Introduction to RACF/VM

Bruce Hayden
IBM Advanced Technical Skills
Endicott, NY
Agenda

- Introduction
- RACF on your z/VM system
- Resource classes in RACF
- Permissions
- User Attributes
- RACF options
- VM events controlled by RACF
- Groups
- Shared User ids
Introduction

The RACF Security Server for z/VM

- A priced, optional, pre-installed feature of z/VM
 - For all current releases - 5.4 and 6.1

- Licensed under International Program License Agreement (IPLA) terms and conditions

- Pricing is based on engine-based Value Units and is available for both IFL and standard processor configurations.

- RACF releases are specific to the release of z/VM
 - The level of RACF and CP must be the same
Basic Security Features of RACF

- General Users
 - User1
 - User2
 - User3
 - OPERATIONS
- System With RACF
 - Logon
 - User Identification and Verification
 - Resource Authorization Checking
 - Access Request
 - Access Request
 - Access
 - Access Event
 - SMF
 - REPORT
 - Security Administration
 - Look at Profiles and Set Logging
- Resources
 - CICS Transaction
 - IMS Transaction
 - z/OS Data Set
 - VM Mini Disk
 - Tape
- RACF Database

© Copyright IBM Corporation 2011
Configuration Guidelines and Best Practices

- **Do not think of “Best Practices” when it comes to security settings!**
 - Security settings are determined by Security Policy
 - Every company has a different one
 - Should be determined by the company CIO as a high level guideline for all IT systems
 - Implementation varies on each type of system
 - Systems programmers and administrators implement security policy
 - They do not decide security policy
 - If parts of the policy can't be implemented, then exceptions must be granted, etc.
 - This is all very important for security audits or if a security breach happens!

- **There are Best Practices for how to implement security policy**
 - As with most systems, there are different ways to implement something
 - With security, it isn't normally about performance
 - Some ways are easier for system administration
 - Some ways are less prone to error, such as inadvertently creating a security “hole”
RACF for z/VM Layout

- **RACFVM**: RACF Server Controls resource allocation
 - Owns RACF databases
 - Owns SMF records

- **6VMRAC10**: Owns RACF/VM Installation and Service Disks

- **490 CMS/CST RACF Disk**

- **305 Server Code**

- **300 Primary Database**

- **301 Primary SMF Recording Disk**

- **302 Secondary SMF Recording Disk**

- **RACFSMF**: Archives SMF records

- **192 SMF Archive Disk**
User ids defined for RACF/VM

These are predefined on a new z/VM system installation

- **RACFVM**
 - The main production security server

- **RACMAINT**
 - Test the installation of RACF
 - Test applied service

- **5VMRAC40 or 6VMRAC10**
 - Name is derived from the z/VM version and release
 - Owns all the minidisks that hold RACF code
 - For the sake of this presentation, they are interchangeable.
User ids defined for RACF/VM

- **RACFSMF**
 - Management of RACF audit log files

- **IBMUSER**
 - Used for the initial setup of RACF

- **SYSADMIN**
 - Sample security administration user

- **MAINT**
 - Maintenance of all z/VM components

- **BLDRACF**
 - Used to rebuild CST, the special version of CMS used by RACF
RACF and DIRMAINT

- **DIRMAINT can be configured to automatically update RACF**
 - This is done via IBM supplied exits in DIRMAINT
 - A DIRMAINT configuration file is provided
 - Changes the directory are automatically synchronized with RACF

- **You can activate RACF either before or after you activate DIRMAINT**
 - I prefer to activate and configure RACF first on a new system
 - Some people may prefer activating DIRMAINT first
 - Either way will work!

- **Limitation on characters in VM user ids**
 - No dash (-), plus (+), colon (:), or underscore (_)
 - This applies even if you're not using DIRMAINT
RACF/VM Installation

- No need – it is pre-installed!
- But, it is disabled by default
 - You enable it if you have bought a license
- The program directory is the main guide to configuration
 - Unfortunately, it can be a bit confusing with a lot of choices
 - After this presentation, I hope you know what choices you will need!
 - More background about configuration in the RACF documentation
 - See z/VM: RACF Security Server Security Administrator’s Guide
Overview of RACF activation

- Prepare your system for RACF
 - Use RACF utilities to migrate definitions from the CP directory

- Enable RACF
 - This will create a new CP Nucleus with RACF enabled

- Shutdown and IPL z/VM from parm disk 2

- Start RACF in “test” mode on user RACMAINT

- Load your initial database

- Configure RACF
 - This step takes the longest

- Run PUT2PROD

- Start RACF in production mode
 - Test!

- Perform a normal IPL of your system
What does RACF do?

- **RACF controls user logon to the system**
 - Defines passwords and controls
 - Protects terminals

- **RACF protects resources**
 - So... what is a resource?
 - Stay tuned!

- **RACF allows you to grant permissions to resources**
 - You can't use a resource unless you have permission
 - This is the PERMIT command

- **RACF provides an “audit trail”**
 - A log of what happened on the system and who did it
What are resources?

- **RACF defines resources this way:**
 - Places in the system where data resides (such as minidisks on z/VM)
 - Places in the system where data passes during data processing (such as terminals or network interfaces)
 - The functions by which users work with data (such as commands)

- **RACF protects resources so that only authorized users can access a resource in approved ways**

- **A general resource class defines a name for a collection of similar resources**
 - Such as VMMDISK for minidisks or VMLAN for virtual LANs
 - There are many general resource classes
 - A lot only apply to z/OS, but they are listed in the z/VM documents
 - I'll only discuss the ones that are most often used on z/VM
 - The following charts describe each one and what it controls
Most common general resource classes on z/VM

<table>
<thead>
<tr>
<th>Resource Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMBATCH</td>
<td>Allows use of DIAG D4 (alternate userid)</td>
</tr>
<tr>
<td>VMCMD</td>
<td>Certain CP commands and other requests</td>
</tr>
<tr>
<td>VMLAN</td>
<td>Permission to connect to VSWITCH and Guest LANs</td>
</tr>
<tr>
<td>VMMDISK</td>
<td>Minidisks</td>
</tr>
<tr>
<td>VMNODE</td>
<td>Allows you to target other VM nodes via RSCS</td>
</tr>
<tr>
<td>VMRDR</td>
<td>Allows you to target other users via spooling commands</td>
</tr>
<tr>
<td>VMSEGMNT</td>
<td>Allows access to restricted saved segments</td>
</tr>
<tr>
<td>VMXEVENT</td>
<td>Event profiles for commands and auditing</td>
</tr>
<tr>
<td>FACILITY</td>
<td>Allows a virtual machine to use the RACROUTE interface.</td>
</tr>
<tr>
<td>SURROGAT</td>
<td>Allows LOGON BY and FOR to another user</td>
</tr>
</tbody>
</table>
General Resource Classes on z/VM

- **VMBATCH**
 - Allows virtual machines to use Diagnose D4 – “set alternate user”
 - Useful for virtual machines that do things on your behalf
 - “Batch” worker machines are a classic case
 - FTP server on a modern system
 - The name of the resource is the userid that is the target of the Diag D4

- **VMLAN**
 - Allows virtual machines to connect (couple) to restricted VM LANs
 - VSWITCH and restricted guest LANs
 - CP SET (VSWITCH | GLAN) GRANT commands are ignored
 - Resources are named *userid.lanname.vlanid*
 - For a VSWITCH, the “userid” is SYSTEM
 - *lanname* is the name of the VSWITCH or guest lan
 - The *vlanid* is only present for vlan aware VSWITCHes
General Resource Classes on z/VM

- **VMCMD**
 - Controls certain CP commands, diagnoses, and system events
 - The list is small – only those with critical security concerns or controls

<table>
<thead>
<tr>
<th>VMCMD Profile Name</th>
<th>What It Protects</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORE.C</td>
<td>STORE HOST command</td>
</tr>
<tr>
<td>TRSOURCE</td>
<td>TRSOURCE command</td>
</tr>
<tr>
<td>DIAG0E4</td>
<td>Diagnose code X'E4' (Minidisk query and define)</td>
</tr>
<tr>
<td>XAUTOLOG.userid</td>
<td>XAUTOLOG command by a class G user</td>
</tr>
<tr>
<td>DIAG088</td>
<td>Diagnose code X'88' (all subcodes) (DMSPASS)</td>
</tr>
<tr>
<td>DIAG0A0.HRTSTORE</td>
<td>Diagnose code X'A0' Subcode X'34' (security labels)</td>
</tr>
<tr>
<td>DIAG0A0.QUERYSEC</td>
<td>Diagnose code X'A0' Subcode X'30' (query label)</td>
</tr>
<tr>
<td>DIAG0A0.VALIDATE</td>
<td>Diagnose code X'A0' Subcodes X'04' and X'3C' (Validate userid and password or pass phrase)</td>
</tr>
<tr>
<td>RAC</td>
<td>RAC command processor</td>
</tr>
<tr>
<td>RACF</td>
<td>RACF command session</td>
</tr>
</tbody>
</table>
General Resource Classes on z/VM

- **VMMDISK**
 - Minidisks, which are MDISK statements in the user directory
 - Minidisk passwords in the user directory are ignored
 - OPTION LNKNOPAS is also ignored
 - Resources are named *userid.vdev*
 - Leading zero on a 4 digit vdev is not used
 - MAINT.0190 is incorrect
 - MAINT.190 is correct
 - MAINT.2190 is also correct
General Resource Classes on z/VM

- **VMNODE**
 - Permission to send spool files to remote systems via RSCS
 - RSCS does not interface with RACF
 - The CP TAG command is checked for the node id read by RSCS
 - For example: CP TAG DEV PUN node user

- **VMRDR**
 - Permission to send a spool file to another user
 - Resource name is the user id that will receive the spool file
 - CP spooling commands are checked
 - SPOOL PUN TO user
 - SPOOL PRT TO user
 - TRANSFER TO user
 - CLOSE TO user
General Resource Classes on z/VM

- **VMSEGMT**
 - The ability to use a restricted (class R) segment
 - Class A segments are not controlled by RACF
 - The NAMESAVE record in the directory is ignored
 - Resources are named NSS.segmentname or DCSS.segmentname

- **VMXEVENT**
 - Special class that holds event profiles
 - Used to define the CP and auditing interface to RACF
 - Will be discussed later

- **FACILITY**
 - Allows service virtual machines to authenticate directly with RACF
 - This is usually known as the RACROUTE interface
 - Also used for other “miscellaneous” authorizations
GENERAL RESOURCE CLASSES ON Z/VM

- **SURROGAT**
 - Note: it is the “surrogate” class, but specified with just 8 characters
 - Allows a user id to use its password to logon to another id
 - For example: LOGON MAINT BY BRUCE
 - I enter the password for BRUCE at the logon prompt, but I am logged on to MAINT
 - Resources are named LOGONBY.userid
 - The userid is the user that will be logged onto
 - In the above example, MAINT, so the resource is LOGONBY.MAINT
 - LOGONBY statements in the directory are ignored
 - When a LOGONBY.userid profile is defined for a user, direct logon to that user is not longer allowed
 - You can override this behavior, though
 - Permission to a user's surrogate profile also allows you to also use the CP FOR command to that user
 - You must also have Privilege class C or be the secondary user to that id.
Defining resource classes

- By default, only 2 resource classes are active:
 - USER Allows you to logon to the system
 - TERMINAL Allows you to use a terminal to logon

- You can choose which resource classes to activate
 - This is the CLASSACT option on the SETROPTS (Set RACF options) command (discussed later)

- The RDEFINE (resource define) command defines actual resources in a class
 - For example, to define MAINT's 191 minidisk:
 - RDEFINE VMMDISK MAINT.191 UACC(NONE)
 - VMMDISK is the general resource class for minidisks
 - UACC is the default access type, for “universal access”
 - NONE is the default, but it is often specified in the command
 - With NONE, no users have access to this resource by default
 - For public read only disks, you specify UACC(READ)
 - RDEFINE VMMDISK MAINT.190 UACC(READ)
Giving permissions to resources

- **This is the PERMIT command**
 - If a resource is defined with a universal access of NONE, you must be given permission to access it.

- **Syntax:** PERMIT resource options
 - Options are specified as KEYWORD(VALUE)
 - *resource* is the name of the resource from the RDEFINE command
 - Required options (they can be in any order)
 - **CLASS()** The resource class, such as VMMDISK or VMRDR
 - **ID()** The user id that is allowed to access
 - **ACCESS()** The permission, such as READ
 - **DELETE** Delete permission, specified instead of ACCESS()
 - These can be abbreviated – but automation should use the long form
 - For this command, the first letter is all that is needed.
 - **Example:** Allow MAINT access to TCPMAINT 198
 - PERMIT TCPMAINT.198 CLASS(VMMDISK) ID(MAINT) ACCESS(CONTROL)
 - Note: CONTROL allows Read/Write links
Access permissions

- **The keywords allowed on ACCESS or UACC**
 - Note: Each permission includes all permissions below it
 - **ALTER**: Allows full control of the resource
 - **CONTROL**: Read/write and possibly more control
 - **UPDATE**: Read/write access
 - **READ**: Read only access
 - **NONE**: No access allowed

- **Each general resource class defines what these permissions mean for resources in that class**
 - More detail on the next chart

- **ALTER permission also allows you to change the access list**
 - i.e. you are allowed to PERMIT others to the resource, even if you do not own the resource
Access permissions details

- **Details about access permissions for some resources**
 - If an access permission isn't listed for a class, it has no additional meaning
 - **VMMDISK**
 - READ: Link mode R UPDATE: Link mode W
 - CONTROL: Link mode M ALTER: Link mode MW
 - Note: ALTER access for the VMMDISK class is an exception to normal rules
 - **VMLAN**
 - UPDATE: Normal couple CONTROL: Promiscuous Mode allowed
 - **VMCMD**
 - READ: Allows the user to execute the command
 - **VMRDR**
 - UPDATE: Allows you to send or transfer a file to a user's reader
 - **VMBATCH**
 - CONTROL: Allows the user to set your userid as an alternate user
 - **SURROGAT**
 - READ: Allows your id to be used to logon to the shared userid
RACF User Attributes

A VM user may have one or more of these attributes

- **SPECIAL**
 - Security administrative authority – allowed to issue any RACF command
 - Full control over all RACF profiles in the RACF database
 - Allowed to set RACF options

- **AUDITOR**
 - Allowed to set RACF auditing options
 - Note: SPECIAL without AUDITOR is not allowed to set auditing options
 - Allowed to run the DSMON program (Data Security Monitor)
RACF User Attributes

- **OPERATIONS**
 - Full authorization to resources in certain classes
 - VMBATCH, VMCMD, VMMDISK, VMNODE, and VMRDR only
 - Authorization to a resource can be overridden with a specific permit
 - For example:
 Don't allow MAINT, which has the OPERATIONS attribute, access to the RACF database:
 - PERMIT RACFVM.200 CLASS(VMMDISK) ID(MAINT) ACCESS(NONE)

- **REVOKE**
 - User is not allowed to access (i.e. logon) to the system
 - A shared userid that is revoked cannot be accessed

- **PROTECTED (z/OS only)**
 - A user with no logon password (NOPASSWORD) and no logon phrase (NOPHRASE)
 - User can't be used to logon to the system
 - However, the id can be logged on using a shared profile
 - User will not be automatically revoked from inactivity or invalid logon attempts
Entering RACF commands

- **RAC EXEC**
 - The preferred way
 - Enter a single RACF command as the argument:
 - `rac permit operator.191 class(vmmdisk) id(maint) acc(control)`
 - Any command output is written to your terminal and to RACF DATA A

- **RACF MODULE**
 - Starts a RACF command session for multiple RACF commands
 - Must enter END to leave the session

  ```
  racf
  RPITMP001I RACF/VM SESSION ESTABLISHED. TO TERMINATE ENTER "END"
  RPITMP002I ENTER RACF COMMAND OR "END" TO EXIT
  altuser maint special
  RPITMP002I ENTER RACF COMMAND OR "END" TO EXIT
  permit operator.191 cl(vmmdisk) id(maint) acc(control)
  RPITMP002I ENTER RACF COMMAND OR "END" TO EXIT
  end
  RPICMD003I RACF/VM COMMAND SESSION COMPLETE
  ```
Working with user profiles

- **Add a new user profile: ADDUSER**
 - `rac adduser linux name('Master Image') password(new4you)`
 - The password is expired and must be changed during logon
 - You can add a user profile that is not in the CP directory!

- **Delete a user: DELUSER**
 - `rac deluser linux`
 - This does not delete the userid from the VM user directory

- **Change a user: ALTUSER**
 - To set a new temporary password:
 - `rac altuser maint password(temp4you)`
 - To set a new password that is not expired:
 - `rac altuser maint password(sup3rusr) noexpire`
 - To change a user attribute, such as if a user is revoked:
 - `rac altuser maint resume`
Set RACF options – SETROPTS command

- Allows you to dynamically set system-wide RACF options related to resource protection and auditing

- Many options use NO as a prefix to invert the selection
 - CLASSACT() or NOCLASSACT()
 - GRPLIST or NOGRPLIST
 - etc.

- Current settings displayed with SETROPTS LIST

- Both audit and system security settings
 - Users with only SPECIAL cannot alter the audit settings
 - Must have AUDITOR to change audit settings
SETROPTS command options

- **CLASSACT**
 - Activates general resource classes
 - SETROPTS CLASSACT(VMMDISK VMRDR)

- **PASSWORD**
 - Sets password rules
 - Maximum change interval (1 to 254 days)
 - Expiration warning (1 to 255 days)
 - History (number of old passwords not allowed to be reused, 1-32)
 - Number of logon attempts before an automatic revoke (1 to 254)
 - Minimum length
 - Rules for types of characters in certain positions
 - rule1(length(8) alpha(1,8) alphanum(2:7))

- **RACLIST**
 - Cache selected resource profiles in memory – avoids disk I/O
 - Should only be used for classes with frequently referenced profiles
 - RACLIST(..) REFRESH is used to update the cache
VM events controlled by RACF

- VM calls RACF for authorization checking of certain z/VM events
- It is not a long list
 - Most authorization in z/VM is still controlled by normal CP rules
 - i.e. your privilege class or directory options
- Event profiles define the RACF authorization checks that are active
 - One profile for the entire system
 - Overriding profiles for individual users (overrides system profile)
- By default, RACF checks all of the VM events
 - Listed on the next 2 charts
 - You must customize RACF to remove checking as you require
List of controlled events

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUPLE.G</td>
<td>Couple to restricted guest lan or VSWITCH</td>
</tr>
<tr>
<td>FOR.C</td>
<td>FOR command, IBMclass C</td>
</tr>
<tr>
<td>FOR.G</td>
<td>FOR command, IBMclass G</td>
</tr>
<tr>
<td>LINK</td>
<td>LINK command or directory statement</td>
</tr>
<tr>
<td>MDISK</td>
<td>Directory statement or LINK to own minidisk</td>
</tr>
<tr>
<td>STORE.C</td>
<td>STORE host memory command, IBMclass C</td>
</tr>
<tr>
<td>TAG</td>
<td>TAG command, for RSCS processing</td>
</tr>
<tr>
<td>TRANSFER.D</td>
<td>TRANSFER and CHANGE, IBMclass D</td>
</tr>
<tr>
<td>TRANSFER.G</td>
<td>IBMclass G spooling commands</td>
</tr>
<tr>
<td>TRSOURCE</td>
<td>TRSOURCE command</td>
</tr>
</tbody>
</table>
List of controlled events, continued

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPCPWVL</td>
<td>Used to verify passwords on APPC connect</td>
</tr>
<tr>
<td>DIAG088</td>
<td>Use of Diag 88 (Check auth and link minidisk)</td>
</tr>
<tr>
<td>DIAG0A0</td>
<td>Use of Diag A0 (Obtain ACI Groupname)</td>
</tr>
<tr>
<td>DIAG0D4</td>
<td>Use of Diag D4 (Set Alternate User ID)</td>
</tr>
<tr>
<td>DIAG0E4</td>
<td>Use of Diag E4 (Define Full-Pack Overlay)</td>
</tr>
<tr>
<td>DIAG280</td>
<td>Use of Diag 280 (Set POSIX security values)</td>
</tr>
<tr>
<td>RSTDSEG</td>
<td>Access to restricted saved segments</td>
</tr>
</tbody>
</table>
Creating event profiles

- To change the VM events checked by RACF, you must create an event profile

- The profiles have a dual purpose
 - Access checking
 - Auditing (not discussed here)

- Create a resource profile in the VMXEVENT class
 - The name can be anything you choose
 - More than 1 system profile can exist, but only 1 is active
 - Members are added to stop control of selected events
 - By default, all events are controlled
Resource profile for my system

- An example based on my needs for a lab system
 - Note: Not based on IBM security policy!
- I want RACF control of everything, except:
 - FOR command
 - Controlled by the SURROGAT profile. I only want to use SURROGAT for logon to shared user ids
 - TAG command
 - I do not have RSCS active, no need to control TAG
 - Restricted segments
 - I will use the NAMESAVE authorization in the directory instead
 - User's own minidisks (in directory or via link command)
 - If it is yours, then I have no need for RACF to check your own access
RACF commands for my profile

- **Create profile EVENTS1 in VMXEVENT**
 - Remember that you can choose any name for this profile

  ```
  rac rdefine vmxevent events1
  rac ralter vmxevent events1 addmem(for.c/noctl for.g/noctl)
  rac ralter vmxevent events1 addmem(tag/noctl mdisk/noctl)
  rac ralter vmxevent events1 addmem(rstdseg/noctl)
  rac setropts classact(vmxevent)
  rac setevent refresh events1
  ```
Output from creating an event profile

- **When profile is activated, default members are made active**

 rac setevent refresh events1
 RPISET113W TURNING CONTROL ON AUTOMATICALLY FOR: COUPLE
 RPISET113W TURNING CONTROL ON AUTOMATICALLY FOR: LINK
 RPISET113W TURNING CONTROL ON AUTOMATICALLY FOR: STORE.C
 RPISET113W TURNING CONTROL ON AUTOMATICALLY FOR: TRANSFER.D
 RPISET113W TURNING CONTROL ON AUTOMATICALLY FOR: TRANSFER.G
 RPISET113W TURNING CONTROL ON AUTOMATICALLY FOR: TRSOURCE
 RPISET113W TURNING CONTROL ON AUTOMATICALLY FOR: DIAG088
 RPISET113W TURNING CONTROL ON AUTOMATICALLY FOR: DIAG0A0
 RPISET113W TURNING CONTROL ON AUTOMATICALLY FOR: DIAG0D4
 RPISET113W TURNING CONTROL ON AUTOMATICALLY FOR: DIAG0E4
 RPISET113W TURNING CONTROL ON AUTOMATICALLY FOR: DIAG280
 RPISET113W TURNING CONTROL ON AUTOMATICALLY FOR: DIAG290
 RPISET113W TURNING CONTROL ON AUTOMATICALLY FOR: APPCPWVL
 RPISET126I SETEVENT COMPLETED SUCCESSFULLY.

- You can explicitly define these members in the profile for completeness

 ralter vmxevent events1 addmem(couple.g/ctl link/ctl store.c/ctl trsource/ctl)
Event profiles for specific users

- Profiles can be created to override the system profile for specific users
 - They are named USERSEL.userid in the VMXEVENT class
- If a user profile exists, none of the system profile is active for that user
 - Make sure you create a complete user profile
- They are created just like the system profile
 - rac rdefine vmxevent usersel.datamove
 - rac ralter vmxevent usersel.datamove
 - addmem(link/noctl tag/noctl mdisk/noctl)
 - rac setevent refresh usersel.datamove
RACF Groups

- **Groups help with administration of your z/VM system**
 - Put user ids with similar roles into groups
 - Linux ids
 - System Administrators
 - Service Virtual Machines (SVMs)
 - New user ids performing the same role just need to be added to the group

- **RACF defines groups as a hierarchy**
 - The intent was to be able to map the management of the group structure to an organizational structure
 - Such as: A system support group subdivided into system programmers, storage management, and security.

- **But – RACF groups can just be used as lists of user ids**
 - Examples
 - All ids that need access to a set of resources
 - All ids that have a related role
Group Structure

- Give access rights to a group
 - Note: rights are not granted to lower groups in the hierarchy
- Connect users to one or more groups
- Delegate group management
Using Groups

- **Becoming a member of a group**
 - RACF calls this “connecting” a user to a group

- **Naming groups**
 - Same “naming space” as user ids – hard to tell them apart!
 - Use a naming convention for groups
 - i.e., start with a special character ($, @, or #), G, end with $, etc.

- **Specified user ids can be designated as the administrator of a group**
 - The ability to connect (add) or remove users

- **Be sure to enable RACF option GRPLIST**
 - Enables checking all groups the user is connected to for authority
 - Otherwise, only the user's current connect group is checked
 - This is required if a hierarchy of groups is not used
 - RAC SETROPTS GRPLIST
Using Groups – Examples

- Creating a Group for Linux servers
 - ADDGROUP $LINUX OWNER(LNXADM) SUPGROUP(SYS1)

- Give the LNXADM id authority to connect Linux servers
 - CONNECT LNXADM GROUP($LINUX) OWNER(LNXADM) AUTHORITY(CONNECT)

- Connecting a new Linux server to the group
 - CONNECT LINUX01 GROUP($LINUX) OWNER(LINUX01) AUTHORITY(USE)

- Granting permission to a resource for all Linux servers
 - PERMIT LNXADM.291 CLASS(VMMDISK) ID($LINUX) ACCESS(READ)

- Removing a user
 - REMOVE LINUX01 GROUP($LINUX)

- Deleting a group
 - Remove all users first
 - DELGROUP $LINUX
How to use Shared User ids

- Some user ids may need to be shared by multiple users
 - MAINT, OPERATOR, TCPMAINT, PERFKIT, etc.
 - Sharing the passwords is not allowed!

- Use the SURROGAT class and groups to allow multiple people to access these user ids
 - Allows logon “by” (or using) a personal id and its password
 - There is no limit on the number of sharing users

- CP also has native LOGON BY support
 - Defined in the user directory
 - Limited to only 8 unshared ids per shared id
Shared User ids – Examples of defining

- **Activate the SURROGAT class**
 - SETROPTS CLASSACT(SURROGAT)

- **Define a resource for each user id that is shared**
 - RDEFINE SURROGAT LOGONBY.OPERATOR UACC(NONE)
 - RDEFINE SURROGAT LOGONBY.MAINT UACC(NONE)
 - RDEFINE SURROGAT LOGONBY.TCPMAINT UACC(NONE)
 - RDEFINE SURROGAT LOGONBY.PERFSVM UACC(NONE)

- **Give permission to groups**
 - PERMIT LOGONBY.OPERATOR CL(SURROGAT) ID($SYSPROG) AC(READ)
 - PERMIT LOGONBY.OPERATOR CL(SURROGAT) ID($OPERGRP) AC(READ)
 - PERMIT LOGONBY.MAINT CL(SURROGAT) ID($SYSPROG) AC(READ)
 - PERMIT LOGONBY.TCPMAINT CL(SURROGAT) ID($SYSPROG) AC(READ)
 - PERMIT LOGONBY.PERFSVM CL(SURROGAT) ID($SYSPROG) AC(READ)

- **Give permission to specific user ids**
 - PERMIT LOGONBY.MAINT CLASS(SURROGAT) ID(BRUCE) ACCESS(READ)
Shared User ids – Using

- **Logging on a shared id**
 - logon maint by bruce
 - Operator console shows:
 - GRAF vdev LOGON AS MAINT USERS = nnn **BY BRUCE**
 - Query who is logged on to MAINT
 - query byuser maint
 - The **BYUSER** for MAINT is BRUCE
 - The “byuser” is retained when you disconnect, updated on reconnect

- **Direct logon is no longer allowed when SURROGAT resource is defined for a user**
 - LOGON MAINT
 - RPIMG066A User ID MAINT is defined as a shared user ID that may not be logged onto directly
 - LOGOFF AT 16:24:31 EDT THURSDAY 04/25/11 BY SYSTEM
 - Allowed if you permit the shared user id read access to its own profile
 - permit logonby.maint class(surrogat) id(maint) access(read)
The End

- Thank you for listening!

- Contact information

 Bruce Hayden
 bjhayden@us.ibm.com
References

- VM home page
 - http://www.vm.ibm.com

- z/VM Security and Integrity Resources

- z/VM Statement of Integrity

- VM documentation center
Trademarks

The following are trademarks of the International Business Machines Corporation in the United States, other countries, or both.

Not all common law marks used by IBM are listed on this page. Failure of a mark to appear does not mean that IBM does not use the mark nor does it mean that the product is not actively marketed or is not significant within its relevant market. Those trademarks followed by ® are registered trademarks of IBM in the United States; all others are trademarks or common law marks of IBM in the United States.

For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml:

*, AS/400®, e business(logo)®, DBE, ESCO, eServer, FICON, IBM®, IBM (logo)®, iSeries®, MVS, OS/390®, pSeries®, RS/6000®, S/30, VM/ESA®, VSE/ESA, WebSphere®, xSeries®, z/OS®, zSeries®, z/VM®, System i, System i5, System p, System p5, System x, System z, System z9®, BladeCenter®

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.
IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user’s job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM’s future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.