

Changes and Enhancements

Acknowledgements

- Larry Woodman Technical
 Director/Kernel Engineering, Mission
 Critical Linux
- Joe Pranevich
- Thomas Wolfgang Burger

Background

Linux 0.95 in 1991 First release to public via Internet Linux 2.0 Starting to get public notice Linux 2.2 New file systems Redesign of caching Greater scalability Linux 2.4

Overview

- Linux kernel architecture features
- Linux kernel hardware support features
- File System Enhancements
- Networking Enhancements
- Device Support Enhancements

- ELF and POSIX Foundation
 - More dependent on ELF
 - More POSIX compliant:
 - Clocks and Timers support

- Memory Usage About the same as 2.2 Shared Memory More compliant with Industry standards

 - Introduces a special "shared memory" filesystem

2.2 Page Replacement Problems

- Page eviction
- Simplistic NRU replacement
- Clock algorithm can evict accessed pages
- Sub-optimal reaction to variable load or load spikes after inactivity

2.4 Improvements:

- Finer-grained SMP locking
- Unification of buffer and page caches
- Support for larger memory configurations
- SYSV shared memory code replaced
- Page aging reintroduced
- Active & inactive page lists
- Optimized page flushing
- Controlled background page aging
- Aggressive readahead

SMP locking optimizations

- Use of global "kernel_lock" was minimized.
- More subsystem based spinlock are used.
- More spinlocks embedded in data structures.
- Semaphores used to serialize address space access.
- More of a spinlock hierarchy established.
- Spinlock granularity tradeoffs.

- Increased number CPUs supported
 - Static increase of maximum CPUs to 64.
 - Realistic scalability of up to 8 CPUs.
 - Bus saturation
 - SMP locking
 - Scheduler optimizations speed up selection of threads and context switching.

Kernel multi-threading improvements

- Multiple threads can access address space data structures simultaneously.
- Single mem->msem semaphore was replaced with multiple reader/single writer semaphore.
- Reader lock is now acquired for reading per address space data structures.
- Exclusive write lock is acquired when altering per address space data structures.

32 bit UIDs and GIDs

- Increase from 16 to 32 bit UIDs allow up to 4.2 billion users.
- Increase from 16 to 32 bit GIDs allow up to 4.2 billion groups.

64 bit virtual address space

- Architectural limit of the virtual address space was expanded to a full 64 bits.
- IA64 currently implements 51 bits (16 disjoint 47 bit regions)
- Alpha currently implements 43 bits (2 disjoint 42 bit regions)
- S/390 currently implements 42 bits
- Future Alpha is expanded to 48 bits (2 disjoint 47 bit regions)

Unified file system cache

- Single pagecache was unified from previous pagecache read/buffermem write functionality
- Eliminates copying buffers from buffermem to pagecache on file read operations.
- Reduces memory consumption by eliminating double buffered copies of file system data.
- Eliminates overhead of searching two levels of data cache.

Distributed Interrupts

- Hardware interrupt service routines can be processed simultaneously on all CPUs.
- Software interrupts (softIRQs) can be processed simultaneously on all CPUs.
- SMP spin locks are maintained within device specific data structures.

Increased number of threads and tasks

- Default maximum number of tasks/address spaces was increased.
- Default maximum number of threads per task was increased.
- Configuration of both maximums was changed to be runtime tunable via /proc file system.
- Scheduler optimizations minimize overhead of context switching between sibling threads.

- IA64 Port and Architecture Optimizations
 - Support for IA64 processor features:
 - IA64 specific TLB optimizations.
 - Large rotating register file.
 - IA64 SMP specifics.
 - IA64 IO specifics.
 - 64 bit virtual address space.
 - Itanium is actually 51 bits; sixteen 47 bit regions.
 - NUMA support under development.

- Alpha Architecture Optimizations
 - 64 bit virtual address space.
 - EV67 is 43 bits; half user, half kernel.
 - EV7 supports 48 bits; half user, half kernel.
 - **2TB(41 bit) physical address limit.**
 - Highly accurate SMP compatible processor time optimizations.
 - NUMA support under development.

S/390 Architecture Optimizations

- 64 bit virtual address space
 - 42 bits used separate address spaces for users & kernel
- 16EB physical address limit.
- Highly accurate SMP compatible processor time optimizations.
- NUMA support under development.

- BIGMEM for IA32 (and other 32 bit systems)
 - 1GB physical memory limitation in the Linux kernel.
 - 4GB physical memory limitation for 32 bit systems.
 - 4GB physical memory optimizations in the Linux kernel.
 - 64GB physical memory using PAE on IA32.

Special instructions for some processors

- Use of processor specific memory transfer instructions for:
 - Intel Pentium
 - AMD
 - Cyrix
 - WinChip

2.4 Kernel Hardware Support Features

- NUMA infrastructure
 - Machine independent Non-Uniform Memory Architecture (NUMA) infrastructure.
 - Support for:
 - multiple memory domains
 - processor subsets
 - binding of devices and interrupts to processors
 - Machine dependent NUMA portion under development for multiple architectures.

File System size increase

- File system data offset was increased from 31 bits to 44 bits in the VFS layer.
 - Increases file system size to 16TB.
 - Increases individual file size to 16TB.
 - Still need to consider file system overhead...
- Several local file systems have been enhanced to take advantage of larger files.

- VFS layer redesign to use single cache
 - buffermem and pagecache functionality was unified in 2.4
 - VFS layer was changed to use pagecache for generic file read() and write() operations.
 - Eliminated coping between buffermem and pagecache.
 - Saves memory be eliminating multiple copies of buffered file system data.

- RawIO support to bypass file system cache
 - New RawIO interface was added to file systems.
 - This results in:
 - DMA directly to buffer wired in user address space.
 - Bypassing the pagecache.
 - Eliminates coping between pagecache pages and user buffer pages.
 - More efficient for databases.

- Several Journaling File Systems introduced
 - Pending file system updates are continually maintained in a single journal file.
 - The FSCK at reboot time is reduced to replaying the journal.
 - Speeds up reboot FSCK by several orders of magnitude.
 - ext3fs, reiserfs, xfs

- Inclusion of Logical Volume Manager into the Linux kernel
 - Allows file systems to span multiple disks.
 - Dynamic runtime resizing of file systems.
 - More flexible file system device management.
 - Standards compliant.
 - Familiar to users of commercial UNIX.

- Network re-write for optimal performance
 - Redesigned to take advantage of improved multitasking and multithreading.
 - Improvement performance for simultaneous/multiple network interfaces.
 - Distributes networking load much more evenly on SMP systems.
 - Kernel uses wakeup_one to minimize wasted cycles

Kernel Networking Enhancements

- Firewall and IP functions placed in kernel
- Network subsystem split:
 - Packet filtering layer
 - Network Address Translation layer
- PPP code rewritten and modularized
- ISDN updated to support many new cards
- PLIP improved
- DECnet & ARCNet protocols supported
- Autodetection of Windows shares based on SMB
- Completely compatible to the letter of IPv4 spec

iptables/netfilter replacement for ipchains

- Linux 2.2 replaced ipfwadm with ipchains.
- Linux 2.4 replaced ipchains with iptables, also known as netfilter.
 - Includes capabilities to construct more sophisticated firewalls.
 - Can be used to implement NAT for supporting masqueraded private networks
 - Compatible with ipfwadm and ipchains command syntax.

Kernel based HTTP daemon

- khttpd is a kernel daemon module which serves static web pages.
- Can cooperate with Apache and other web servers to serve dynamic web pages.
- Will result in significant web benchmarking improvement (SpecWeb, etc).

- Fully compatible NFSv3 implementation
 - Fully compatible with version 3 of NFS distributed by Sun Microsystems.
 - Eases the burden of Linux sysadmins who maintain heterogeneous environments.
 - Also compatible with:
 - DECnet
 - ARCnet

- 2.4 Supports:
 - Up to 10 IDE controllers
 - Up to 16 ethernet cards
 - Multiple AIPCs
 - SCSI TCQ (tagged command queuing)
 - RAID devices
 - ATM

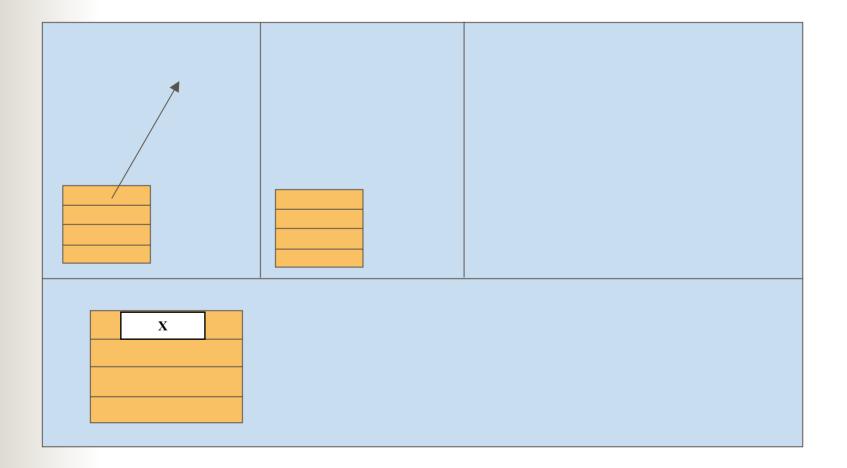
Buses

- Integrated into the new resource management subsystem
- Plug-N-Play
 - ISA & S/390 device configuration and detection

USB

- I2O supported (PCI extension)
- PCMCIA support integrated

Framebuffers


- New drivers and improvements to old
- Support of many more "standard" VGA cards

- Keyboards, Mice, Consoles, and Ports
 - USB support of keyboards and mice
 - Ability to redirect console output to parallel port
 - Serial support has same limitations as 2.2
 - Parallel port support has been overhauled
 - New generic driver
 - DMA support
 - IRDA support
 - Little work done on "WinModems"

- Accessibility
 - Support for speech synthesizer card
- Multimedia
 - No ground breaking changes
 - Updates and new drivers for variety of cards
 - Including full duplex support
 - Ease of configuration enhancements

- S/390 Devices
 - **3270** as console and terminal
 - Tape support
 - Hipersockets
 - z/OS formatted disk (VTOC & DCBs)
 - PAGEX support (VM only)
 - Kernel in NSS (VM only)

PAGEX/PFAULT Support

PAGEX/PFAULT Support

- Eliminate overhead of double paging
- Page fault by Linux virtual machine usually puts it in wait state until VM gets page
- PAGEX/PFAULT handshaking allows VM to inform Linux of page request and have it dispatch another process
- When page operation is complete VM signals
 Linux again so it can mark task as dispatchable

PAGEX/PFAULT Support

PAGEX

- PROG 14 interrupt
- 32-bit only
- PFAULT
 - External interrupt (x'2603')
 - **32 & 64-bit systems**
 - z/VM 4.2 required

What's still needed?

- Greater scalability above 8 processors
- NUMA
- Improved fiber-channel handling (requires an inappropriate amount of hand waving to work)
- >1TB per file system limit
- Poor I/O throughput on x86 class machines with very large amounts of memory
- Basic fail-over is there but not advanced clustering
- Logical volume manager needs more work