fails, 
TCP/IP will deactivate the DVIPA. If that DB2 member is restarted on another TCP/IP stack in the 
sysplex that has been similarly configured to allow this dynamic activation, then the DVIPA will be 
activated there automatically so that the DB2 restart can proceed successfully. In other words, the 
member-specific DVIPA will follow its associated DB2 member around the sysplex. Each DB2 data-
sharing group member will have a unique DVIPA.  
 
Sysplex Distributor: Sysplex Distributor is the strategic IBM solution for IP connection workload 
balancing in the Parallel Sysplex. It is similar in concept to the IBM WebSphere Edge Components 
Load Balancer or the Cisco Multi-Node Load Balancer. It provides a cluster IP address for the entire 
DB2 UDB for z/OS data sharing group. Since it is built on Dynamic VIPAs, it is called a Distributed 
DVIPA. DB2 refers to this as the location or group Dynamic VIPA. When coupled with JDBC T4 and 
its sysplex workload balancing support, the Sysplex distributor IP address is only used for initial 
connection to DB2. All subsequent JDBC T4 requests use the member-specific IP addresses 
returned to the JDBC T4 client by DB2 UDB for z/OS. 
 
The group DVIPA is defined on a primary TCP/IP stack (or “routing” stack) in the sysplex through 
coding of the VIPADEFINE and VIPADISTRIBUTE profile statements. Information about the DVIPA is 
distributed automatically to all designated candidate “target” TCP/IP stacks in the sysplex, and on all 
these target stacks, the same IP address is activated as a “hidden” DVIPA. The address is hidden in 
the sense that the target stacks don’t advertise the presence of this IP address to the network. Only 
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the routing stack advertises ownership of the group DVIPA to the world. Then, the routing stack waits 
to receive connection requests. 
 
When DB2 data sharing group members start up, they bind their contact port (446) to the group 
DVIPA on their local (target) stack. When this happens, the target stack notifies the routing stack. The 
routing stack then knows it can send future DB2 connection requests to that target stack. If the DB2 
member should fail, its target stack is immediately aware of this, and notifies the routing stack. These 
updates to the target stack are virtually instantaneous (sub-second), and do not rely on any sort of 
advisor function to make periodic queries for availability status.  
 
When the group DVIPA routing stack receives a TCP connection request, it does the following:  
1. Consults z/OS Work Load Manager (WLM) to find the relative available capacities on the z/OS 

nodes hosting the target stacks and DB2 members.  
2. Consults the z/OS Communication Server Service Policy Agent for network performance and 

defined policies that might affect the distribution decision.  
3. Selects a target stack and forwards the request for processing.  
 
Should a target TCP/IP stack fail, in-flight connections also fail. The routing stack immediately sends 
out a connection reset to avoid the delay associated with TCP connection timeouts, and reconnect 
requests are sent to one of the surviving target stacks. New connection requests are not routed to the 
failed target stack or system. 
 
Backup routing stacks may also be configured by coding the sypslex cluster IP address on a 
VIPABACKUP profile statement on the backup TCP/IP stack(s). If the routing stack suffers an outage, 
the backup routing stack takes over global responsibility for the group DVIPA. Each target stack is 
aware of the takeover, and sends the new routing stack its current connection routing table. The new 
routing stack consolidates all of the individual tables into its overall connection routing table. Any in-
flight inbound TCP data lost with the failing routing stack is retransmitted by the individual client TCP 
stacks, and aside from a momentary pause for retransmission, clients and surviving servers continue 
without connection outage. This is all handled by collaborating Sysplex Distributor TCP/IP stacks; 
DB2 is entirely unaware of the failure of the former routing stack. When the original routing stack is 
restarted, it non-disruptively takes over its duties from the backup stack. 
 
WLM: z/OS WLM allows you to define performance goals and assign a business importance to each 
goal. You define the goals for work in business terms, and WLM decides how much resource, such 
as CPU and memory, should be given to the application to meet the goal. WLM will constantly 
monitor the system and adapt processing to meet the goals. It can not only help with directing new 
work to available resources within a Parallel Sysplex, but it also directs resources to where they are 
needed to process existing work.  When workload arrives at the JDBC T4 client, a workload 
classification occurs which can be based upon a number of factors including authorization ID, 
accounting strings, client information, stored procedure invocation, and so on. 
 
ARM: Restarting a DB2 UDB for z/OS data sharing group member after it fails is important, as this 
will help free up any locks it holds as soon as possible and thereby minimize impact of the failure on 
other members of the DB2 data sharing group. The z/OS Automatic Restart Manager (ARM) helps 
ensure this restart process is carried out quickly and efficiently, based on a user-defined policy.  
 
SFM:   z/OS Sysplex Failure Management (SFM) allows you to optionally define a sysplex-wide 
policy that specifies actions z/OS is to take when certain failures occur in the sysplex. The goals of 
failure management in a sysplex are to minimize the impact that a failing system might have on the 
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sysplex workload, so that work can continue with little or no operator intervention. One of several 
functions it can perform is to detect and isolate a system that has failed or is no longer responsive 
(that is, a “hung” system), remove it cleanly from the sysplex, and free up resources while ensuring 
that data integrity in the sysplex is preserved. This can be done either entirely automatically without 
any human intervention, or by prompting an operator for their go-ahead before proceeding.  
 
Flow: The DRDA (Distributed Relational Database Architecture) protocol used by JDBC T4 provides 
an initial contact port and a resync port. For this architecture, JDBC T4’s initial contact port (DB2 port 
446) is bound to the group DVIPA. To address the case where a DB2 member terminates and is 
restarted on another image (possibly alongside another DB2 member), each DB2 member configures 
its restart address with a resync port number unique to that member. Each member’s resync port 
needs to be reachable through a specific IP address to ensure correct resynchronization after a 
failure, so it is bound to a member-specific DVIPA. 
 
After an initial connection is established, JDBC T4 can perform its own load balancing for subsequent 
work among the available DB2 data sharing group members. This is accomplished by the DB2 
member sending back a list of IP addresses, one for each DB2 member in the data sharing group. 
Because the initial contact listening socket is listening on a group DVIPA, each DB2 member opens 
an additional listening socket on the same port as the group listening socket (446), but is bound to its 
member-specific DVIPA. It’s these DVIPA addresses that are sent back to the JDBC T4 client. JDBC 
T4 then balances across these member-specific DVIPAs, based upon information provided to it 
through WLM.  
 
To summarize, the connection flow goes as follows: 
 
1. JDBC T4 running within a WebSphere Application Server contacts the group DVIPA to make an 

initial connection. This connection request may travel over any of several physical network 
adapters owned by the TCP/IP stack to which the Distributed DVIPA is associated.  
 

2. Sysplex Distributor fields the request. It consults with WLM and Service Policy Agent to decide 
which DB2 data sharing group member to send that connection request to, then sends it to the 
group member that has the most available capacity (per WLM goals, and so on.) to handle this 
first request.  

 
3. The receiving DB2 member handles the request and responds back to JDBC T4 directly. Also 

included in its response is a list of member-specific DVIPAs, one for each DB2 member in the 
sysplex, and WLM recommendations on where to send the next request. 
After this point, sysplex distributor is no longer involved. 
 

4. JDBC T4 performs its own load balancing across the member-specific DVIPAs, based on WLM 
data it receives from the DB2 data sharing group members. It frequently receives updates on the 
status of members of the DB2 data sharing group that it can use to make load balancing 
decisions. Because connection concentrator is being used, each routing decision is made on a 
transaction basis, rather than a connection basis.  Because DVIPAs are used, connections to any 
given DB2 member can travel on any of several network adapters owned by the TCP/IP stack with 
which the DVIPA is associated. 

 
5. If a DB2 data sharing group member (or its host TCP/IP stack or z/OS) fails, WLM will be aware of 

it, so JDBC T4 will be notified and will route new transactions to surviving DB2 members who all 
share concurrent read/write access to the same data as the failed member (by virtue of their 
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participation in the Parallel Sysplex data sharing group).  
 
Based on user-defined policy, z/OS ARM may restart the failed DB2 member in place or on 
another z/OS system in the sysplex. Because each DB2 member has its own unique resync port, 
the DB2 member can even be restarted on a z/OS image in which another DB2 member is 
already active. When the DB2 member restarts, it will free up any held locks on shared data, its 
member-specific DVIPA will be re-enabled, and it will become accessible as before.  
 
If an entire z/OS system failed or is not responding, then based on user-defined policy, z/OS SFM 
can also perform system isolation to cleanly remove the system from the sysplex.  

 
6. If a network adapter fails, surviving adapters will automatically be used to access the affected 

member-specific or group DVIPAs.  
 
7. If the routing TCP/IP stack that owns the group DVIPA fails, another stack in the sysplex will take 

over ownership for the group DVIPA and become the new routing stack.  
Any in-flight inbound TCP data lost with the failing routing stack will be retransmitted by the 
individual client TCP stacks, and aside from a momentary pause for retransmission, clients and 
surviving servers continue without connection outage. 

Product Versions 
This architecture requires the following software versions: 
• JDBC type 4 driver level 2.7 or above is required to get the sysplex workload balancing and 

connection concentrator functions. This ships with DB2 V8.2 FP3, a.k.a. DB2 V8.1 FP10 or above.  
• DB2 Distributed Data Facility for z/OS V6 and V7 support for DVIPA and Dynamic DVIPA is 

provided through APAR PQ46659. 
• Base Dynamic VIPA support is available with OS/390 V2R8 and higher. 
• Base Sysplex Distributor support is available with OS/390 V2R10 and higher. Support for 

integration of Sysplex Distributor with Cisco MNLB function (not shown in this architecture) is 
available with z/OS V1R2 and higher. Fast connection reset support is available with z/OS V1R2 
and higher. 

Planned Outages 
This section discusses how each of the components can be taken down for software upgrades or any 
other planned outage. 
Planned Outages 
Component Procedure 
Load Balancer Same as in previous architecture. 
HTTP Server Same as in previous architecture. 
WebSphere Application 
Server 

Same as in previous architecture. 

DB2 z/OS 1. Stop the DB2 z/OS data sharing group member you wish to 
upgrade or service. It will quiesce current work and notify the 
remaining DB2 group members and WLM that it is no longer 
available to process new requests. JDBC Type 4 driver and Sysplex 
Distributor will be told to route new requests to the surviving DB2 
group members 

2. Perform whatever maintenance is desired on the DB2 member. 
3. Restart the DB2 member. Sysplex distributor and the JDBC Type 4 
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driver will be notified that the DB2 member is available and will 
begin routing work to it. 

4. Repeat with remaining DB2 z/OS data sharing group members, one 
at a time.    

Sysplex Distributor When the TCP/IP routing stack is brought down, its backup will 
takeover. The takeover occurs non-disruptively, and when the stack is 
restarted it automatically reclaims status as the routing stack.  

What we Learned in Testing 
When this architecture was set up and tested for planned and unplanned outages we learned the 
following: 
• Did the software failover as expected? Yes. 
• Did users experience any outage time or transactions that they needed to retry?  No 
• Did users experience any permanent data loss?  No 
• How long did the failover take? (How long did users experience outages): Instantaneous. Users 

do not perceive an outage. 
Details: 
• Stopping one of the members of the datasharing group, did not impact the performance of the 

workload coming to WebSphere. The workload continued to run at the same pace without any 
transactions ending in error or timing out. We see the following message in the WebSphere 
SystemOut.log:  
A connection failed but has been re-established. The hostname or IP 
address is "J90VIPA.pdl.pok.ibm.com" and the service name or port 
number is 446 . Special registers may or may not be re-attempted. 
This indicates that WebSphere recognized the failed connection and was able to re-establish a 
connection to a surviving member of the datasharing group, through the JDBC type 4 driver. 

• After re-starting the failed datasharing group member, it started accepting work again, without 
any interruption to WebSphere. 

• Refer to the “System z Platform Test Report for z/OS and Linux Virtual Servers” for details on 
how to setup the JDBC type 4 driver for Sysplex awareness.  

• There are some configuration errors that can make the Sysplex datasharing failover not work, 
or perform poorly. Please refer to the “System z Platform Test Report for z/OS and Linux 
Virtual Servers” for details. 

Architectural Decisions 
DB2 Connect EE vs. JDBC Type 4. Rather than using the JDBC Type 4 driver to contact DB2 UDB 
for z/OS in the Parallel Sypslex directly, each WebSphere server could be configured to have its 
JDBC driver (type 2 or type 4) go through DB2 Connect EE. A common, intermediate DB2 Connect 
EE server running in its own Linux guest image under z/VM could be configured. DB2 Connect would 
be used to communicate with the DB2 UDB for z/OS data sharing group members, utilizing 
capabilities similar to JDBC T4 for the sysplex workload balancing and the connection concentrator 
functions.   
 
A backup could be configured for the DB2 Connect EE server. Failover could be configured for the 
DB2 Connect server, such that if the TCP/IP connection to the DB2 Connect server is lost, the client 
would automatically attempt to reestablish the connection. The client would first attempt to reestablish 
the connection to the original server. If the connection is not reestablished, the client would fail-over 
to an alternate DB2 Connect server (note that this client-level reroute to alternate DB2 Connect 
servers is not supported for two-phase commit (XA) workload from WebSphere. XA workload requires 
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that the failed DB2 Connect server be restarted because transaction status information is stored 
within the DB2 Connect SPM log).  
 
However, with the recent introduction of the sysplex workload balancing and connection concentrator 
functions in JDBC T4, it becomes the preferred means for driving traffic from WebSphere on Linux to 
DB2 in a Parallel Sysplex. Removing DB2 Connect from the picture in favor of JDBC T4 eliminates 
another potential point of failure, reduces administrative burden, and will improve performance for 
average workloads. Note that while JDBC T4 removes the need for DB2 Connect to be installed, a 
DB2 Connect EE license is still required in order to enable JDBC T4 to work directly with DB2 UDB 
for z/OS. 
 
DNS/WLM vs. Sysplex Distributor.  DNS/WLM solves the same problem as Sysplex Distributor – 
distributing workload across the sysplex by distributing client connections among active server 
instances.  With the DNS/WLM approach, intelligent sysplex distribution of connections is provided 
through cooperation between WLM and DNS (Domain Name Service). For customers who elect to 
place a name server in a z/OS sysplex, the name server can use WLM to determine the best system 
to service a given client request.  
 
In general, DNS/WLM relies on the hostname to IP address resolution for the mechanism by which to 
distribute load among target servers. As a result, the single system image provided by DNS/WLM is 
that of a specific hostname. Note that the system most suitable to receive an incoming client 
connection is determined only at connection setup time. After the connection is made, the system 
being used cannot be changed without restarting the connection. This solution is only available with 
the BIND 4.9.3 name server and not with the BIND 9 name server. DNS/WLM works for both TCP 
and UDP; Sysplex Distributor works only for TCP.  Note also that many clients and intermediate 
DNSs cache IP addresses, so the client might continue to try to reconnect to an IP address that is 
unavailable until the owning and supporting TCP/IP stack is restarted, thus interfering with the 
availability provided by this approach. 
 
Sysplex Distributor is IBM’s strategic solution for connection workload balancing in a sysplex, so it 
was chosen over the DNS/WLM approach for this architecture. 
 
Inclusion of Sysplex Distributor: In this architecture, Sysplex Distributor is only used for the initial 
contact between DB2 Connect EE and DB2 z/OS. After that contact, it steps out of the picture and 
allows those two entities to communicate directly. You can choose to not implement Sysplex 
Distributor. In this case, the choice of the initial DB2 z/OS DVIPA to be contacted could be predefined 
to JDBC T4. This approach would work, but requires that initial DB2 z/OS to be active in the Parallel 
Sysplex during initialization of the workload. Alternatively, some other workload routing technology 
(such as Cisco’s Multinode Balancer) could be used instead of Sysplex Distributor to make the initial 
routing decision.  
 
DB2 Connection Pooling vs. DB2 Connect Connection Concentrator: You could choose to use 
ordinary DB2 connection pooling rather than connection concentrator. But connection pooling has a 
drawback when used in conjunction with Parallel Sysplex. With Parallel Sysplex awareness activated 
in JDBC T4, JDBC T4 processes information about the availability of the members in a DB2 data 
sharing group only on the creation of a new connection to DB2 z/OS. With connection pooling also 
activated, there is a chance that connections would remain with a particular member of the data 
sharing group even if that member had problems. JDBC T4 would also not use WLM information to 
determine which of its pooled connections would be the best connection to be reused for a new 
request. 
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Connection concentrator builds on the features of connection pooling, preserving and enhancing 
connection pooling’s performance benefits while eliminating the above weaknesses.  Therefore, it 
was chosen for this architecture. Note however that applications that do not release resources, such 
as CURSOR WITH HOLD, TEMP TABLES, or bound with KEEPDYNAMIC(YES), do not release the 
physical connection. 

Key restrictions or problem areas 
There is no means of telling JDBC T4 to give preference for routing work to DB2 members located on 
the same physical System z server that are reachable over high speed hipersocket connections. 
JDBC T4’s workload balancing decision is focused on the ability of the DB2 data sharing group 
members on z/OS to process the work, with no consideration being given to how long it will take to 
transport  the request/response data between Linux and z/OS. As a result, work may be frequently 
sent to a DB2 data sharing group member on a different physical System z server, in which case an 
OSA connection, rather than a lower-latency Hipersockets connection, will be used for 
communication. 

Solution estimating guidelines 
Use the “WebSphere on Linux on System z Sizing” process to estimate the number of IFLs required 
for HTTP and WebSphere. Use the “Size390” process for sizing the number of standard CPUs 
required for DB2 z/OS.  

Chapter 7: Reference Architecture: WebSphere with DB2 database on z/OS, in 
separate cities. (GDPS® /PPRC Multiplatform Resiliency for System z with HyperSwap™ 
Manager) 

Scenario Being Solved 
You have a key Web-connected, WebSphere application that runs in Linux on System z. The primary 
database for this application is DB2 for z/OS deployed in a data sharing group running in a Parallel 
Sysplex on IBM System z9 or System z CPUs.  
 
The deployment aims not only to provide near-continuous availability by protecting from the failure of 
any one component, it also aims to protect, and to recover from, a Site 1 failure in which the 
applications and the production data are lost. In this architecture the appliances, the WAS application, 
zVM, DB2 and z/OS components are spread across two active sites that share the processing of the 
application’s work. System A is in site 1. System B is in site 2. The primary production data runs in 
Site 1 and is mirrored to the secondary disks in site 2.  If there is a Site 1 failure, processing will 
continue at Site 2 using the mirrored copy of the data.  After the disaster, after Site 1 is restored, 
automation will restart the software, resync the primary and secondary databases, and switch 
network and data access to the original configuration in Site 1. Automation will also restore Site 2 to 
the original configuration.    
  
From a software perspective, the front end, WAS, Linux for System z and zVM software deployments 
are described in Chapter 4 and the DB2 deployment is described in Chapter 6. Added to the picture 
are the components of the  GDPS® /PPRC Multiplatform Resiliency for System z with Hyper Swap™ 
offering that provide the monitoring, operating system and application restarts, and the data mirroring 
and switching technologies required in the event of a site failure or planned downtime and recovery. 
 



 

High Availability Architectures for Linux on IBM System z   38 

The key elements that this architecture adds to the architecture in Chapter 6 are the following:  
   
• Two data centers that are: 

o far enough apart to not be influenced by a single disaster 
o within 100 km to allow for synchronous data replication by way of two diverse fiber routes 

• Production workloads configured to run at both sites with no primary or backup site. 
• Primary database storage ESS/DS replicated to the second site using synchronous PPRC, 

maintaining data consistency between the primary and secondary devices on the two sites.  
• HyperSwap function the in operating systems that enables the surviving z/OS and ZVM systems 

to switch to the secondary disks. The switchover is transparent so that the applications do not 
need to be quiesced.  Note that for z/OS the switchover comes from a dynamic re-direction of I/O 
(UCB) pointers. For z/VM the HyperSwap function allows the dynamic swapping of virtual devices 
associated with one real disk to another real disk.   

• Network connectivity and routing capability at both sites. 
• GDPS 3.1 Control System software running at both sites to monitor systems and control failover 

and fallback of the network, systems and data. 
• IBM Tivoli System Automation Mulitplatform (SA MP) running in Linux for zSeries and on z/VM. 

This monitors the functioning of the Linux, front end and WAS applications and can restart them, 
either in place or on another system in the same or different site. 

• Required IGS Services (These ensure that the original setup is efficiently and accurately done and 
that the client staff is properly trained to become self-sufficient. It also leads to long term costs 
efficiencies, including the fact that GDPS warranty costs are less than standard.) 

Architecture Principles  
This architecture is designed to follow these principles: 
• Any failures in the servers that make up this architecture will not be noticeable to the user. The 

current transaction may fail, but subsequent transactions succeed. After any single failure, 
transactions may continue at the same rate with only a brief, or possibly no, degradation in 
throughput or response time. 

• The architecture must be rapidly scalable to support increases and decreases in business volume. 
• No single point of failure  

o Hardware: There should be no component within a site that would result in loss of end user 
function if it failed. There are exceptions, however. Where components are “hardened” from 
an availability point of view (usually by having internal redundancy like dual power supplies 
and so on), then a single component is allowed. 

o Facilities: There should be two geographically distant sites. 
o Software: There should be fallback application server(s) with enough capacity to carry on 

the essential work in the event of a site failure. This requires geographically dispersed 
operating systems, appliances, applications, and database environments. 

• Data Management with data integrity  
o Data mirroring between sites is required. 
o Data mirroring and site switchover should both be performed at the lowest level (hardware) 

for speed, accuracy, and independence of any application.   
o Data consistency is required for fast workload restart. 
o Data mirroring freeze is required to prevent rolling database corruption. 

• Automation  
o End-to end automation is required. Humans cannot be guaranteed to provide adequate 

monitoring and response, especially in times of disaster.  
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Reference Architecture 

 

GDPS® /PPRC Multiplatform Resiliency for System z with HyperSwap™ Set up 
The normal running configuration of GDPS /PPRC Multiplatform Resiliency for System z with 
HyperSwap when there is no disaster is: 
• A GDPS/PPRC V3 system is running GDPS automation based upon Tivoli NetView and System 

Automation or z/OS at both sites. The primary Controlling System (K1) is running in Site 2:   
o Monitors the Parallel Sysplex cluster, coupling facilities, and storage subsystems and 

maintains GDPS status 
o Invokes HyperSwap  
o Invokes  network switching, based on user-defined automation scripts           

• System Automation Multiplatform (SA MP) proxy servers run  in each VM partition and SA MP 
agents run in each Linux software component (firewall, load balancer, HTTP server, WAS Server). 
These provide GDPS automation with awareness of the state of the software running in the Linux 
guests and work with GDPS to restart them during the recovery phase. 

• All of the operating systems must run on System z servers that are connected to the same 
Hardware Management Console (HMC) Local Area Network (LAN) as the Parallel Sysplex cluster 
images.  

• All critical data resides on storage subsystem(s) in site 1 (the primary copy of data) and is 
mirrored to site 2 (the secondary copy of data) through PPRC synchronous remote copy. 

• Site 1 system has connectivity to secondary disks  
• Parallel Sysplex with DB2 production data-sharing systems is running in both sites 1 and 2. 
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Flow of requests through this architecture 

Site1 Failure  
If there is a failure at Site 1, the GDPS K1 System in site2 (using Sysplex communications) detects 
this and automates the failover process: 
1. Invoke HyperSwap to switch the surviving z/OS and z/VM systems at the secondary site to use 

the secondary disks which contain the mirrored data.  
2. Switch network connectivity to the Site 2 router, based on customer-provided scripts. 
3. Take steps to ensure that 100% of the incoming workload can be handled by Site 2. Use one or all 

of the following options: 
• Stop expendable work in Site 2 LPARS to accommodate the primary site workloads. 
Or   
• Invoke On/OFF Capacity Backup (O/O CBU) to increase the number of IFLs available to the 

VM LPAR and the number of CPUs available to the z/OS partition.  
 

Note, as discussed in the section, Alternatives Considered, below, IFLs, CPUs  and memory 
cannot be shared between the servers, so if it is required that failover take place immediately and 
without any interruption to the users, then each server at both sites must have sufficient IFLs, 
CPUs and memory to run 100% of the workload should the other server fail. This means that each 
server would run its production workload at less than 50% utilization. Software costs increase 
because of this. 
 
The software costs can be reduced by using O/O CBU to duplicate CPUs and IFLs online at the 
secondary site, should the primary site fail. However, it means that for the first few minutes after a 
failure, only 50% of the needed IFLs and CPUs are available to handle 100% of the workload. It 
will take approximately 5 minutes to bring the new IFLs online to z/VM. This solution gives lower 
cost as long as reduced performance can be tolerated until the capacity upgrade CPUs are 
brought online.  
 

4. DB2 non-disruptively continues processing on z/OS 2A in Site 2. 
 
Site 1 Recovery: After the site and the System z CPUs are restored:   
 
1. Site 1 systems (z/OS, z/VM, Linux, WAS, and WAS applications) are restarted as needed. 
2. DB2 synchronizes data between Site 2 and Site 1 disks. 
 

Note that the time for this can take anywhere from hours to days, depending upon the amount of     
data changed. GPDS/PPRC with HyperSwap v3.2 adds exploitation for Metro Mirror 
Failover/Fallback which essentially tracks all changes made to the data on the secondary disks so 
that when falling back only the changed data needs to be copied. This greatly reduces the fallback 
time.  

  
3. GDPS restart of z/OS and workloads (DB2, Sysplex Distributor)), and zVM and Linux Guests. 

Stop unneeded systems in Site 2.    
4. SA MP restart of Linux Guest workloads. Stop unneeded workloads in Site 2.    
5. HyperSwap z/OS and z/VM (and Linux) switch connectivity to primary disks. 
6. Switch network connectivity, if needed, based on customer-provided scripts.  
7. Release On/Off Capacity Backup    
8. DB2 non-disruptively continues processing using the restarted Site 1 resources.  
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Product Versions 
This architecture requires the following software versions: 
• z/OS currently supported releases 
• DB2  currently supported releases 
• GDPS V3.2 or higher, or V3.1 with enabling APAR for GDPS/PPRC Multiplatform Resiliency for 

System z 
• z/VM v5.1 with the HyperSwap function  
• Tivoli NetView for z/OS V5.5 or higher  
• Tivoli System Automation for z/OS V2.2 or higher   
• Tivoli System Automation for Multiplatforms R2 

o Fixpack (1.2.0-ITSAMP-FP02) for IBM Tivoli System Automation for Multiplatforms 
• Linux For System z  

o SuSE SLES 8 refresh (4/2004 or newer)  

Planned Outages 
This section discusses how each of the components can be taken down for software upgrades or any 
other planned outage. 
Planned Outages 
Component Procedure 
Load Balancer Same as in previous architecture. 
HTTP Server Same as in previous architecture. 
WebSphere 
Application Server 

Same as in previous architecture. 

DB2 z/OS Same as in previous architecture 
Sysplex Distributor Same as in previous architecture   
GDPS Control 
System 

Invoked by operator commands. 

Disk Subsystems The planned HyperSwap Function provides the 
ability to transparently switch all primary disk 
subsystems with the secondary subsystems for 
planned reconfigurations. This enables planned 
site maintenance without requiring any 
applications to be quiesced.  

What we Learned in Testing 
The GDPS/PPRC Multiplatform Resiliency for System z with HyperSwap Manager has been tested at 
the Linux and z/OS operating system level and the failover and fallback is shown to perform as 
described.  The WAS and other linux-based applications described in the preceding scenarios have 
not been specifically tested with GDPS/PPRC Multiplatform Resiliency for z with HyperSwap 
Manager, but their failover and fallback should not be impacted by this automated, cross site 
scenario.  HyperSwap from primary to secondary disks occurs at the VM operating system level is 
transparent to the applications.  
 
IBM recommends that the failover and fallback of all applications deployed in a GDPS/PPRC 
HyperSwap Manager environment be verified by testing on a regular basis.  
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Architectural Decisions 
The key Architectural components selected to achieve the goal of cross-site disaster recovery are the 
GDPS control system, PPRC (Metro Mirror), and HyperSwap. 
 
GDPS Control System  
Geographically Dispersed Parallel Sysplex (GDPS) is an automated operations solution that runs in 
z/OS (the LPAR is often referred to as the K system, or Control System.) It must maintain its viability 
and thus, IBM recommends that it always run in its own z/OS LPAR in the Parallel Sysplex.   
Using Tivoli System Automation for z/OS and its own local disks, GDPS  can monitor planned and 
unplanned exception conditions and manage a controlled site switch for outages of z/OS and Parallel 
Sysplex, z/VM®,  Linux for System z (as a guest under zVM) , and VSE/ESA™ systems and the 
applications that run in them.   
In this scenario, GDPS/PPRC with Muliplatform Resiliency for System z will manage the HyperSwap 
to the secondary disks in Site 2, the optional activation of resources in Site 2 to provide equivalent 
capability as the lost Site 1, and the recovery of work in to Site 1, after the facilities and CPU systems 
have been restored.   
GDPS includes standard actions to: 
• Stop: quiesce a system's workload and remove the system from the Parallel Sysplex cluster (stop 

the system prior to a change window)  
• Start : IPL a system (start the system after a change window)  
• Recycle: quiesce a system's workload, remove the system from the Parallel Sysplex cluster, and 

re-IPL the system (recycle a system to pick up software maintenance) 
• Manage Parallel Sysplex Coupling Facility Structures  
The standard actions can be initiated against a single system or a group of systems. Additionally, 
user-defined actions are supported (for example, planned site switch in which the workload is 
switched from processors in site 1 to processors in site 2).  
 
GDPS unplanned reconfiguration support not only automates procedures to handle site failures, but 
will also minimize the impact and potentially mask a z/OS system or processor failure based upon 
GDPS policy:  
• If a z/OS image fails, the failed system will automatically be removed from the Parallel Sysplex 

cluster and the workload restarted on the second system in the sysplex. (See the illustration 
above. If z/OS: 1A fails, its work can be restarted on Z/OS: 2A. ) 

• If the hardware fails (zSeries 1 SITE1, for example), the z/OS image will be started up (IPLed) (on 
zSeries 2 SITE2) at the second site, and its workload restarted.  

  
PPRC (also known as Metro Mirror) 
Peer-to-Peer Remote Copy (PPRC) manages the ongoing synchronous remote data copy, freeze, 
and Flashcopy functions that make it possible to switch sites with no data loss, and full data integrity 
across multiple volumes and storage subsystems.  
 
HyperSwap 
HyperSwap™ function provides for a site switch of disk subsystems that eliminates the need for an 
IPL at the recovery site. In this architecture it substitutes PPRC secondary for the primary device and 
is controlled by GDPS automation.  The GDPS/PPRC HyperSwap architecture can manage very 
small to very large DASD environments. For example, the HyperSwap component can manage an 
unplanned disk reconfiguration for 6,545 volume pairs (19.6 terabytes) in 15 seconds.  
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Note that Microcode-related disk failures are among the most common causes for system outages. 
GDPS/PPRC HyperSwap addresses this in a scenario where all of the production is in Site 1 with 
disk mirroring to Site 2. Any disk failure in Site 1 will trigger a swap to a secondary disk in Site 2 and 
the Site 1 systems will continue to run. If all of Site 1 is gone, PPRC freeze will be invoked and the 
environment can continue to run in Site 2. 
 

Alternatives Considered: Active - Passive deployment  
Because IFLS and memory cannot be shared across System z systems and sites, each server must 
have sufficient IFLs and memory to run the workload if the other server fails. This can be costly to 
configure. 
 
A potentially less expensive architecture that provides near continuous availability is depicted in the 
following diagram. 
  
It assumes an “active-passive” model with production application servers at the primary site (Site 1) 
and standby server capability in the parallel sysplex at the secondary site (Site 2). Starting the 
standby servers on Site 2 lengthens the recovery time by the amount of time required to start the 
standby operating systems and applications. While a standby configuration lengthens application 
server recovery time, this design can take advantage of the System z Capacity Upgrade on Demand 
feature (bringing additional CPUs online at the secondary site only if needed), saving hardware and 
associated software costs.  
 
Note that both architectures require the same primary and secondary disk configurations at the two 
sites and employ PPRC and HyperSwap as described above.  They both require a K1 system running 
at the second site. 
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Key restrictions or problem areas 
• IGS Services for Installation are required to ensure the proper set up and education of customer 

personnel. GDPS cannot be purchased independently. 
• Achieving 100 km distance between sites requires a Sysplex Timer extender to be positioned at a 

third site between the two. Otherwise the Sysplex Timer allows for a 40 km separation. 
• Site 1 Recovery:  DB2 Coupling Facility Data Considerations:  
 

In a GDPS/PPRC environment, when coupling facility structures, such as those for DB2 Group 
Buffer Pools, are configured for duplexing across two coupling facilities (usually to avoid SPoFs or 
to provide structure recovery) and a primary site failure occurs, GDPS cannot ensure that the 
contents of the coupling facility structure are time-consistent with the data on DASD. 
 
For site 1 application restart and recovery processing GDPS must discard all coupling facility 
structures at the secondary site during the process of restarting the workload. The result is a loss 
of changed data in coupling facility structures. 
 
You must execute potentially very lengthy and highly variable DB2 data recovery procedures to 
restore this lost data. The length of time depends mainly on the number of objects that must be 
recovered, and the amount of logs that must be processed. IBM testing and customer experiences 
indicate that the recovery time is anywhere from a minute or less (10-30 objects and small amount 
of log) to two hours (thousands of objects and many logs). 
 

• Synchronous Data Mirroring Performance Overhead 
 

Some transaction processing systems may not tolerate the amount of transaction processing 
overhead caused by PPRC data mirroring. Tests show that, for the DS8000 storage systems, over 
fiber channels, response time is 0.4 microseconds with an additional 10 microseconds for each 
km distance that the disk is from the host server. For example, if the host system is 5 km from the 
disk, response time increases by 50 microseconds (0.050 milliseconds)  
 

• This two site architecture can require data encryption not required when a solution is deployed on 
a single System z server. 

            

Solution estimating guidelines 
Use the “WebSphere on Linux on System z Sizing” process to estimate the number of IFLs required 
for HTTP and WebSphere. Use the “Size390” process for sizing the number of standard CPUs 
required for DB2 z/OS.  
 
1. Client View: The time and resources required to implement this Continuous Availability Reference 

Architecture depend upon the client’s starting point. Typically, clients spend from 6 to 12 months 
depending upon the end of the spectrum from which they are starting.  The order of implantation 
typically follows: 

a. Provision a second site 
b. Implement PPRC 
c. Implement a multi-site sysplex 
d. Implement GDPS  

 
Critical skills required are for Parallel Sysplex, automation and remote copy. 
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