
Linux for Linux for zSerieszSeries

Early Experiences with 64-bit Linux

AgendaAgenda

• z/Architecture Overview
• Linux implementation for z/Architecture
• ABI changes
• Early experiences with ThinkBlue64
• Early experiences with SuSE system
• Early experiences with Redhat

Linux for Linux for zSerieszSeries

z/Architecture Overview

z/Architecture Overviewz/Architecture Overview

• z/Architecture is the next step in the evolution from
the System/360 to the System/370, S/370-XA,
ESA/370, and ESA/390.

• z/Architecture includes all of the facilities of ESA/390
except for the asynchronous-pageout, asynchronous-
data-mover, program-call-fast, and vector facilities.

z/Architecture Overviewz/Architecture Overview

• Four key features of z/Architecture include:
– It is a full 64-bit architecture that provides for 24, 31 and 64-bit

coexistence.
– Intelligent Resource Director—Provides for an exclusive way to

intelligently direct the processor and I/O resources to priority workloads
running within the set of clustered LPARs.

– HiperSockets—An internal facility for z/Architecture that permits a
TCP/IP network to be established between LPARs.

– License Manager Enablement—The z/Architecture includes capabilities
that enable IBM's License Manager to run on z/OS and z900. This
capability, when combined with HiperSockets, creates an ‘n-tier’
environment for e-business applications within a z900.

z/Architecture Overviewz/Architecture Overview

• 64 bit PSW
– Bit 12 – ‘0’ specifies z/Architecture

• 64 bit control registers
• 16 IEEE/HFP registers

– No need for software emulation

z/Architecture Overviewz/Architecture Overview

• 64 bit general registers
– Can be operated upon as 64 or 32 bit entities

#include <stdio.h>
int main(int argc, char **argv)
{
union { long x; int y[2]; } longvar;

longvar.x = -1;
printf("%08X %08X %ld\n",longvar.y[0],longvar.y[1],longvar.x);
__asm__ __volatile__ ("slr %0,%0" : "+d" (longvar.x) : : "cc");
printf("%08X %08X %ld\n",longvar.y[0],longvar.y[1],longvar.x);
__asm__ __volatile__ ("slgr %0,%0" : "+d" (longvar.x) : : "cc");
printf("%08X %08X %ld\n",longvar.y[0],longvar.y[1],longvar.x);

}

FFFFFFFF FFFFFFFF -1
FFFFFFFF 00000000 -4294967296
00000000 00000000 0

z/Architecture Overviewz/Architecture Overview

• 64 bit addressing
– 24 bit support
– 31 bit support
– Up to 3 levels of “Region Tables” to give:

• 42, 53, 64 bit addressing
– Use samxx instruction to switch addressing modes

• New term:
– >16MB = “above-the-line”
– >2GB = “above-the-bar”

z/Architecture Overviewz/Architecture Overview

• 32 bit Access Registers
• CCWs still only use 31 bit address fields

– IDAL used for “above-the-bar”

06440008 07000000

0000060000000000

2GB

“ABCDEFGH”

16EB

0

z/Architecture Overviewz/Architecture Overview

• Prefix page now 8KB
• LOTS of new instructions

– 64 bit versions of 32 bit ops: LG (load) = L (load)
– Instructions to manipulate 32 bit entities: LGFR
– Some new compiler-friendly: RLL/RLLG;

ALC/ALCG
– Address mode related: SAM24/31/64; TAM
– Unicode support: CUUTF; TRE **
– Enhanced relative branching: +/- 2GB branches

z/Architecture Overviewz/Architecture Overview

• New old/new PSW locations

EXT 1004 130 OLD 07060001 80000000 00000000 00015F1A

1B0 NEW 04000001 80000000 00000000 00014D32

SVC 008E 140 OLD 0701C001 80000000 00000200 002618A6

1C0 NEW 04000001 80000000 00000000 0001406C

PRG 0004 150 OLD 07004001 80000000 00000000 00087C7A

1D0 NEW 04000001 80000000 00000000 00014AD6

MCH 0000 160 OLD 00000000 00000000 00000000 00000000

1E0 NEW 04000001 80000000 00000000 00014DEA

I/O 0004 170 OLD 07060001 80000000 00000000 00015F1A

1F0 NEW 04000001 80000000 00000000 00014C3A

z/Architecture Overviewz/Architecture Overview

• Implemented on:
– z900 (aka Freeway) processors
– Hercules

• No SIGA/SERVC - proprietary

– Flex/ES (or should be in the future)
• Supported by:

– z/VM
– OS/390
– Linux for zSeries

Linux for Linux for zSerieszSeries

Linux Implementation for z/Architecture

Linux for Linux for zSerieszSeries

• Based on 2.4 kernel
• Requires:

– binutils
– gcc
– glibc

• Boots in 31 bit mode
• Switches to 64 bit mode fairly quickly

Linux Linux –– Intel Address SpacesIntel Address Spaces

0xFFFFFFFF 4GB Himem

Kernel

User Stack

Shared Libs

User Program
Data BSS

Text
Sections

Next

To

Run

User Space Himem
(typically 0xC0000000
3GB)

0x00000000

Linux Linux –– S/390 Address SpacesS/390 Address Spaces

0x7FFFFFFF 2GB Himem
User Stack

Shared Libs

User Program
Data BSS

Text
Sections

Kernel

0x00000000

Linux Linux –– zSeries zSeries Address SpacesAddress Spaces

0x3FFFFFFFFFF 4TB
Himem User Stack

Shared Libs

User Program
Data BSS

Text
Sections

Kernel

0x00000000

Linux for S/390 & Linux for S/390 & zSerieszSeries

• A virtual address on S/390 is made up of 3 parts:

• On z/Architecture in Linux we currently make up an address
from 4 parts:

Byte IndexPage IndexSegment Index
0 1 12 20 31

XXXXXXXXX Byte
Index

Page
Index

Segment
Index

Region Index

0 22 33 41 52 63

Segment Table Origin Len SX PX BX

Page Table Origin Len+

Page Frame Address+

Real Address+

Segment Table

Page Table

Segment Table Designation Virtual Address

Linux for Linux for zSerieszSeries

• 64-bit
• 4TB address spaces

– 1 Region Table
– Segment Table
– Page Table

• 31-bit compatibility mode
– Existing apps will run
– Provided they can find their libraries!
– Problems with some APIs (e.g. shmctl())
– Work done for co-existence: /lib64 & /lib

zArchitecture zArchitecture Address SpacesAddress Spaces

Region
Table

Segment
Table

Page
Table

0x0000000000000000

0x000003FFFFFFFFFF (4TB)

PGD PGM PGT

Address SpacesAddress Spaces

• Kernel runs in Primary Space mode
• User programs run in Home Space mode
• Copy to/from user just a MVC(L/E) in Access Register

mode with AR set for kernel/user address spaces
• Compare this to some of the other elaborate schemes

used

Address Space UsageAddress Space Usage

0000000080000000-0000000080008000 r-xp 0000000000000000 5e:01 207901 /bin/more

0000000080008000-0000000080009000 rw-p 0000000000007000 5e:01 207901 /bin/more

0000000080009000-000000008000d000 rwxp 0000000000000000 00:00 0

0000020000000000-000002000001b000 r-xp 0000000000000000 5e:01 223562 /lib/ld-2.2.2.so

000002000001b000-000002000001d000 rw-p 000000000001a000 5e:01 223562 /lib/ld-2.2.2.so

000002000001d000-000002000001f000 rw-p 0000000000000000 00:00 0

0000020000024000-0000020000028000 r-xp 0000000000000000 5e:01 223625 /lib/libtermcap.so.2.0.8

0000020000028000-0000020000029000 rw-p 0000000000003000 5e:01 223625 /lib/libtermcap.so.2.0.8

0000020000029000-0000020000170000 r-xp 0000000000000000 5e:01 223567 /lib/libc-2.2.2.so

0000020000170000-0000020000179000 rw-p 0000000000146000 5e:01 223567 /lib/libc-2.2.2.so

0000020000179000-000002000017f000 rw-p 0000000000000000 00:00 0

000003ffffffd000-0000040000000000 rwxp ffffffffffffe000 00:00 0

New Device DriversNew Device Drivers

• Tape
– 3490
– Character and block

• 3270
– Console
– Standard terminal

• Cisco Routers
• Hipersockets
• FCP (SCSI)

Device DriversDevice Drivers

• CCWs must live “below-the-bar”
• Kernel supports memory requests for under the bar

storage (GFP_DMA)
• Device drivers build CCW programs in this storage
• IDALs used to address “above-the-bar” storage

Linux for Linux for zSerieszSeries

ABI Changes

Application Binary InterfaceApplication Binary Interface

• The Executable and Linkage Format Application Binary
Interface (or ELF ABI), defines a system interface for
compiled application programs. Its purpose is to
establish a standard binary interface for application
programs on LINUX for S/390 systems.

Application Binary InterfaceApplication Binary Interface

• Defines (amongst other things):
– Data formats
– Byte layouts
– Stack layouts
– Process initialization
– Register conventions
– Routine linkage
– Parameter passing
– Returning results

Application Binary InterfaceApplication Binary Interface

• Changes required for 64-bit support
– Stack layouts
– Routine prologues
– Register conventions
– Parameter passing

• Transparent for compiled applications
• Need to understand for such things as “FFI” or “JNI” or

writing compilers

Stack Frame LayoutsStack Frame Layouts

Offset Offset Description
0 0 Back chain (a 0 here signifies end of back chain)
4 8 EOS (end of stack, not used on Linux for S390)
8 16 Glue used in other linkage formats

12 24 Glue used in other linkage formats
16 32 Scratch area
20 40 Scratch area
24-63 48-127 GPR register save area
64-79 128-159 FPR4 & FPR6 save area
96 160 Outgoing args (length x)
96+x 160+x Possible stack alignment
96+x+y 160+x+y alloca space of caller (if used)
96+x+y+z 160+x+y+z Automatics of caller (if used)

31 Bit Co31 Bit Co--existenceexistence

• ELF header indicates executable as:
– S/390
– 31 bit/64 bit

• Dynamic executables contain information regarding
location of shared libraries

• ld.so.1 or ld.64 resolves information in elf header

31 Bit Co31 Bit Co--existenceexistence

• Use ldd command to show what libraries your
executable requires

• 31 bit apps cannot use 64 bit libraries
• LD_LIBRARY_PATH environment variable overrides

internal specification of executable
• Can be set up globally or per application
• Look out for 2.1.3 glibc & 2.4 kernel disparities

31 Bit Co31 Bit Co--existenceexistence

• SuSE have /lib64 and /lib
• Apps migrated from 31-bit will find their libraries
• Programs built on 64-bit system will look in /lib64

Linux for Linux for zSerieszSeries

ThinkBlue64 –Early Experiences

ThinkBlue64ThinkBlue64

• Redhat-like distribution
• 7.1 now available
• Download from http://linux.zseries.org
• CDROM ISO image available
• 749 RPMS
• Starter system:

– Kernel (tape or VM reader)
– Initial RAMDISK (tape or VM reader)
– Parameter file

http://linux.zseries.org/
http://linux.zseries.org/

ThinkBlue64ThinkBlue64

• glibc-2.2
• Kernel 2.4.3 (2.4.5)
• Hard IRQ bug in ctcmain
• skb_buff problem with ctc
• Heaps of RPMS!

ThinkBlue64ThinkBlue64

• Starting (using NFS):
– Mount CDROM on another Linux system:

mount –o loop ThinkBlue64-disc1.iso /mnt/cdrom

– Add /mnt/cdrom to /etc/exports and restart
NFS server

– /etc/rc.d/nfsserver restart

See exports(5) for a description.
This file contains a list of directories exported to other computers
It is used by rpc.nfsd and rpc.mountd.
/mnt/cdrom 10.20.45.7(rw;no_root_squash)

ThinkBlue64ThinkBlue64

• Starting
– New option for 7.1
– Mount CDROM on another Linux image
– Use FTP option

ThinkBlue64ThinkBlue64

• Upload starter components
• Punch to and boot from reader
• Answer questions:

– IP connectivity
– NFS server location

• Telnet to starter system
• Begin install of RPMS: ./install

ThinkBlue64ThinkBlue64

• Three panels of questions:
– Disks to use and mount points: No swap
– NFS server containing RPMS
– [Repeat answers on IP addresses etc.]
– Install begins

• Install process runs zilo
• Now boot from disk

ThinkBlue64ThinkBlue64

ThinkBlue64ThinkBlue64

• Current work:
– bash2 – fixed in 7.1

• Problem with signal handling: Union of pointer and int

– Regina ported
– JDK 1.3 port ready for certification testing

• Porting invokeNative_s390.S
• Instructions: sllg r1,r1,2 versus sll r1,2

– Assessing requirements & efforts for SAG
products

JDK 1.3.0JDK 1.3.0

[usanefe@dali007 - usanefe] java -version
java version "1.3.0_02"
Java(TM) 2 Runtime Environment, Standard Edition (build Blackdown-
1.3.0_02-FCS)
Classic VM (build Blackdown-1.3.0_02-FCS, native threads, nojit)
[usanefe@dali007 - usanefe] file
/usr/local/j2sdk/bin/s390x/native_threads/java
/usr/local/j2sdk/bin/s390x/native_threads/java: ELF 64-bit MSB
executable, version 1, dynamically linked (uses shared libs), not
stripped

ThinkBlue64ThinkBlue64

• Built glibc-2.2.3 – appears quite stable
– Has make/swap-context APIs
– Required for green-thread support of Java

• Built openMotif – appears to work
• Enhanced CPINT

– 2.4 & 64-bit support
– Ability to retrieve CP return code via ioctl()
– Fixed a couple of bugs: passwords & buffer size

Early ExperiencesEarly Experiences

64-bit SuSE System

SuSESuSE SystemSystem

• All externals/procedures as per SLES7
• 2.4.17+ kernel
• glibc 2.2.4+
• Hipersocket support
• Required “nopfault” on parmline
• Bug found in ucdsnmp

– ssize_t versus int
• Worked perfectly with 8 CPUs and 3GB memory
• Problem with qdio driver - fixed

Some Problems Some Problems –– All FixedAll Fixed

• X11 “funnies”
• pthread_cancel cleanup peculiarities
• signal handler recursion
• Support of SA_SIGINFO
• CTC buffersize set at 32K

– skb_buff() failures
• pthread_create race condition
• pfault Ooopses (z/VM 4.2 fix required)

Things are changing fast…Things are changing fast…

• zfcp support
• gcc 3.1.1

Linux for Linux for zSerieszSeries

Redhat

RedhatRedhat

• 2.4.9+
• glibc-2.2.4-24
• Installed without a problem
• Configuration of hipersocket a bit of a task
• I’m Too used to YaST

Linux for Linux for zSerieszSeries

Miscellany

Shared KernelShared Kernel

• Linux in a NSS (needs gcc-3.1.1)

• Do a make image to avoid long wait caused by kernel
disassembly

+#ifdef CONFIG_SHARED_KERNEL
+ .org 0x100000
+#else

.org 0x10800
+#endif

Shared KernelShared Kernel

gcc-3.1.1

PFAULT HandlingPFAULT Handling

+#ifdef CONFIG_PFAULT
+ if (MACHINE_IS_VM) {
+ /* request the 0x2603 external interrupt */
+ if (register_external_interrupt(0x2603, pfault_interrupt) != 0)
+ panic("Couldn't request external interrupt 0x2603");
+ /*
+ * Try to get pfault pseudo page faults going.
+ */
+ if (pfault_init() != 0) {
+ /* Tough luck, no pfault. */
+ unregister_external_interrupt(0x2603,
+ pfault_interrupt);
+ }
+ }
+#endif

QuestionsQuestions

	Linux for zSeries
	Agenda
	Linux for zSeries
	z/Architecture Overview
	z/Architecture Overview
	z/Architecture Overview
	z/Architecture Overview
	z/Architecture Overview
	z/Architecture Overview
	z/Architecture Overview
	z/Architecture Overview
	z/Architecture Overview
	Linux for zSeries
	Linux for zSeries
	Linux – Intel Address Spaces
	Linux – S/390 Address Spaces
	Linux – zSeries Address Spaces
	Linux for S/390 & zSeries
	Linux for zSeries
	zArchitecture Address Spaces
	Address Spaces
	Address Space Usage
	New Device Drivers
	Device Drivers
	Linux for zSeries
	Application Binary Interface
	Application Binary Interface
	Application Binary Interface
	Stack Frame Layouts
	31 Bit Co-existence
	31 Bit Co-existence
	31 Bit Co-existence
	Linux for zSeries
	ThinkBlue64
	ThinkBlue64
	ThinkBlue64
	ThinkBlue64
	ThinkBlue64
	ThinkBlue64
	ThinkBlue64
	ThinkBlue64
	JDK 1.3.0
	ThinkBlue64
	Early Experiences
	SuSE System
	Some Problems – All Fixed
	Things are changing fast…
	Linux for zSeries
	Redhat
	Linux for zSeries
	Shared Kernel
	Shared Kernel
	PFAULT Handling
	Questions

