
Monitoring and
Understanding

Performance on Linux for
zSeries & S/390

Oliver BenkeOliver Benke
IBM Böblingen Lab

Schönaicher Str. 220
D-71032 Böblingen

Germany

Email: benke@de.ibm.com

SHARE Technical Conference
August 18-23, 2002, San Francisco

Session 9301

IBM*
the IBM logo*
OS/390*
Parallel Sysplex*
MVS
z/OS

MFSO0020

CICS*
DB2*
e-business logo*
IMS
Language Environment*

RACF*
RMF
zSeries

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

Lotus, Notes, and Domino are trademarks or registered trademarks of Lotus Development Corporation
LINUX is a registered trademark of Linus Torvalds
Penguin (Tux) compliments of Larry Ewing
Tivoli is a trademark of Tivoli Systems Inc.
Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries
UNIX is a registered trademark of The Open Group in the United States and other countries.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without
notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance,
compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

zSeriesIBM

Why Performance Measurement?

Performance Tuning, Problem drill-down,
Online Performance Monitoring & Analysis
Long-term Performance Monitoring
Benchmarking, Sizing
IBM Representatives and IBM Business
Partners have access to SIZE390 for sizing
Program development

Tracing and Profiling tools for applications or even
the operating system kernel itself

Workload Management
Service Level Agreements

What can be tuned?

CPU
I/O

DASD
Network
Channels

Memory

Forget about IDLE resources !

A mainframe can drive most resources to
their capacity limits without penalties to
critical business workloads
If one virtual server (z/OS, Linux) does not
need some resources (Channel bandwith,
CPU, ...), the hardware gives it to another
image ready to run
It is like a second level of scheduling -
multi-tasking in another dimension

Linux for zSeries: Major Benefits

Virtual Server; dynamically create and
destruct Linux server using z/VM.
Idle time of one operating system can be
used by another operating system, so you
are wasting less resources.
HiperSockets ("Network in a Box", "The
Network is in the Computer"): memory speed
networking to connect Linux images with
other Linux images or z/OS images, leading
to a client-server network in a box.

Recent z/Linux enhancements
regarding performance

SCSI using FCP
no more translation from block format to ECKD
format and back any longer

PCICA crypto support
OSA enhancements

SNMP support to retrieve management data
information like PCI Bus and CHPID Processor
Utilization, inbound/outbound transfer rates, error
rates
integrated in ucd-snmp

LPAR

A mainframe can be logically partitioned
Based on LPAR weights and on the number
of logical processors, the LPAR Hypervisor
allocates CPU resources to the different
logical partitions
If one LPAR has nothing to do, LPAR
Hypervisor gives control to another LPAR
z/OS IRD can influence the LPAR weights

z/OS IRD

Available with z/OS V1R2
Linux can be part of a z/OS LPAR cluster (in
contrast to OS/390)
For Linux, only the CPU management is
working

Adjust number of logical CPUs to reduce LPAR
overhead
Adjust LPAR weighting factors
No Dynamic Channel Management (DCM) or Channel
Subsystem Priority Queuing

Does not work for IFLs

z/VM

Second level of virtualization (or first level if
machine runs in Basic mode)
Different operating system guests can share
memory, CPU and I/O resources if running
under z/VM
Especially for V=R/F guests, the performance
can be fairly well
Very flexible
Mature systems management tools
For high end server application, think about
how much memory the application needs

z/VM V=F,R guests

The preferred V=R guest can use hardware
facilities to execute faster. V=R guests are
faster than V=F guests.
Up to five V=F and one V=R guests (if not
running z/VM under LPAR)
All V=R,F guests must reside below the 2 GB
line (z/VM 4.2)
For each QDIO device, z/VM allocates a
shadow queue below the 2 GB line (z/VM 4.2)
QDIO is most efficient if running under LPAR

Server Consolidation

zSeries, z/VM

"Server Farm in a
Box"

Horizontal Server Consolidation

Consolidate lots of under-utilized servers on
one box

Under-utilized web servers, mail servers, file servers,
print servers
ISPs, ASPs or universities can give Linux servers
with root access to their customers

For this, you definitely need z/VM
Currently, LPAR is limited to 15 logical partitions per
box
Lots of Linux images can be managed with z/VM
systems management facilities

High end client/server

SAP on high end SMP servers
DB2 on zSeries
(z/OS)

Network
(Cisco, etc.)

DB2 on zSeries
(z/OS)

SAP on zSeries
(Linux for zSeries)

HiperSockets

 Vertical Server Consolidation

Consolidate some high-end SMP servers on
Linux for zSeries

WebSphere
SAP R/3 Application Server (together with z/OS DB2
Database Server in separate LPAR on same physical
box, connected with HiperSockets)

Probably an LPAR game
Faster
Only few images needed
A Linux partition can be part of a z/OS LPAR cluster,
so z/OS IRD can adjust LPAR weights

Sure, you can combine horizontal and
vertical server consolidation, perhaps 4
high-end virtual servers under LPAR and 1
VM LPAR for test systems and low-end
server applications

Scalability of the Linux kernel

On zSeries, Linux kernel 2.4 scales really
well; you can efficiently burn all the power of
a full-blown z900 with very few Linux and/or
z/OS images
Linux kernel 2.2 does not scale well, even on
zSeries hardware
If you'd like to exploit Linux kernel 2.2, let
z/VM do the scalability work for you: define
lots of Linux operating systems scheduled
and managed by z/VM

Scalability Limits and Scheduling
Overhead

PR/SM LPAR Hypervisor

z/VM Hypervisor

Linux Scheduler

Application Middleware

IBM S/390 or zSeries Hardware

LPAR 1 LPAR 2 LPAR 3

z/VM

Linux
SAP R/3

z/OS
DB2

z/OS
Test

Linux
Test

Linux
Apache

Linux
Mail

Some performance
related UNIX and Linux

concepts

Load average

Average number of processes in the "run"
queue
A runnable process is one that is ready to
consume CPU resources right now; a
process waiting for I/O is not runnable
A high load average value (in relation to the
number of physical processors) is an
indicator for latent demand for CPU

CPU performance data reported by
Linux

You can use it for accounting if running
Linux under LPAR (although LPAR CPU data
obtained by a hardware interface is more
precise)
If running under z/VM, data reported by Linux
can become pretty incorrect. Linux will not
notice if z/VM gives all CPU resources to
some other guest!

Linux Page Cache

The page cache contains pages of memory
mapped files (page I/O related syscalls like
generic_file_read)
It usually contains unneccessary files which
can be freed, and the kernel actually discards
those pages if it runs out of free memory
On Intel Linux or for Linux running in a
LPAR, the page cache is always useful as the
memory would be wasted otherwise. But
running under z/VM, it may cost valuable
z/VM memory, leading to z/VM page activity.

Linux Buffer Cache

A similar important Linux kernel data
structure is the so-called Buffer Cache which
contains pages read from or written to
physical devices like DASDs (block I/O
related syscalls)
Linux rarely has free space; everything not
used is allocated for Page Cache and Buffer
Cache, so even if Linux does not really need
it all, it uses all available memory up to the
last few percent.

Double Paging

Possible for Linux under z/VM, running V=V
mode (not possible for V=R,F)
Assume page A is marked "swapped in" by
Linux but paged out by z/VM; now, if Linux
would like to page this page A out, first z/VM
needs to page it in in order to enable Linux to
page it out
If Linux wants to page out a whole bunch of
pages which were paged out previously by
z/VM (not an unrealistic scenario), the
system has to do a whole lot of work
z/VM PAGEX support: Linux can give up a
time slice if blocked on I/O due to double
paging activity

Double Paging: Illustration
Linux real mem VM real memory VM page

pA
pB
pC
pD
pE
pF
pG
pH
pI

pB

pG

pA

pC
pD
pE
pF

pH
pI

Linux page mem:
pJ pK pL pM

pA

pA

Linux swap to VM virtual disc

One solution would be to give Linux less
memory and allocate a z/VM virtual disk for
Linux swap space
As on other platforms, avoid paging if
possible, as it kills performance;
virtualization is great, but has its drawbacks
especially for memory (so dedicated LPAR
memory can actually be an advantage for
some high-end applications)
You can also use XPRAM (z/VM expanded
storage) or a z/VM minidisk for Linux paging
More details on how to efficiently use
memory under z/VM are described in the
ISP/ASP redbook (SG24-6299)

Linux Process memory: basic terms

SIZE: size of the address space seen by the
process, virtual size
RSS: Resident Set Size
actual amount of memory that the process is
using in RAM
SHARE:
portion of the RSS that is shared with other
processes, such as shared libraries

Processes and Threads
In contrast to some commercial UNIX
implementations, in Linux a thread is pretty
much the same as a process, it just does not
have an own address space

For the scheduler, a posix thread is almost like a
process
In the /proc file system (see below), there is no
difference between a process and a thread; so if you
are monitoring your system, your threads might
appear like processes on first sight

As an alternative, user-space thread libraries
are available today
Outlook: Next Generation POSIX Threading

make Linux strong and competitive even for lots of
threads
Support integrated in Linux 2.5.17 kernel, high
probability it will become standard in future
see http://www-124.ibm.com/pthreads/

jiffies

Derived from PC timer interrupt (100 Hz)
Every time a timer interrupt occurs (100
times per second), the jiffies variable is
incremented by one, that is one tick
CPU usage is accounted on in units of jiffies
If a process is running at the time the timer
interrupt occurs, its CPU usage counter is
incremented
Accuracy (10 msec) might be enhanced in
future Linux versions
Jiffie-based performance measurement is
wrong if running under z/VM

When does the "jiffie event" take place?

Apache

Java VM

user space

system
space

user
space

system
space

user
space

t1 t2 t3t3 t4 t5 t6

On demand timer patch

For an idle Linux image running under z/VM, CPU
resources are used up mainly for generating the jiffie
If you apply this patch, jiffies are generated on deman
However, the switch between user and kernel mode i
slightly slower; therefore, if running under LPAR, the
system gets slower if this patch is applied
see
http://www10.software.ibm.com/developerworks/opensou
linux390/current2_4_17-may2002.shtml#timer20020531

Process priorities

Process priority can be changed with nice/
renice commands
Highest priority is -20, lowest priority is 19
In addition, each process has a dynamic
priority in Linux; a heavy CPU consumer has
a worse dynamic priority than a process
mainly doing I/O, giving up the CPU before
the end of the time slot
In Linux 2.5, the scheduler will be replaced
by Ingo Molnars O(1) scheduler

System log

Linux default: /var/log/messages
Most applications are writing their error
messages to /var/log/messages
You should monitor the system log to find
out if something went really wrong.

The /proc filesystem

Virtual file system
One of the interfaces between kernel space
and user space; if the user gives a command
like
cat /proc/stat

the kernel executes some function to
generate the needed "virtual file"
Parts of the /proc filesystem are human
readable
Most performance measurement tools for
Linux are based on /proc file system

/proc/dasd/statistics

Only available in Linux for zSeries, kernel
version 2.4
Used in rmfpms to calculate the following
metrics:

dasd io average response time per request (in msec)
dasd io average response time per sector (in msec)
dasd io requests per second

/proc/dasd/statistics (continued)

cat /proc/dasd/statistics
3156192 dasd I/O requests
__<4 ___8 __16 __32 __64 _128 _256 _512 __1k __2k __4k __8k _16k _32k _64k 128k
_256 _512 __1M __2M __4M __8M _16M _32M _64M 128M 256M 512M __1G __2G __4G _>4G
Histogram of sizes (512B secs)
 0 6164 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O times
 0 0 0 0 0 0 0 0 736 628 719 952 1346 1310 448 15
 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O times per sector
 0 0 0 0 0 736 628 719 952 1346 1310 448 15 4 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time till ssch
 710 218 150 28 22 94 63 8 318 374 457 794 1271 1245 384 14
 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between ssch and irq
 0 0 0 0 0 0 0 0 3505 2072 414 147 19 2 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between ssch and irq per sector
 0 0 0 0 0 3505 2072 414 147 19 2 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between irq and end
 3 1199 959 3817 132 12 7 4 3 5 6 6 3 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/proc/stat
$ > cat /proc/stat
cpu 58975 2084 34136 158972653
cpu0 7792 1064 15454 26486998
cpu1 32631 993 15340 26462344
cpu2 17308 27 2320 26491653
cpu3 1240 0 614 26509454
cpu4 4 0 300 26511004
cpu5 0 0 108 26511200
page 188768 6603424
swap 0 0
intr 0
disk_io:
ctxt 1781988
btime 1011713660
processes 9867

/proc/slabinfo

statistics for frequently used kernel objects
cat /proc/slabinfo
slabinfo - version: 1.1 (SMP)
kmem_cache 68 68 232 4 4 1 : 252 126
nfs_read_data 0 0 384 0 0 1 : 0 62
nfs_write_data 0 0 400 0 0 1 : 0 62
nfs_page 0 0 80 0 0 1 : 0 126
tcp_tw_bucket 1 40 96 1 1 1 : 0 126
tcp_bind_bucket 136 203 16 1 1 1 : 0 126
tcp_open_request 59 59 64 1 1 1 : 0 126
inet_peer_cache 0 0 48 0 0 1 : 0 126
ip_fib_hash 8 203 16 1 1 1 : 0 126
ip_dst_cache 50 72 160 3 3 1 : 0 126
arp_cache 1 70 112 1 2 1 : 0 126
blkdev_requests 768 800 96 20 20 1 : 0 126
dnotify cache 0 0 20 0 0 1 : 0 126
file lock cache 173 240 96 5 6 1 : 0 126
fasync cache 0 0 16 0 0 1 : 0 126
uid_cache 3 113 32 1 1 1 : 252 126
skbuff_head_cache 132 405 144 14 15 1 : 252 126
sock 85 90 816 17 18 1 : 124 62
inode_cache 28776 30296 464 3787 3787 1 : 124 62
bdev_cache 3 78 48 1 1 1 : 252 126
sigqueue 176 203 132 7 7 1 : 252 126
kiobuf 0 0 128 0 0 1 : 252 126
ccwcache-4096 0 0 4096 0 0 1 : 60 30
ccwcache-2048 4 10 2048 2 5 1 : 60 30
ccwcache-1024 118 128 1024 30 32 1 : 124 62

Trace facilities (Kernel patches)
Take note on what was actually done directly
in the kernel; generate trace data for some
system activities
Advantages:

High flexibility
Possibility to provide very accurate and efficient
tools

Drawbacks:
Has to be adopted and enabled by distributors (SuSE,
RedHat); otherwise, those installing the patch are
losing their service contract

Example projects:
IBM dprobes
http://www.ibm.com/developerworks/
 oss/linux/projects/dprobes/
LTT (yes, it supports S/390)
http://www.opersys.com/LTT/

Alternative: Cycle Gatherer

Cycle Gatherer: "Every 10 msec, make note
on which processes are currently running on
each of the CPUs."
Trace Facility: "Every time the scheduler
decides to switch to another process, make
note on it."

Classical UNIX tools for
monitoring

sysstat package (sar, sadc)
top
ps
vmstat
free
strace
...

top

Nice option: "f - u - enter" to see what the
process is waiting for

ps - report process status

common set of parameters:
ps aux
single out a user:
ps u --User apache

bash-2.05# ps aux|more
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 1536 160 ? S Jan22 0:12 init
root 2 0.0 0.0 0 0 ? SW Jan22 0:00 [kmcheck]
root 3 0.0 0.0 0 0 ? SW Jan22 0:00 [keventd]
root 4 0.0 0.0 0 0 ? SW Jan22 0:22 [kswapd]
root 5 0.0 0.0 0 0 ? SW Jan22 0:00 [kreclaimd]
root 6 0.0 0.0 0 0 ? SW Jan22 0:00 [bdflush]
root 7 0.0 0.0 0 0 ? SW Jan22 1:05 [kupdated]
root 63 0.0 0.0 0 0 ? SW< Jan22 0:00 [mdrecoveryd]
root 248 0.0 0.0 0 0 ? SW Jan22 0:00 [keventd]
root 310 0.0 0.2 1732 292 ? S Jan22 0:12 syslogd -m 0
root 315 0.0 0.6 2088 768 ? S Jan22 0:00 klogd -2
rpc 325 0.0 0.0 1732 120 ? S Jan22 0:00 portmap
rpcuser 338 0.0 0.1 1844 140 ? S Jan22 0:00 rpc.statd
root 385 0.0 0.6 3180 800 ? S Jan22 0:00 /usr/sbin/sshd
root 401 0.0 0.4 2876 512 ? S Jan22 0:00 xinetd

The Process forest

See process together with their parents or
children with the pstree command

time

Find out how many CPU resources a
command is taking
Example:
$ > time make dep
...
72.52user 8.87system 2:03.72elapsed 65%CPU
(0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (131158major+106391minor)
pagefaults 0swaps
$ >

elapsed: real time elapse
user: time this command (and its

children) have spent in
user space

sys: time spent in kernel space

"netstat -s" for detailed network
statistiscs

$ > netstat -s
Ip:
 3608 total packets receivedgs
 0 forwardedonnection openings
 0 incoming packets discarded
 3587 incoming packets delivered
 4080 requests sent outhed
Icmp:493 segments received
 4 ICMP messages received
 0 input ICMP message failed.
 ICMP input histogram:ed.
 echo requests: 4
 4 ICMP messages sent
 0 ICMP messages failed
 ICMP output histogram:ort received.
 echo replies: 4rors
Tcp:112 packets sent
 7 active connections openings
 0 passive connection openings
 0 failed connection attempts
 0 connection resets received
 3 connections established
 3493 segments received
 3964 segments send out
 10 segments retransmited
 0 bad segments received.
 13 resets sent
Udp:
 111 packets received
 0 packets to unknown port received.
 0 packet receive errors
 112 packets sent
TcpExt:

TcpExt:
 ArpFilter: 0
 TW: 6
 TWRecycled: 0
 TWKilled: 0
 PAWSPassive: 0
 PAWSActive: 0
 PAWSEstab: 0
 DelayedACKs: 71
 DelayedACKLocked: 0
 DelayedACKLost: 0
 ListenOverflows: 0
 ListenDrops: 0
 TCPPrequeued: 114
 TCPDirectCopyFromBacklog: 0
 TCPDirectCopyFromPrequeue: 3585
 TCPPrequeueDropped: 0
 TCPHPHits: 312
 TCPHPHitsToUser: 41
 TCPPureAcks: 1668
 TCPHPAcks: 283
 TCPRenoRecovery: 0
 TCPSackRecovery: 0
 TCPSACKReneging: 0
 TCPFACKReorder: 0
 TCPSACKReorder: 0
 TCPRenoReorder: 0
 TCPTSReorder: 0
 TCPFullUndo: 0
 TCPPartialUndo: 0
 TCPDSACKUndo: 0
 TCPLossUndo: 3
 TCPLoss: 0

free

Give free memory; important is the second
line, as buffer/cache memory is not really
needed by Linux

vmstat

Gives information about memory, swap
usage, I/O activity and CPU usage

bash-2.05# vmstat 1 10
 procs memory swap io system cpu
 r b w swpd free buff cache si so bi bo in cs us sy id
 1 1 0 0 18608 4424 51516 0 0 0 4 0 1 0 0 4
 0 1 0 0 17884 4912 51516 0 0 488 0 0 711 0 6 93
 0 1 0 0 17224 5388 51516 0 0 476 0 0 512 0 9 90
 0 1 0 0 16480 5800 51516 0 0 412 1196 0 447 1 7 93
 0 1 0 0 14672 7016 51516 0 0 1220 0 0 1268 1 12 87
 0 0 0 0 13832 7504 51516 0 0 484 0 0 571 1 3 97
 0 1 0 0 12848 8080 51516 0 0 576 0 0 628 1 7 92
 0 1 0 0 12228 8456 51544 0 0 376 0 0 480 2 14 84
 0 1 0 0 11508 8932 51544 0 0 476 1260 0 530 0 6 94
 0 1 0 0 10540 9568 51544 0 0 636 0 0 674 1 6 93

strace

Example:
strace -p 6148

to trace all system calls by process with ID
6148
Usage:

As you can see what the process is doing, you may
be able to tune it
If you suspect a process to loop, you may check
using strace; if the process consumes CPU but does
not initiate any system call, it may be looping

Example: "strace ping <hostname>"

bash-2.05# strace ping lnxbenk1
execve("/bin/ping", ["ping", "lnxbenk1"], [/* 23 vars */]) = 0
uname({sys="Linux", node="gfree18", ...}) = 0
brk(0) = 0x80017bd8
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or
directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=31761, ...}) = 0
mmap(NULL, 31761, PROT_READ, MAP_PRIVATE, 3, 0) = 0x2000001c000
close(3) = 0
open("/lib/libresolv.so.2", O_RDONLY) = 3
read(3, "\177ELF\2\2\1\0\0\0\0\0\0\0\0\0\0\3\0\26\0\0\0\1\0\0\0"..., 1024) =
1024
fstat(3, {st_mode=S_IFREG|0755, st_size=95105, ...}) = 0
mmap(NULL, 92712, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) =
0x20000024000
mprotect(0x20000037000, 14888, PROT_NONE) = 0
mmap(0x20000037000, 8192, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED, 3, 0x12000) = 0x20000037000
mmap(0x20000039000, 6696, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x20000039000
close(3) = 0

file system usage

df, du

bash-2.05# df
Filesystem 1k-blocks Used Available Use%
Mounted on
/dev/dasd/6148/part1 2366164 1040288 1205680 47% /
bash-2.05# du | more
28 ./lost+found
6332 ./bin
32448 ./boot
0 ./dev/pty
0 ./dev/pts
0 ./dev/3270
0 ./dev/rd
0 ./dev/dasd/6148
0 ./dev/dasd/6149
0 ./dev/dasd
0 ./dev/discs
0 ./dev/loop
0 ./dev/md
0 ./dev
20 ./etc/X11/applnk/Utilities

inode utilization

In UNIX, an inode is a structure containing
meta data about files and directories.
The number of inodes is limited, can be
changed at filesystem creation time.
If you are running out of inodes, you can not
store anything more on this filesystem.
Check with "df -i" command:

BSD Accounting

Writes one accounting record per terminated
process or thread (as threads are something
like processes in Linux...)
Currently, SuSE decided to disable this
feature for performance reasons
Information provided:

user ID, group ID, process name
CPU resource consumption
average memory usage, page faults, swap activity

An alternative to accounting Linux "from the
inside" is accounting it "from the outside",
with the aid of z/VM or z/OS performance
tools

sysstat package

Contains sar and sadc, long term data
collector
Normally, it collects data about overall
system activity like CPU usage, swapping;
no data about processes
start with
$ > sadc 60 /var/log/sa/sa25 &

to let it generate one report every 60 seconds
and write it in binary format to
/var/log/sa/sa25

http://freshmeat.net/projects/sysstat/

Mainframe-related Tools

Some zSeries performance data is
currently only available in z/VM or z/OS
performance monitors

Coupling facility activity
LPAR partition data, VM CPU activity
Channel utilization (including OSA cards,
HiperSockets)

Tools like z/OS RMF PM and z/VM
FCON can display Linux performance
data together with z/OS or z/VM
performance data

rmfpms

Long term data gathering
XML over HTTP interface
independant from z/OS; with z/OS, you can
also have an LDAP interface to Linux
performance data
Modular architecture
see http://www.s390.ibm.com/rmf/rmfhtmls/
pmweb/pmlin.htm

rmfpms (continued)

Integrated with z/OS RMF PM and z/VM FCON
If you have a mixed environment with z/OS and Linux
or z/VM and FCON, you can have all relevant
performance metrics in one application
Data reported by host tools like RMF (LPAR CPU
performance data, iQDIO channel utilization, etc.) is
very relevant for Linux; unfortunately, we cannot
make all this data available for Linux currently
If you have a mixed environment with z/OS, z/VM and
Linux, you currently might need third-party systems
management software like Tivoli DM

FCON is IBM's strategic tool for z/VM
performance monitoring

RMF PM Java Client

RMF PM Java Client (continued)

Developed for OS/390 and z/OS
positioned for online performance analysis
and problem drill-down
Can monitor multiple Linux server and
multiple z/OS or OS/390 Sysplexes at the
same time, in one application
The performance analysis scenario can be
saved

RMF PM: Save data in WK1 format

RMF PM: Spreadsheet Converter

RMF PM Web Browser Interface

... same technology for z/OS

IBM FCON/ESA V.3.2.03

VM/ESA Full Screen Operator Console and
Graphical Realtime Performance Monitor
(5788-LGA) is IBM's strategic z/VM performance
monitor. As it can display performance data
collected by rmfpms in Linux, you can see VM and
Linux performance data in one application.

The developer is Eginhard Jaeger
(ja@ch.ibm.com), IBM Switzerland.

FCON: The Wishlist

FCON/ESA
VMPRF

RTM/ESA
Full Screen
Operation

CP Monitor Data

Trend File OutputCentral Monitoring Remote Perf.

Data Retrieval
Internet Interface

Ba
tc

h
M

od
e

Pr
oc

es
si

ng

VM
CF

 In
te

rfa
ce

Diag. X'04' Data

Realtime Displays

History DataProcessing Graphics

Automation

Rep
ort

s

Perf. Displays

Printed Performance
 Reports

Th
re

sh
old

& Lo
op

Mon
ito

rin
gLinux Data?

Numerica
l R

eportin
g

 on Trend File Data

Full Java
 Client

Accessing Linux Performance Data
Concept

 FCONX
LINUX1
(LPAR)

LINUX2
(LPAR)

D
D
S

D
D
S

D
D
S

D
D
S

LINUX3

T
C
P
/
I
P

FC MONCOLL LINUXUSR ON

Linux
Inter-
face

D
D
S

z/OS

z/VM

RMF PM Java Client

Accessing Linux Perf. Data ...
System Definition

File FCONX LINUXUSR

** Initialization file with IP address definitions **
** for Linux systems that may have to be monitored. **

*
LINUX1 1.111.111.111:8803
LINUX2 2.222.222.222:8803
LINUX3 3.333.333.333:8803
...
...

Defines IP addresses of Linux systems from which performance data
may have to be retrieved.
You can only monitor systems defined in this file!

LPAR Partition Data (from z/OS RMF)

HiperSockets display in VM FCON

 FCX231 CPU 2064 SER 51524 Interval 06:55:22 - 06:56:22 Perf. Monitor

 _______
 <----------------- Hipersocket Activity/Sec. ----------------->
 Channel <--- Total for System ---> <--------- Own Partition --------->
 Path <-Transferred--> Failed <-Transferred--> <--- Failed ---->
 ID Shrd T_Msgs T_DUnits T_NoBuff L_Msgs L_DUnits L_NoBuff L_Other
 FB No 0 0 0 0 0 0 0
 FC No 0 0 0 0 0 0 0
 FD No 0 0 0 0 0 0 0
 FE No 0 0 0 0 0 0 0

 C H A N N E L P A T H A C T I V I T Y
 PA
 z/OS V1R2 SYSTEM ID CB88 DATE 07/22/2001 INTERVAL 22.54.336
 RPT VERSION V1R2 RMF TIME 15.37.05 CYCLE 1.000 SECONDS

 IODF = 01 CR-DATE: 05/10/2000 CR-TIME: 21.00.01 ACT: POR MODE: LPAR CPMF: EXTENDED MODE

 OVERVIEW FOR DCM-MANAGED CHANNELS

 CHANNEL UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC)
 GROUP G NO PART TOTAL BUS PART TOTAL PART TOTAL

 FC_SM 1 8 15.36 55.86 6.00 15.36 60.00 15.36 60.36
 FCV_M 12 30.00 45.00 5.00 45.00 50.00 45.00 50.00
 CNC_M 1 17.23 34.45

 DETAILS FOR ALL CHANNELS

 CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(
 ID TYPE G SHR PART TOTAL BUS PART TOTAL PART TOTAL ID TYPE G SHR PART TOTAL BUS PART TOTAL PART

 78 CVC_P OFFLINE 80 CTC_S OFFLINE
 79 CNC_S OFFLINE 81 CNC_S 0.04 0.04
 7A FC 1 Y 20.00 30.00 5.00 20.00 30.00 20.00 50.00 82 FC Y 20.00 30.00 6.00 20.00 30.00 20.00
 7B FC_SM Y 15.36 55.86 6.00 15.36 60.00 15.36 60.36 83 FC 1 Y 15.36 55.66 7.00 15.36 60.00 15.36
 7C FCV Y 10.00 30.00 5.00 10.00 50.00 10.00 50.00 84 FCV Y 10.00 30.00 5.00 10.00 50.00 50.00
 7D FCV_M Y 30.00 45.00 5.00 45.00 50.00 45.00 50.00 85 FCV Y 30.00 45.00 6.00 45.00 50.00 45.00
 7E CNC_M 17.23 34.45 86 CNC_S 0.00 0.00
 7F CNC_S OFFLINE 8C CNC_S 0.00 0.00

 CHANNEL PATH WRITE(B/SEC) MESSAGE RATE MESSAGE SIZE SEND FAIL RECEIVE FAIL
 ID TYPE G SHR PART TOTAL PART TOTAL PART TOTAL PART PART TOTAL

 AB IQD Y 645.12M 2500.2G 850.23K 4.2K 760.12 779.56 12 85 120

HiperSockets Display in z/OS RMF

Interface between Linux kernel and
z/VM CP

CP device driver, developed by Neale
Ferguson; interface between Linux and z/VM
http://penguinvm.princeton.edu/programs
(cpint.tar.gz)
"#cp ind user" in Linux console:
CP IND
AVGPROC-069% 07
XSTORE-000037/SEC MIGRATE-0000/SEC
MDC READS-000001/SEC WRITES-000000/SEC HIT RATIO-094%
STORAGE-024% PAGING-0000/SEC STEAL-000%
Q0-00071 Q1-00000 Q2-00000 EXPAN-001 Q3-00000
EXPAN-001

Example Scenario

The following Linux image may be
completely idle:

$ > top 12:30pm
up 4 min, 2 users, load average: 0.02, 0.07, 0.03
24 processes: 23 sleeping, 1 running, 0 zombie, 0 stopped
CPU0 states: 0.1% user, 19.1% system, 0.0% nice, 80.8% idle
CPU1 states: 0.0% user, 23.2% system, 0.0% nice, 76.8% idle
...

... as z/VM is heavily loaded and does not
give Linux many resources, so even for
simple tasks, Linux needs about 20% of its
CPU resources just to do almost nothing:

$ > #CP IND
 AVGPROC-099% 07
 ...

Conclusion

zSeries virtualization technologies are far
away from any competitive platform
HiperSockets allow you to combine strength
of Linux and z/OS; network elimination has
lots of advantages
Understand what can happen if you
over-commit your memory under z/VM
For tuning in an environment where every
resource can be shared between
heterogeneous instances, you need
information from all layers (like LPAR
Hypervisor, z/VM, Linux operating system,
DB2 and SAP)
Think about LPAR for high-end applications

Further Reading

Linux on zSeries and S/390: Systems
Management Redbook, SG24-6820
Linux for IBM eServer zSeries and S/390:
"ISP/ASP Solutions" Redbook, SG24-6299
Jason R Fink & Matthew D Sherer: "Linux
Performance Tuning and Capacity Planning",
SAMS 2001, ISBN 0-672-32081-9

Related Sessions

2590: Linux for zSeries Performance Update
by Klaus Bergmann/ Ulrich Weigand
2591: Details of Linux for zSeries
DASD-Performance by Klaus Bergmann
(cancelled)
9322: Measuring and Tuning Linux on VM
and Other Platforms by Barton Robinson
... and many many more sessions in the
Linux and VM tracks

Questions

Email: benke@de.ibm.com

