Seme A couple of new
technologies

Worth getting to know

Topics

 PMQ — Lightweight messaging

 CMIS — A Protocol for interacting with ECM
systems

PMQ

* “No manis anisland”
* Many options

— MQSeries

— RabbitMQ

— ApacheMQ

— OpenMQ
 Many attributes

— %CPU

— Footprint

— Latency

— Configuration (brokers etc.)

PMQ

ZeroMQ

Library of APIs

Modeled on standard TCP/IP semantics
Not a message broker

— But can be used to create one

PMQ

staticsize_t __inline__getData(int sd, char *buffer, size_t size)

{
size_tIMsg =0;
while (IMsg < size) {
IMsg = recv(sd, (buffer+IMsg), (size — IMsg));
}
return(IMsg);

}

size_t msglen;
char *msgData;

getData(sd, (char *) &msglen, sizeof(msgLen));
msgData = malloc(msgLen);

getData(sd, msgData, msglLen);

zmq_msg_t request;

char *msgData;

int msglen;

zmq_msg_init(&request);
zmg_recv(sd, &request, 0);

msglen = zmq_msg_size(&request);
msgData = zmg_msg_data(&request);

zmqg_msg_t request;
char *msgData;
int msglLen;

zmg_msg_init(&request);
zmg_recv(sd, &request, 0);

msglen = zmqg_msg_size(&request);
msgData = zmqg_msg_data(&request);

PMQ

 Multiple Carriers

— tcp:// is a plain old TCP socket with a host and port
number.

— ipc:// uses UNIX inter-process communication such as
domain sockets, MQ, or whatever is available.

— inproc:// is an in-process transport that passes
messages via memory directly between threads
sharing a single @MQ, context.

— pgm:// is reliable multicast messaging that uses raw IP
layering and requires special privileges.

— epgm:// is an encapsulated version that uses regular
User Datagram Protocol (UDP) to do reliable multicast
messaging.

PMQ

N-to-N Dissemination

— @MQ sockets may be connected to multiple
endpoints using zmqg_connect(), while
simultaneously accepting incoming connections
from multiple endpoints bound to the socket using
zmg_bind(). This allows many-to-many
relationships

Low Overhead and Fast Messaging
Asynchronous |/O

No need for mutexes, locks, or any other form of
inter-thread communication

Node Node
Socket Socket
! |
1toN I PP I A I S P P P P P P P P 4
Fan out |
' Ntol
r Fanin
\ Yy
, Socket r Socket
Node Node

Figure 11

OMQ sockets are Nto N

PMQ

* Language bindings exist for:
— Ada
— Basic
- C
— Chicken Scheme
— Common Lisp
— C#(.NET & Mono)
- C++
)
— Erlang
- Go
— Haskell
— Java
— Lua
— node.js
— Objective-C
— oocC
— Perl
— PHP
— Python
— Racket
— Ruby
Tcl

 @MQ s available on multiple platforms, including Linux, Windows, Solaris,
and OpenVMS.

PMQ

Request-Reply

Used for sending requests from a client to one or more instances
of a service, and receiving subsequent replies to each request
sent.

ZMQ::REQ

Used by a client to send requests to and receive replies from a
service. Each request sent is load-balanced among all services,
and each reply received is matched with the last issued request

Compatible peer sockets

ZMQ::REP, ZMQ::XREP

Direction

Bidirectional

Send/receive pattern

Send, Receive, Send, Receive, ...

Outgoing routing strategy

Load-balanced

Incoming routing strategy Last peer
HWM ' action Block
ZMQ::REP Used by a service to receive requests from and send replies to a

client

Compatible peer sockets

ZMQ::REQ, ZMQ::XREQ

Direction Bidirectional

Send/receive pattern Receive, Send, Receive, Send, ...
Incoming routing strategy Fair-queued

Outgoing routing strategy Last peer

HWM action

Drop

PMQ

Client

REQ

"Hello[" "World"

REP

Server

Figurel — RequestReply

REQ J REQ J [REQ
ROUTER
code
DEALER

REP] REP] [REP

Figure 19 -

Extended request-reply

ZMQ::PUB

PMQ

Used by a publisher to distribute data. Messages sent are
distributed in a fan-out fashion to all connected peers

Compatible peer sockets

ZMQ::SUB

Direction

Unidirectional

Send/receive pattern Send only
Incoming routing strategy N/A
Outgoing routing strategy Fan-out
HWM action Drop

ZMQ::SUB

Used by a subscriber to subscribe to data distributed by
a publisher.

Compatible peer sockets ZMQ::PUB
Direction Unidirectional
Send/receive pattern Receive only
Incoming routing strategy Fair-queued
Outgoing routing strategy N/A
ZMQ::HWM option action N/A

PMQ

Publisher

PUB
bind

updates

updates updates updates

\J

connect connect connect

SuUB SUB SUB

Subscriber Subscriber Subscriber

Figure 4 — Publish-Subscribe

PMQ

Publisher

PUB

J

bind
tcp //192.168.55.210 5556

connect connect
\ \ connect
SUB SUB - ~
SUB
Subscriber Subscriber
Forwarder
Internal network PUB
External network bind
tcp //10.1.1.0 8100
connect connect
SuUB) (SuUB
Subscriber Subscriber

Figure 17

— Forwarder proxy device

PMQ

Pipeline

Used for distributing data to nodes arranged in a pipeline. Data
always flows down the pipeline, and each stage of the pipeline is
connected to at least one node. When a pipeline stage is
connected to multiple nodes data is load-balanced among all
connected nodes.

ZMQ::PUSH

Used by a pipeline node to send messages to downstream

pipeline nodes. Messages are load-balanced to all connected
downstream nodes.

Compatible peer sockets ZMQ::PULL
Direction Unidirectional
Send/receive pattern Send only
Incoming routing strategy N/A

Outgoing routing strategy Load-balanced
HWM action Block

ZMQ::PULL

Used by a pipeline node to receive messages from upstream
pipeline nodes. Messages are fair-queued from among all
connected upstream nodes.

Compatible peer sockets

ZMQ::PUSH

Direction

Unidirectional

Send/receive pattern

Receive only

Incoming routing strategy

Fair-queued

Outgoing routing strategy

N/A

HWM action

N/A

PMQ

Ventilator
PUSH
\ J
tasks
task task task
\J
PULL 1 PULL 1 PULL
Worker Worker Worker
PUSH) PUSH PUSH
\ J \
result result result
results
\J
.
PULL
Sink

Figure5 - Parallel Pipeline

PMQ

pub.py - Publish weather data for multiple zipcodes
import zmg
import random

context = zmg.Context ()

socket = context.socket (zmg.PUB)
socket.bind ("tcp://*:5556")

while True:
zipcode = random.randrange (10000,11000)
temperature = random.randrange (1l,215) - 80
relhumidity = random.randrange (1,50) + 10

socket.send ("%d %d %d" % (zipcode, temperature, relhumidity))

PMQ

sub.py - Subscribe to weather data for a given zipcode
import sys
import zmg

context = zmg.Context ()
socket = context.socket (zmg.SUB)

print "Collecting updates from weather server..."
socket.connect ("tcp://localhost:5556")

Subscribe to zipcode, default is NYC, 10001
filter = sys.argv[l] if len(sys.argv) > 1 else "10001"
socket.setsockopt (zmg.SUBSCRIBE, filter)

Process 5 updates

total temp = 0

for update nbr in range (5):
string = socket.recv ()
zipcode, temperature, relhumidity = string.split()
total temp += int (temperature)

print "Average temperature for zipcode '%s' was dF" % (
filter, total temp / update nbr)

[B e B s B |

neale@fedora ~
neale@fedora
neale@fedora
neale@fedora ~
[neale@fedora

python
python
python
python
python

0

4

]
]
]
]

Ur Uy O U Ur

~]

Collecting updates from
Collecting updates from
Collecting updates from

Collecting updates from

Average
Average
Average
Average

for
for
for
for

temperature
temperature
temperature
temperature

pub
sub
sub
sub.py
sub.py
weather
weather
weather
weather
zipcode
zlpcode
zlpcode
zlpcode

-PY
-PY
-PY

PMQ

&

10200
10300
10400
10500

22 &2 &2 2

server...
server...
server...

server

'10400"

'10500"

'10200"
'10300"

was
was
was
was

16F
18F
30F
15F

CMIS

A Protocol for Accessing and
manipulating ECM Systems

CMIS

* A specification for improving interoperability
between Enterprise Content Management
systems

e OASIS specification

e Participants include Liferay, Alfresco, eXo, Day
Software, EMC, FatWire, IBM, Microsoft, Open

Text, Oracle and SAP

CMIS

* |s language-agnostic (REST and SOAP are
implemented in many languages)

* Decouples web service and content: CMIS can
be used to access to an historic document
repository

TCPNJE

TCPNIE

CMIS

client = CmisClient (UrlCmisService, user_id, password)
repo = client.defaultRepository

def CreateCmisFolderIfItDoesNotExist (targetFolderObject, newFolderName) :

$-------—-—————————————————————— - #
first lets find out if a folder already exists by this
name (newFolderName)
$---------------"-"--—----—--—— #

children = targetFolderObject.getChildren ()
for child in children:
if (child.name == newFolderName) :
return child
logger.debug("Creating folder " + newFolderName)
return targetFolderObject.createFolder (newFolderName)

props = createPropertyBag (propBag, targetClass)

f = open(docLocalPath, 'rb')

newDoc = folder.createDocument (docName, props, contentFile=f)
logger.debug("Cmislib create returned id=" + newDoc.id)
f.close ()

| Navigator () <& || Company Home > testdata

|
») Data Dictionary v) tg#data > -
- This view allows you to browse the items in this space.

») Guest Home
») Sites
V Browse Spaces
>) testdata
») User Homes < ® <
‘ SNAVM4_NEALE_20110210181814_0055 ‘ SNA\

») Web Deployed))

) 10 February 2011 13:20 16 Mz
bQWebProyects %Q_:_:]@ Jo*:

¥V Content Items

No items to display. To add an existing document click 'Add Content' action. To create an HTML or Plain

Company Home > testdata > SNAVM4_NEALE_20110210181814_0055

« % SNAVM4_NEALE_20110210181814_0055 .

éaAdd Content Cre
This view allows you to browse the items in this space. s © —'b

¥V Browse Spaces

No items to display. Click the 'Create Space' action to create a space.

¥V Content Items

LA o .)
f bind.sysprint.4.pdf 1/

Page 1 of 1

LA M . ®
i For | compile.syscprt.3.pdf '/

A A . ®
L/ go.sysprint.5.pdf 1/

16.07 KB ~ 1847 KB T 0.86KB
10 February 2011 13:20 10 February 2011 13:20 10 February 2011 13:20
LHEil® LHEil® LHEil®
LA jes2 jesjcl.1.pdf ® L b jes2 jesmsglg.pdf ® LA jes2 jesysmsg.2.pdf ®
[For i For R ; I Po- R .

7 5.05KB " 2.85KB " 8.32KB
10 February 2011 13:20 10 February 2011 13:20 10 February 2011 13:20
LHEN® LHEN® LHEN®

Page 1 of 1

z/0S V1 R9 BINDEE 12:18:02 FEBRUARY 10, 2011
BATCH EMULATOR JOB(CC64BLD) ST FEM= IEWL
IEW2278I B352 INVOCATION PARAMETERS - MAP, RENT, DYNAM=DLL,CASE=MIXED,LIST=NCIMP

122: 1 R R X X X X I X I X I Y I X I T TTTFTTFRTTTTITFRTTTTITES [
1220 2 *% */
1220 3 =** CELQS00 *
1220 4 ** */
1220 3 ** LICENSED MATERIALS - PROPERTY OF IBM */
1220 & ** */
1220 7 ** 5694-201 5688-1¢%8 */
1220 8 * % */
1220 3 ** (C) COPYRIGHT IEM CORP. 2004, 2007 */
1220 1 ** *
122C ** US GOVERNMENT USERS RESTRICTED RIGHETS - USE, *J
122C ** DUPLICATION CR DISCLOSURE RESTRICTED BY GSA ADP *f
122C ** SCHEDULE CONTRACT WITH IBM CORP *®f
1220 ** */
122C ** ITATUS = HZLET74C -
1220 ** *
122: B I

-

1220

O O N O% O8N 0% DD WD B0 0 o U s Lo RO

LR L L L N e e e e e e B B S

1220 * Tnese statemsnts 2llow the sppolcatlon to shars

1220 * external functions defined by /within the C library.

1220 -

1220 23 *

1220 24 * These statements 2__0w =ne 2pplication ©o shars Tne

1220 25 * externzal storags c_azss (global) wvarizb_es.

1220 28 * These wvarizbles zre defined by/wizthin tne T _ibrary,

1220 27 *

1220 e NAME TESTC(R)

4C43 DEFINITION SIDE FILE IS EMPTY. THERE ARE NO SYMBOLS TO BE EXPORTED.

