Seme A couple of new
technologies

Worth getting to know



Topics

 PMQ — Lightweight messaging

 CMIS — A Protocol for interacting with ECM
systems



PMQ

* “No manis anisland”
* Many options

— MQSeries

— RabbitMQ

— ApacheMQ

— OpenMQ
 Many attributes

— %CPU

— Footprint

— Latency

— Configuration (brokers etc.)



PMQ

ZeroMQ

Library of APIs

Modeled on standard TCP/IP semantics
Not a message broker

— But can be used to create one



PMQ

staticsize_t __inline__getData(int sd, char *buffer, size_t size)

{
size_tIMsg =0;
while (IMsg < size) {
IMsg = recv(sd, (buffer+IMsg), (size — IMsg));
}
return(IMsg);

}

size_t msglen;
char *msgData;

getData(sd, (char *) &msglen, sizeof(msgLen));
msgData = malloc(msgLen);

getData(sd, msgData, msglLen);

zmq_msg_t request;

char *msgData;

int msglen;

zmq_msg_init(&request);
zmg_recv(sd, &request, 0);

msglen = zmq_msg_size(&request);
msgData = zmg_msg_data(&request);



zmqg_msg_t request;
char *msgData;
int msglLen;

zmg_msg_init(&request);
zmg_recv(sd, &request, 0);

msglen = zmqg_msg_size(&request);
msgData = zmqg_msg_data(&request);



PMQ

 Multiple Carriers

— tcp:// is a plain old TCP socket with a host and port
number.

— ipc:// uses UNIX inter-process communication such as
domain sockets, MQ, or whatever is available.

— inproc:// is an in-process transport that passes
messages via memory directly between threads
sharing a single @MQ,  context.

— pgm:// is reliable multicast messaging that uses raw IP
layering and requires special privileges.

— epgm:// is an encapsulated version that uses regular
User Datagram Protocol (UDP) to do reliable multicast
messaging.



PMQ

N-to-N Dissemination

— @MQ sockets may be connected to multiple
endpoints using zmqg_connect(), while
simultaneously accepting incoming connections
from multiple endpoints bound to the socket using
zmg_bind(). This allows many-to-many
relationships

Low Overhead and Fast Messaging
Asynchronous |/O

No need for mutexes, locks, or any other form of
inter-thread communication
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* Language bindings exist for:
— Ada
— Basic
- C
—  Chicken Scheme
— Common Lisp
— C#(.NET & Mono)
- C++
)
—  Erlang
- Go
—  Haskell
— Java
— Lua
— node.js
—  Objective-C
— oocC
—  Perl
—  PHP
—  Python
—  Racket
—  Ruby
Tcl

 @MQ s available on multiple platforms, including Linux, Windows, Solaris,
and OpenVMS.
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Request-Reply

Used for sending requests from a client to one or more instances
of a service, and receiving subsequent replies to each request
sent.

ZMQ::REQ

Used by a client to send requests to and receive replies from a
service. Each request sent is load-balanced among all services,
and each reply received is matched with the last issued request

Compatible peer sockets

ZMQ::REP, ZMQ::XREP

Direction

Bidirectional

Send/receive pattern

Send, Receive, Send, Receive, ...

Outgoing routing strategy

Load-balanced

Incoming routing strategy Last peer
HWM ' action Block
ZMQ::REP Used by a service to receive requests from and send replies to a

client

Compatible peer sockets

ZMQ::REQ, ZMQ::XREQ

Direction Bidirectional

Send/receive pattern Receive, Send, Receive, Send, ...
Incoming routing strategy Fair-queued

Outgoing routing strategy Last peer

HWM action

Drop




PMQ

Client

REQ
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Server

Figurel — RequestReply
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ZMQ::PUB

PMQ

Used by a publisher to distribute data. Messages sent are
distributed in a fan-out fashion to all connected peers

Compatible peer sockets

ZMQ::SUB

Direction

Unidirectional

Send/receive pattern Send only
Incoming routing strategy N/A
Outgoing routing strategy Fan-out
HWM action Drop

ZMQ::SUB

Used by a subscriber to subscribe to data distributed by
a publisher.

Compatible peer sockets ZMQ::PUB
Direction Unidirectional
Send/receive pattern Receive only
Incoming routing strategy Fair-queued
Outgoing routing strategy N/A
ZMQ::HWM option action N/A
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Pipeline

Used for distributing data to nodes arranged in a pipeline. Data
always flows down the pipeline, and each stage of the pipeline is
connected to at least one node. When a pipeline stage is
connected to multiple nodes data is load-balanced among all
connected nodes.

ZMQ::PUSH

Used by a pipeline node to send messages to downstream

pipeline nodes. Messages are load-balanced to all connected
downstream nodes.

Compatible peer sockets ZMQ::PULL
Direction Unidirectional
Send/receive pattern Send only
Incoming routing strategy N/A

Outgoing routing strategy Load-balanced
HWM action Block

ZMQ::PULL

Used by a pipeline node to receive messages from upstream
pipeline nodes. Messages are fair-queued from among all
connected upstream nodes.

Compatible peer sockets

ZMQ::PUSH

Direction

Unidirectional

Send/receive pattern

Receive only

Incoming routing strategy

Fair-queued

Outgoing routing strategy

N/A

HWM action

N/A
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# pub.py - Publish weather data for multiple zipcodes
import zmg
import random

context = zmg.Context ()

socket = context.socket (zmg.PUB)
socket.bind ("tcp://*:5556")

while True:
zipcode = random.randrange (10000,11000)
temperature = random.randrange (1l,215) - 80
relhumidity = random.randrange (1,50) + 10

socket.send ("%d %d %d" % (zipcode, temperature, relhumidity))



PMQ

# sub.py - Subscribe to weather data for a given zipcode
import sys
import zmg

context = zmg.Context ()
socket = context.socket (zmg.SUB)

print "Collecting updates from weather server..."
socket.connect ("tcp://localhost:5556")

# Subscribe to zipcode, default is NYC, 10001
filter = sys.argv[l] if len(sys.argv) > 1 else "10001"
socket.setsockopt (zmg.SUBSCRIBE, filter)

# Process 5 updates

total temp = 0

for update nbr in range (5):
string = socket.recv ()
zipcode, temperature, relhumidity = string.split()
total temp += int (temperature)

print "Average temperature for zipcode '%s' was dF" % (
filter, total temp / update nbr)
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CMIS

A Protocol for Accessing and
manipulating ECM Systems



CMIS

* A specification for improving interoperability
between Enterprise Content Management
systems

e OASIS specification

e Participants include Liferay, Alfresco, eXo, Day
Software, EMC, FatWire, IBM, Microsoft, Open

Text, Oracle and SAP



CMIS

* |s language-agnostic (REST and SOAP are
implemented in many languages)

* Decouples web service and content: CMIS can
be used to access to an historic document
repository



TCPNJE

TCPNIE

CMIS







client = CmisClient (UrlCmisService, user_id, password)
repo = client.defaultRepository

def CreateCmisFolderIfItDoesNotExist (targetFolderObject, newFolderName) :

$-------—-—————————————————————— - #
# first lets find out if a folder already exists by this #
# name (newFolderName) #
$---------------"-"--—----—--—— #

children = targetFolderObject.getChildren ()
for child in children:
if (child.name == newFolderName) :
return child
logger.debug("Creating folder " + newFolderName)
return targetFolderObject.createFolder (newFolderName)

props = createPropertyBag (propBag, targetClass)

f = open(docLocalPath, 'rb')

newDoc = folder.createDocument (docName, props, contentFile=f)
logger.debug("Cmislib create returned id=" + newDoc.id)
f.close ()
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