
Saving Your Bacon
Recovering from common Linux startup failures

Mark Post
Technical Support Engineer IV
mpost@suse.com

2 Copyright 2011 by SUSE

Agenda

• How the boot process is supposed to work

• What things can go wrong

• How you can get things running quickly

• How to fix things so the next IPL will work

• How to prevent similar issues in the first place

• Questions

• I will take questions during the presentation, unless time
gets short.

How the boot process is supposed to work

4 Copyright 2011 by SUSE

How the boot process is supposed to
work

• Hardware (or z/VM) reads the bootstrap record from disk

• The bootstrap record has entries in it pointing to
‒ The kernel plus the kernel parameters

‒ The initial ram disk (initrd)

• The kernel is read into memory and control is passed to
its entry point
‒ Soon, like other architectures, it will be compressed on disk, so

the kernel will decompress itself first.

• The kernel parameters are passed to the kernel by the
boot loader. They get stuffed into a pre-determined
address within the kernel itself.

5 Copyright 2011 by SUSE

How the boot process is supposed to
work (2)

• The kernel goes through it's initialization process, which
includes parsing the kernel parameters
‒ Parameters the kernel doesn't recognize as being for itself are

ignored. All are put in /proc/cmdline.

• The initrd is read in, decompressed and unpacked

• The file system from the initrd is mounted as the
(temporary) root file system

• The kernel finds the userspace program in the initrd to
handle the rest of the boot process
‒ By default this is “init” but kernel parameters can specify

something else, e.g., /bin/bash

6 Copyright 2011 by SUSE

How the boot process is supposed to
work (3)

• The init program begins execution. In SLES, this is a
bash script.

• The init program does all sorts of things. The ones we're
interested here are:
‒ Parsing parameters of interest in /proc/cmdline

> Some of these are for kernel modules to be loaded, others are not directly related
to the kernel or its modules.

‒ Loading kernel modules for various hardware with appropriate
parms

‒ Finding and mounting the permanent root file system

‒ Starting execution of the “real” init program

What things can go wrong

8 Copyright 2011 by SUSE

Ooh, where do we start?

• The boot loader can't find both the kernel and the initrd

• When the kernel tries to uncompress and mount the
initrd, it's not valid

• The initrd doesn't contain all the kernel modules you
need to activate all your DASD and your NIC

• Your root file system is on an LVM logical volume, but
the initrd doesn't have that support built in

• Your root file system is not on an LVM logical volume,
but the initrd does have that support built in

What could possibly go wrong?

9 Copyright 2011 by SUSE

What could possibly go wrong? (2)

• The scripts in the initrd don't activate all the DASD
volumes you need

• Your root file system is on a network server, but the initrd
can't initialize your NIC

• You've edited /etc/fstab and now there's a typo in it

• You don't remember the root password

• You get a message that the init program can't be found

• None of your kernel modules can be found

• You've told the kernel to ignore the address of the
console.

How you can get things running quickly

11 Copyright 2011 by SUSE

We're Baaaaack

• If you're going to edit a file, make a backup first.
‒ If you don't like that idea, you're going to hate learning ed or sed

• Have a small “rescue system” available that you can use
to access the DASD or SCSI devices of a system with
problems.

• Use the kernel and initrd from the installation media to
boot from the z/VM card reader, or the HMC in the case
of an LPAR.
‒ Activate the DASD needed for the root file system and mount it

‒ for fs in dev sys proc; do mount –bind /$fs /mnt/$fs; done

‒ mount –bind /proc/mounts /mnt/etc/mtab

‒ chroot /mnt

12 Copyright 2011 by SUSE

• Understand at what point in the boot process various
resources get activated
‒ E.g., Network interface initialization happens after the initrd is

replaced by the real root file system

‒ DASD or SCSI device(s) needed by the root file system are
brought online in the initrd

• Know how to dynamically activate and bring online
‒ DASD

‒ LVM volume groups and logical volumes

‒ QETH devices (NICs for the most part, but can be FCP adapters)

‒ SAN WWPNs and LUNs

13 Copyright 2011 by SUSE

• Set up the Terminal Server guest, and configure all the
“target” systems to be able to receive those connections.
‒ Requires a current enough SLES10 or SLES11 SP1 system

‒ Keep in mind that if your root file system can't get mounted, the
target system won't be able to receive connections because the
code for that lives in the root file system.

14 Copyright 2011 by SUSE

How I normally set up my file systems

df -h

Filesystem Size Used Avail Use% Mounted

/dev/dasda1 388M 246M 123M 67% /

/dev/mapper/vg1-home 97M 4.2M 88M 5% /home

/dev/mapper/vg1-opt 74M 4.1M 66M 6% /opt

/dev/mapper/vg1-tmp 291M 43M 234M 16% /tmp

/dev/mapper/vg1-usr 2.6G 1.8G 678M 73% /usr

/dev/mapper/vg1-var 392M 298M 78M 80% /var

15 Copyright 2011 by SUSE

• The mkinitrd is supposed to figure out what device type
the root file system is on (including network-based), and
include the necessary pieces for that in the initrd.
‒ Sometimes there are bugs that prevent this from working right.

• On my SLES11 SP1 system, the only kernel modules
that in the initrd are:
dasd_eckd_mod.ko
dasd_mod.ko
ext3.ko
jbd.ko
mbcache.ko

16 Copyright 2011 by SUSE

Commands available in the initrd

bin:

awk echo ln mv sleep usleep

bash grep logger rm test warpclock

cat ipconfig ls run-init touch

chmod ipconfig.sh mkdir sed true

cp kill mknod sh umount

date linuxrc mount showconsole uname

sbin:

blogd fsck insmod reboot udevd

dasd_configure fsck.ext3 killall5 resume

dasdinfo halt modprobe showconsole

dasdview ifup pidof udevadm

17 Copyright 2011 by SUSE

boot:

01-devfunctions.sh 82-resume.kernel.sh

02-start.sh 83-mount.sh

03-storage.sh 84-remount.sh

04-udev.sh 91-createfb.sh

05-blogd.sh 91-killblogd.sh

05-clock.sh 91-killudev.sh

11-block.sh 91-shell.sh

11-dasd.sh 92-killblogd2.sh

21-devinit_done.sh 93-boot.sh

81-resume.userspace.sh

How to fix things so the next IPL will work

19 Copyright 2011 by SUSE

• Use YaST to define the resource, or

• Use the command line functions provided
‒ dasd_configure

‒ qeth_configure

‒ zfcp_host_configure

‒ zfcp_disk_configure

• Either way, the proper udev rules will be written into
the /etc/udev/rules.d/ files.

• If in doubt, re-run mkinitrd and zipl.
‒ Check to make sure the modules necessary to get the root file

system mounted are included.

How to prevent similar issues in the first
place

21 Copyright 2011 by SUSE

Prevention, Worth a Pound ...

• Use YaST
‒ Yeah, I know, that can be a pain at times. But it usually causes

fewer problems than humans.
> It's also partly why a lot of YaST functions can be called from scripts.

• After updating /etc/fstab, do a “mount -a” command and
look for any errors.

• Really know and understand what is in your initrd, and
what is supposed to be there.
‒ Unpack the initrd into a temporary directory and poke around

mkdir tempdir
cd tempdir
zcat /boot/initrd | cpio -ivmd

22 Copyright 2011 by SUSE

Prevention (2)

• Understand that what goes into the initrd is only those
things needed to get the root file system mounted.
‒ Anything beyond that is unnecessary, and in some cases can

cause startup failures.

• Don't assume that the way things were done in a prior
release will be done the same way now.
‒ Read the release notes. For every service pack. Yes, I mean it.

No, I'm not kidding.

‒ zipl.conf updates not needed for DASD adds/deletes

‒ /etc/sysconfig/hardware versus /etc/udev/rules.d

23 Copyright 2011 by SUSE

Questions

Unpublished Work of SUSE. All Rights Reserved.
This work is an unpublished work and contains confidential, proprietary, and trade secret information of SUSE.
Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope
of their assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified,
translated, abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE.
Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer
This document is not to be construed as a promise by any participating company to develop, deliver, or market a
product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making
purchasing decisions. SUSE makes no representations or warranties with respect to the contents of this document,
and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
The development, release, and timing of features or functionality described for SUSE products remains at the sole
discretion of SUSE. Further, SUSE reserves the right to revise this document and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in
this presentation are trademarks or registered trademarks of Novell, Inc. in the United States and other countries. All
third-party trademarks are the property of their respective owners.

Saving Your Bacon
Recovering from common Linux startup failures

Mark Post
Technical Support Engineer IV
mpost@suse.com

 2

2Copyright 2011 by SUSEAgenda•How the boot process is supposed to work•What things can go wrong•How you can get things running quickly•How to fix things so the next IPL will work•How to prevent similar issues in the first place•Questions•I will take questions during the presentation, unless time gets short.

How the boot process is supposed to work

 4

4Copyright 2011 by SUSEHow the boot process is supposed to work•Hardware (or z/VM) reads the bootstrap record from disk•The bootstrap record has entries in it pointing to‒The kernel plus the kernel parameters‒The initial ram disk (initrd)•The kernel is read into memory and control is passed to its entry point‒Soon, like other architectures, it will be compressed on disk, so the kernel will decompress itself first.•The kernel parameters are passed to the kernel by the boot loader. They get stuffed into a pre-determined address within the kernel itself.

 5

5Copyright 2011 by SUSEHow the boot process is supposed to work (2)•The kernel goes through it's initialization process, which includes parsing the kernel parameters‒Parameters the kernel doesn't recognize as being for itself are ignored. All are put in /proc/cmdline.•The initrd is read in, decompressed and unpacked•The file system from the initrd is mounted as the (temporary) root file system•The kernel finds the userspace program in the initrd to handle the rest of the boot process‒By default this is “init” but kernel parameters can specify something else, e.g., /bin/bash

 6

6Copyright 2011 by SUSEHow the boot process is supposed to work (3)•The init program begins execution. In SLES, this is a bash script.•The init program does all sorts of things. The ones we're interested here are:‒Parsing parameters of interest in /proc/cmdline>Some of these are for kernel modules to be loaded, others are not directly related to the kernel or its modules.‒Loading kernel modules for various hardware with appropriate parms‒Finding and mounting the permanent root file system‒Starting execution of the “real” init program

What things can go wrong

 8

8Copyright 2011 by SUSEOoh, where do we start?•The boot loader can't find both the kernel and the initrd•When the kernel tries to uncompress and mount the initrd, it's not valid•The initrd doesn't contain all the kernel modules you need to activate all your DASD and your NIC•Your root file system is on an LVM logical volume, but the initrd doesn't have that support built in•Your root file system is not on an LVM logical volume, but the initrd does have that support built inWhat could possibly go wrong?

 9

9Copyright 2011 by SUSEWhat could possibly go wrong? (2)•The scripts in the initrd don't activate all the DASD volumes you need•Your root file system is on a network server, but the initrd can't initialize your NIC•You've edited /etc/fstab and now there's a typo in it•You don't remember the root password•You get a message that the init program can't be found•None of your kernel modules can be found•You've told the kernel to ignore the address of the console.

How you can get things running quickly

11Copyright 2011 by SUSEWe're Baaaaack•If you're going to edit a file, make a backup first.‒If you don't like that idea, you're going to hate learning ed or sed•Have a small “rescue system” available that you can use to access the DASD or SCSI devices of a system with problems.•Use the kernel and initrd from the installation media to boot from the z/VM card reader, or the HMC in the case of an LPAR.‒Activate the DASD needed for the root file system and mount it‒for fs in dev sys proc; do mount –bind /$fs /mnt/$fs; done‒mount –bind /proc/mounts /mnt/etc/mtab‒chroot /mnt

12Copyright 2011 by SUSE•Understand at what point in the boot process various resources get activated‒E.g., Network interface initialization happens after the initrd is replaced by the real root file system‒DASD or SCSI device(s) needed by the root file system are brought online in the initrd•Know how to dynamically activate and bring online‒DASD‒LVM volume groups and logical volumes‒QETH devices (NICs for the most part, but can be FCP adapters)‒SAN WWPNs and LUNs

13Copyright 2011 by SUSE•Set up the Terminal Server guest, and configure all the “target” systems to be able to receive those connections.‒Requires a current enough SLES10 or SLES11 SP1 system‒Keep in mind that if your root file system can't get mounted, the target system won't be able to receive connections because the code for that lives in the root file system.

14Copyright 2011 by SUSEHow I normally set up my file systems# df -hFilesystem Size Used Avail Use% Mounted/dev/dasda1 388M 246M 123M 67% //dev/mapper/vg1-home 97M 4.2M 88M 5% /home/dev/mapper/vg1-opt 74M 4.1M 66M 6% /opt/dev/mapper/vg1-tmp 291M 43M 234M 16% /tmp/dev/mapper/vg1-usr 2.6G 1.8G 678M 73% /usr/dev/mapper/vg1-var 392M 298M 78M 80% /var

15Copyright 2011 by SUSE•The mkinitrd is supposed to figure out what device type the root file system is on (including network-based), and include the necessary pieces for that in the initrd.‒Sometimes there are bugs that prevent this from working right.• On my SLES11 SP1 system, the only kernel modules that in the initrd are:dasd_eckd_mod.kodasd_mod.koext3.kojbd.kombcache.ko

16Copyright 2011 by SUSECommands available in the initrdbin:awk echo ln mv sleep usleepbash grep logger rm test warpclockcat ipconfig ls run-init touchchmod ipconfig.sh mkdir sed truecp kill mknod sh umountdate linuxrc mount showconsole unamesbin:blogd fsck insmod reboot udevddasd_configure fsck.ext3 killall5 resumedasdinfo halt modprobe showconsoledasdview ifup pidof udevadm

17Copyright 2011 by SUSEboot:01-devfunctions.sh 82-resume.kernel.sh02-start.sh 83-mount.sh03-storage.sh 84-remount.sh04-udev.sh 91-createfb.sh05-blogd.sh 91-killblogd.sh05-clock.sh 91-killudev.sh11-block.sh 91-shell.sh11-dasd.sh 92-killblogd2.sh21-devinit_done.sh 93-boot.sh81-resume.userspace.sh

How to fix things so the next IPL will work

19Copyright 2011 by SUSE•Use YaST to define the resource, or•Use the command line functions provided‒dasd_configure‒qeth_configure‒zfcp_host_configure‒zfcp_disk_configure•Either way, the proper udev rules will be written into the /etc/udev/rules.d/ files.•If in doubt, re-run mkinitrd and zipl.‒Check to make sure the modules necessary to get the root file system mounted are included.

How to prevent similar issues in the first
place

21Copyright 2011 by SUSEPrevention, Worth a Pound ...•Use YaST‒Yeah, I know, that can be a pain at times. But it usually causes fewer problems than humans.>It's also partly why a lot of YaST functions can be called from scripts.•After updating /etc/fstab, do a “mount -a” command and look for any errors.•Really know and understand what is in your initrd, and what is supposed to be there.‒Unpack the initrd into a temporary directory and poke aroundmkdir tempdircd tempdirzcat /boot/initrd | cpio -ivmd

22Copyright 2011 by SUSEPrevention (2)•Understand that what goes into the initrd is only those things needed to get the root file system mounted.‒Anything beyond that is unnecessary, and in some cases can cause startup failures.•Don't assume that the way things were done in a prior release will be done the same way now.‒Read the release notes. For every service pack. Yes, I mean it. No, I'm not kidding.‒zipl.conf updates not needed for DASD adds/deletes‒/etc/sysconfig/hardware versus /etc/udev/rules.d

23Copyright 2011 by SUSEQuestions

Unpublished Work of SUSE. All Rights Reserved.
This work is an unpublished work and contains confidential, proprietary, and trade secret information of SUSE.
Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope
of their assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified,
translated, abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE.
Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer
This document is not to be construed as a promise by any participating company to develop, deliver, or market a
product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making
purchasing decisions. SUSE makes no representations or warranties with respect to the contents of this document,
and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
The development, release, and timing of features or functionality described for SUSE products remains at the sole
discretion of SUSE. Further, SUSE reserves the right to revise this document and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in
this presentation are trademarks or registered trademarks of Novell, Inc. in the United States and other countries. All
third-party trademarks are the property of their respective owners.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

