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Agenda

• How the boot process is supposed to work

• What things can go wrong

• How you can get things running quickly

• How to fix things so the next IPL will work

• How to prevent similar issues in the first place

• Questions

• I will take questions during the presentation, unless time 
gets short.



How the boot process is supposed to work
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How the boot process is supposed to 
work

• Hardware (or z/VM) reads the bootstrap record from disk

• The bootstrap record has entries in it pointing to
‒ The kernel plus the kernel parameters

‒ The initial ram disk (initrd)

• The kernel is read into memory and control is passed to 
its entry point
‒ Soon, like other architectures, it will be compressed on disk, so 

the kernel will decompress itself first.

• The kernel parameters are passed to the kernel by the 
boot loader.  They get stuffed into a pre-determined 
address within the kernel itself.
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How the boot process is supposed to 
work (2)

• The kernel goes through it's initialization process, which 
includes parsing the kernel parameters
‒ Parameters the kernel doesn't recognize as being for itself are 

ignored.  All are put in /proc/cmdline.

• The initrd is read in, decompressed and unpacked

• The file system from the initrd is mounted as the 
(temporary) root file system

• The kernel finds the userspace program in the initrd to 
handle the rest of the boot process
‒ By default this is “init” but kernel parameters can specify 

something else, e.g., /bin/bash
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How the boot process is supposed to 
work (3)

• The init program begins execution.  In SLES, this is a 
bash script.

• The init program does all sorts of things. The ones we're 
interested here are:
‒ Parsing parameters of interest in /proc/cmdline

> Some of these are for kernel modules to be loaded, others are not directly related 
to the kernel or its modules.

‒ Loading kernel modules for various hardware with appropriate 
parms

‒ Finding and mounting the permanent root file system

‒ Starting execution of the “real” init program



What things can go wrong
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Ooh, where do we start?

• The boot loader can't find both the kernel and the initrd

• When the kernel tries to uncompress and mount the 
initrd, it's not valid

• The initrd doesn't contain all the kernel modules you 
need to activate all your DASD and your NIC

• Your root file system is on an LVM logical volume, but 
the initrd doesn't have that support built in

• Your root file system is not on an LVM logical volume, 
but the initrd does have that support built in

What could possibly go wrong?
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What could possibly go wrong? (2)

• The scripts in the initrd don't activate all the DASD 
volumes you need

• Your root file system is on a network server, but the initrd 
can't initialize your NIC

• You've edited /etc/fstab and now there's a typo in it

• You don't remember the root password

• You get a message that the init program can't be found

• None of your kernel modules can be found

• You've told the kernel to ignore the address of the 
console.



How you can get things running quickly
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We're Baaaaack

• If you're going to edit a file, make a backup first.
‒ If you don't like that idea, you're going to hate learning ed or sed

• Have a small “rescue system” available that you can use 
to access the DASD or SCSI devices of a system with 
problems.

• Use the kernel and initrd from the installation media to 
boot from the z/VM card reader, or the HMC in the case 
of an LPAR.
‒ Activate the DASD needed for the root file system and mount it

‒ for fs in dev sys proc; do mount –bind /$fs /mnt/$fs; done

‒ mount –bind /proc/mounts /mnt/etc/mtab

‒ chroot /mnt



12 Copyright 2011 by SUSE

• Understand at what point in the boot process various 
resources get activated
‒ E.g., Network interface initialization happens after the initrd is 

replaced by the real root file system

‒ DASD or SCSI device(s) needed by the root file system are 
brought online in the initrd

• Know how to dynamically activate and bring online
‒ DASD

‒ LVM volume groups and logical volumes

‒ QETH devices (NICs for the most part, but can be FCP adapters)

‒ SAN WWPNs and LUNs



13 Copyright 2011 by SUSE

• Set up the Terminal Server guest, and configure all the 
“target” systems to be able to receive those connections.
‒ Requires a current enough SLES10 or SLES11 SP1 system

‒ Keep in mind that if your root file system can't get mounted, the 
target system won't be able to receive connections because the 
code for that lives in the root file system.
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How I normally set up my file systems

# df -h

Filesystem            Size  Used Avail Use% Mounted

/dev/dasda1           388M  246M  123M  67% /

/dev/mapper/vg1-home   97M  4.2M   88M   5% /home

/dev/mapper/vg1-opt    74M  4.1M   66M   6% /opt

/dev/mapper/vg1-tmp   291M   43M  234M  16% /tmp

/dev/mapper/vg1-usr   2.6G  1.8G  678M  73% /usr

/dev/mapper/vg1-var   392M  298M   78M  80% /var
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• The mkinitrd is supposed to figure out what device type 
the root file system is on (including network-based), and 
include the necessary pieces for that in the initrd.
‒ Sometimes there are bugs that prevent this from working right.

•  On my SLES11 SP1 system, the only kernel modules 
that in the initrd are:
dasd_eckd_mod.ko
dasd_mod.ko
ext3.ko
jbd.ko
mbcache.ko



16 Copyright 2011 by SUSE

Commands available in the initrd

bin:

awk    echo         ln      mv           sleep   usleep

bash   grep         logger  rm           test    warpclock

cat    ipconfig     ls      run-init     touch

chmod  ipconfig.sh  mkdir   sed          true

cp     kill         mknod   sh           umount

date   linuxrc      mount   showconsole  uname

sbin:

blogd           fsck       insmod    reboot       udevd

dasd_configure  fsck.ext3  killall5  resume

dasdinfo        halt       modprobe  showconsole

dasdview        ifup       pidof     udevadm
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boot:

01-devfunctions.sh      82-resume.kernel.sh

02-start.sh             83-mount.sh

03-storage.sh           84-remount.sh

04-udev.sh              91-createfb.sh

05-blogd.sh             91-killblogd.sh

05-clock.sh             91-killudev.sh

11-block.sh             91-shell.sh

11-dasd.sh              92-killblogd2.sh

21-devinit_done.sh      93-boot.sh

81-resume.userspace.sh



How to fix things so the next IPL will work
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• Use YaST to define the resource, or

• Use the command line functions provided
‒ dasd_configure

‒ qeth_configure

‒ zfcp_host_configure

‒ zfcp_disk_configure

• Either way, the proper udev rules will be written into 
the /etc/udev/rules.d/ files.

• If in doubt, re-run mkinitrd and zipl.
‒ Check to make sure the modules necessary to get the root file 

system mounted are included.



How to prevent similar issues in the first 
place
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Prevention, Worth a Pound ...

• Use YaST
‒ Yeah, I know, that can be a pain at times.  But it usually causes 

fewer problems than humans.
> It's also partly why a lot of YaST functions can be called from scripts.

• After updating /etc/fstab, do a “mount -a” command and 
look for any errors.

• Really know and understand what is in your initrd, and 
what is supposed to be there.
‒ Unpack the initrd into a temporary directory and poke around

mkdir tempdir
cd tempdir
zcat /boot/initrd | cpio -ivmd
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Prevention (2)

• Understand that what goes into the initrd is only those 
things needed to get the root file system mounted.
‒ Anything beyond that is unnecessary, and in some cases can 

cause startup failures.

• Don't assume that the way things were done in a prior 
release will be done the same way now.
‒ Read the release notes.  For every service pack.  Yes, I mean it.  

No, I'm not kidding.

‒ zipl.conf updates not needed for DASD adds/deletes

‒ /etc/sysconfig/hardware versus /etc/udev/rules.d
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Questions
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