Taming Your Storage Hungry Linuxen Using CMM(A)

David Kreuter
Denver SHARE
Session 9272
Taming Storage Hungry Linux Virtual Machines

• Problem case study
• CMM 1 – software controls service machine communication
• CMMA (CMM – 2) – hardware storage key bit settings
• Descriptions
• Scenarios
• Performance data
Tools

- CP commands
 - INDICATE, QUERY, XAUTOLOG, FORCE, SET
- CMS: REXX, PIPELINES
- CP MONITOR DATA
- Velocity products
- Linux commands:
 - cat, lsmod, ls, grep, vi, top, nice, cp, mv, rm
• Linux on System z support for CMM1 is available in:
 – Novell SUSE Linux Enterprise Server 9 (SLES9) SP3 since
 kernel level: kernel-s390(x)-2.6.5-7.257 dated 2006-05-16
 – Novell SUSE Linux Enterprise Server 10 (SLES10) since GA
 – Red Hat RHEL4 U7 2.6.9-73 (includes Out of Memory
 Notifier)
 – Red Hat RHEL5.1 2.6.18-53 (includes Out of Memory
 Notifier)
• In z/VM: 5.3.0 and beyond
 – In 5.2.0 CMS APAR is required, VM64085, for full
 functionality
CMM1

• The VM Resource Manager service machine
• Linux drivers for CMM processing and message handling.
• Used effectively can reduce Linux storage footprint
CMM Linux Mechanics

• Load the CMM module with modprobe or insmod
 – *Not compiled in kernel is Novell SLES10*
• Parameter passing
• Checking the parameters after loading
• Dynamic and static loading methods
Dynamically loading the CMM module in Linux

```
# lsmod | grep cmm

# modprobe cmm

# lsmod
Module                  Size  Used by
  cmm                    33024  0
  smsgiucv               24080  1 cmm
  iucv                   47704  1
  :
```
Dynamically loading the CMM module in Linux specifying the sender

```bash
# modprobe cmm sender=SOMEVM
#
# lsmod

<table>
<thead>
<tr>
<th>Module</th>
<th>Size</th>
<th>Used by</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmm</td>
<td>33024</td>
<td>0</td>
</tr>
<tr>
<td>smsgiucv</td>
<td>24080</td>
<td>1 cmm</td>
</tr>
<tr>
<td>iucv</td>
<td>47704</td>
<td>1</td>
</tr>
</tbody>
</table>
```

SHARE 9272
Dynamically checking the parameters

cat /sys/module/cmm/parameters/sender
SOMEVM
#

SHARE 9272
Kernel level and distribution

cat /proc/version /etc/SuSE*
Linux version 2.6.16.60-0.21-default (geeko@buildhost) (gcc version 4.1.2 20070115 (SUSE Linux)) #1
SMP Tue May 6 12:41:02 UTC 2008

SUSE Linux Enterprise Server 10 (s390x)
VERSION = 10
PATCHLEVEL = 2

#
Not compiled in the kernel

grep -i cmm /boot/config-*
CONFIG_CMM=m
CONFIG_CMM_PROC=y
CONFIG_CMM_IUCV=y

In SLES SP10 cmm is not compiled into the kernel
Automatically loading the cmm module

- Train the kernel in /etc/sysconfig/kernel
- Pass parameters in /etc/modprobe.conf.local

```
~ grep -i cmm /etc/sysconfig/kernel
MODULES_LOADED_ON_BOOT="vmcp cmm"

~ cat /etc/modprobe.conf.local
#
# please add local extensions to this file
#
options cmm sender=OTHERVM
```
Checking after boot time

```bash
~ cat /sys/module/cmm/parameters/sender
OTHERVM
```
The VM Resource Manager

- Workload manager for z/VM
- Can be used to dynamically adjust virtual machine CPU consumption and I/O usage
- Used to message Linux virtual machines when using CMM
- Runs in the VMRMSVM service machine as supplied by IBM.
- One configuration file.
- Logs to a file.
The VMRMSVM Under the Hood

• Use CP MONITOR SAMPE data to determine:
 – Memory constraints
 – How much memory to instruct its’ Linux partner to release
• “Kicks in”
• Requires careful monitoring – can have profound positive impact but can also hurt
The VM Resource Manager: startup

xautolog vmrmsvm

Command accepted

AUTO LOGON *** VMRMSVM USERS = 62

HCPCLS6056I XAUTOLOG information for VMRMSVM: The IPL command is verified by the IPL command processor.

12:53:38 * MSG FROM VMRMSVM : IRMSER0023I VM Resource Manager Service Virtual

 Machine initialization complete. Proceeding to connect to Monitor.
Configuration file: NOTIFY statement in the VMRM CONFIG

Send messages to MAINT

Converse with all machines starting with LINUXA (they need to be running cmm module)
The VM Resource Manager: CMM notifications

query mon sample

MONITOR SAMPLE ACTIVE

 INTERVAL 1 MINUTES
 RATE 1.00 SECONDS

MONITOR DCSS NAME - MONDCSS

CONFIGURATION SIZE 1000
LIMIT 1 MINUTES
CONFIGURATION AREA IS FREE

USERS CONNECTED TO *MONITOR - ESWRITE VMPMSVM

MONITOR DOMAIN ENABLED
SYSTEM DOMAIN ENABLED
PROCESSOR DOMAIN ENABLED
STORAGE DOMAIN ENABLED
USER DOMAIN ENABLED
 ALL USERS ENABLED
I/O DOMAIN ENABLED
 ALL DEVICES ENABLED
NETWORK DOMAIN ENABLED
APPLDATA DOMAIN ENABLED
 ALL USERS ENABLED
The VM Resource Manager: orderly termination

CMS immediate command

cp send vmrmsvm hmonitor

12:54:28 * MSG FROM VMRMSVM : IRMMON0026I VM Resource Manager processing of monitor records ended. Pipe RC= 0

12:54:28 * MSG FROM VMRMSVM : IRMSER0012I VM Resource Manager Service Virtual Machine shutdown in progress

12:54:28 * MSG FROM VMRMSVM : IRMSER0027I VM Resource Manager Service Virtual Machine shutdown complete

VMRMSVM : 12:54:28 0 RC FROM IRMSERV

VMRMSVM : 12:54:28 Ready: T=0.17/0.19 12:54:28
VMRMSVM and Linux interaction

Notify via CP SMSG command

VMRMSVM → LINUXAC

VMRMSVM → LINUXXAD

SMSG LINUXAF CMM SHRINK 375

LINUXAF
VMRMSVM and Linux interaction

Notify via CP SMSG command

Relpage means that the virtual machine doesn’t need the page backed up by CP. Therefore it can be reused; in this case by other Linux CMM participants.
Page SHRINK 1

Notify via CP SMSG command

Diag ’10’x RELPAGE 375

VMRMSVM

SMSG LINUXAF CMM SHRINK 375

LINUXAF 256000
Page SHRINK: machine is now 255625 pages

after
RELPAGE
375

LINUXAF
255625
Next: Page SHRINK 100 pages

Notify via CP SMSG command

VMRMSVM

SMSG LINUXAF CMM SHRINK 100

LINUXAF 255625
Page SHRINK: can *increase* by 275 page (375-100)

Allows the guest to reclaim some of the storage previously released.
2009-02-25 12:53:38 ServExe Entry

2009-02-25 12:53:38 ServExe MSG IRMSER0022I VM
Resource Manager Service Virtual Machine initialization started
2009-02-25 12:53:38 ServExe PCfg VMRM CONFIG A1
2/25/09 7:54:41
2009-02-25 12:53:38 ServExe InitEnv MONITOR EVENT ACTIVE
 BLOCK 500 P
 ARTITION 8192
2009-02-25 12:53:38 ServExe InitEnv MONITOR DCSS NAME - MONDCSS
2009-02-25 12:53:38 ServExe InitEnv CONFIGURATION SIZE 50 LIMIT
2009-02-25 12:53:38 ServExe MSG IRMSER0023I VM
Resource Manager Service Virtual Machine initialization complete. Proceeding to connect to Monitor.
VMRMSVM logging - termination

2009-02-25 12:53:38 MonRexx Entry MonIntCtr= 1, Record= ENDR C3CD2331A780FC 80, Processing this record at 25 Feb 2009 12:53:38

2009-02-25 12:54:06 MonRexx Entry MonIntCtr= 2, Record= ENDR C3CD234C7CBE0A 80, Processing this record at 25 Feb 2009 12:54:06

2009-02-25 12:54:28 MonExec Exit IRMMON0026I VM Resource Manager processing of monitor records ended. Pipe RC= 0

2009-02-25 12:54:28 ServExe MSG IRMSER0012I VM Resource Manager Service Virtual Machine shutdown in progress

2009-02-25 12:54:28 ServExe MSG IRMSER0027I VM Resource Manager Service Virtual Machine shutdown complete

Will close after 10,000 records. Keeps 1 copy around as VMRM LOG2.
Checking how many pages are participating

```bash
# cat /proc/sys/vm/cmm_pages
69362
in a 640m vm
```

69362/256 = 271 -> 271Mb release
SHRINK values as reported in the VMRMSVM log file

<table>
<thead>
<tr>
<th>Time</th>
<th>CMM</th>
<th>Command</th>
<th>Host</th>
<th>SHRINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>21:19:07 MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA8</td>
<td>37987</td>
</tr>
<tr>
<td>21:19:07 MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA7</td>
<td>135687</td>
</tr>
<tr>
<td>21:19:07 MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA6</td>
<td>90216</td>
</tr>
<tr>
<td>21:19:07 MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA4</td>
<td>48021</td>
</tr>
<tr>
<td>21:19:07 MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA3</td>
<td>120483</td>
</tr>
<tr>
<td>21:20:07 MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA8</td>
<td>69870</td>
</tr>
<tr>
<td>21:20:07 MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA7</td>
<td>138528</td>
</tr>
<tr>
<td>21:20:07 MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA6</td>
<td>110921</td>
</tr>
<tr>
<td>21:20:07 MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA4</td>
<td>90267</td>
</tr>
<tr>
<td>21:20:07 MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA3</td>
<td>128181</td>
</tr>
</tbody>
</table>
Checking how many pages are participating

```bash
# cat /proc/sys/vm/cmm_pages
114687
# cat /proc/sys/vm/cmm_timed_pages
0
# cat /proc/sys/vm/cmm_timeout
0 0
```
CMMA – VM and Linux levels

- z/VM 5.3 plus APAR VM64265 and APAR VM64297
- SLES10 SP1 update kernel 2.6.16.53-0.18
- Redhat – not available
CMMA – instruction level communication

- Uses storage key to describe page contents
- ESSA instruction

<table>
<thead>
<tr>
<th>Bit Desc.</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable</td>
<td>Guest cannot recreate contents</td>
</tr>
<tr>
<td>Unused</td>
<td>Unused</td>
</tr>
<tr>
<td>Volatile</td>
<td>Useful content but may be discarded. Discard fault presented to guest</td>
</tr>
</tbody>
</table>
| Potentially volatile | Dirty = CP handles as Stable
Not dirty = CP handles as volatile |
CMMA – instruction level communication

- CP investigates the bit settings:
 - Possibly steal unused, volatile, not dirty potentially volatile pages without necessarily having to page out contents.
 - CP can use clean disk cache pages, and if Linux needs it back, CP will reflect a discard interrupt.
 - Linux marks a page for removal CP may reuse it without having to page out.
 - Assist provided (Host Page-Management Assist) to let guest reclaim discard page without CP interception (remains runnable).
System and Linux mechanics

• MEMASSIST must be on for system and virtual machine.

```
cp query memassist
ALL USERS SET - ON
USER SETTING STATUS
MAINT ON INACTIVE
```

```
cp query memassist linuxa1
ALL USERS SET - ON
USER SETTING STATUS
LINUXA1 ON ACTIVE
```
System and Linux mechanics

- Kernel parameter is cmma=on

```
# dmesg | grep cmma

Kernel command line: root=/dev/ram0 init=/linuxrc rw
barrier=off selinux=0 TERM=dumb elevator=cfq cmma=on
BOOT_IMAGE=2
```
Tracing the ESSA instruction in a Linux virtual machine with class G TRACE command

<table>
<thead>
<tr>
<th>Address</th>
<th>ESSA</th>
<th>Instruction</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000001C00FA'</td>
<td>B9AB2001</td>
<td>0000000000000000</td>
<td>000000000159AF000</td>
</tr>
<tr>
<td>00000000001BD4EC'</td>
<td>B9AB1051</td>
<td>0000000000000004</td>
<td>000000000159AF000</td>
</tr>
<tr>
<td>00000000001BD4EC'</td>
<td>B9AB1051</td>
<td>0000000000000004</td>
<td>00000000015AA000</td>
</tr>
<tr>
<td>000000000020A596'</td>
<td>B9AB6021</td>
<td>0000000000000000</td>
<td>00000000015AAA000</td>
</tr>
</tbody>
</table>
Case Study

• When running WAS “idle” Linux machines remain in Q3 forever.
• Using resource needlessly, causing storage overcrowding in the high rent district.
 – Never drops down to dormant list
• Attempted to duplicate problem in test lpar.
 • However machines do not sit in Q3 – but they still work through queues even when “idle”
Production System Queue Reports:
03:15 – 03:30

Velocity Software report ESAUSRQ

<table>
<thead>
<tr>
<th>UserID</th>
<th>Class</th>
<th>Logged</th>
<th>Non-Idle</th>
<th>Active</th>
<th>Conn</th>
<th>InQue</th>
<th>Tran/Min</th>
<th>Q0</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>03:30:00</td>
<td>87.0</td>
<td>70.3</td>
<td>55.9</td>
<td>781</td>
<td>0</td>
<td>10.5</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hi-Freq:</td>
<td>87.1</td>
<td>70</td>
<td>70.3</td>
<td>84</td>
<td>55.6</td>
<td>780</td>
<td>0.2</td>
<td>10.6</td>
<td>5.6</td>
<td>39.1</td>
<td></td>
</tr>
</tbody>
</table>

Same results at 3 a.m. ...
Production System Queue Reports
15:15 – 15:30

Velocity Software report ESAUSRQ

<table>
<thead>
<tr>
<th>UserID</th>
<th>Class</th>
<th>Logged</th>
<th>Non-logged</th>
<th>Disc-conn</th>
<th>Total-InQue</th>
<th>Tran-Q0</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30:00</td>
<td>87.0</td>
<td>.</td>
<td>70.3</td>
<td>.</td>
<td>56.0</td>
<td>725</td>
<td>0</td>
<td>10.7</td>
<td>5.3</td>
<td>40.0</td>
</tr>
<tr>
<td>Hi-Freq:</td>
<td>87.1</td>
<td>70</td>
<td>70.3</td>
<td>84</td>
<td>55.6</td>
<td>725</td>
<td>0.4</td>
<td>9.5</td>
<td>5.7</td>
<td>39.9</td>
</tr>
</tbody>
</table>

0 ***Key User Analysis ***

Same results at 3 a.m. as at 3 p.m.
Test case: CP Storage: 2.5G with XSTORE .5G
z9 with two IFLs uncapped LPAR

1. WAS started; each machine 1.5G

2. IPL LINUX; each machine 1G
Tried this approach

- Over commitment of 10:1 and higher
 - Inquiring minds want to know!
 - Done in a test LPAR
- Results were just not good
- Certain runs:
 - Caused thrashing
 - Exceptionally high CP overhead – CP tries to keep all vm’s happy ends up punishing all!
 - Elist formation
 - Severe memory resource shortage
Trying for the sweet spot: CP Storage: 2.5G with XSTORE .5G z9 with two IFLs uncapped LPAR

1. WAS started; each machine 640M
2. IPL LINUX; each machine 512M
Results

• Caveat: results are mine only based on limited circumstance testing.
• Caused extreme memory stress during most tests.
• Overcommitment of 10:1 didn’t work so well.
 – So what’s the right number: between 1 and 10…
 • Around 3 – 4? 5? … 6?
 – And cmm and cmma can help with overall storage management with careful management
• By no means formal tests.
• Will continue to evaluate
Comments

• The VMRMSVM “kick in” determined by “black box” internal values; no control.
• Maybe it was the nature of the tests but…
 – External setting of low, medium or high relpage processing would be nice.
 – Follow suggestions for using CMM with non-production workloads.
 – CMM-1 and CMMA are not “set it and forget it”
 – Requires a performance monitor!
 • Used Velocity products, CP, and linux commands.
• Nonetheless CMM-1 and CMMA are reasonable tools in the right hands.
Perceptions and Recommendations

- After the VMRMSVM has instructed servers to give up a lot of pages:
 - Simple tasks in those machines had elongated response times
 - Attempts to ssh
 - 3270 logon
- Recommendation: Do not place production Linux servers in VMRMSVM target list.
 - Only have VMRMSVM manage test, development, sandbox Linux servers.
- Use CMM-1 in LPARs that have mixed production and non production workloads.
Test suites:
6 WAS at 640M 4 IPLERS at 512M

9 tests performed
Test Case Matrix

<table>
<thead>
<tr>
<th></th>
<th>IPL-er No CMM</th>
<th>IPL-er CMM-1</th>
<th>IPL-er CMMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAS No CMM</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>WAS CMM-1</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>WAS CMMA</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
Paging Disk Occupancy

Page Space Occupancy

<table>
<thead>
<tr>
<th>WAS nothing</th>
<th>IPLER</th>
<th>CMMA</th>
<th>WAS nothing and IPLER</th>
<th>WAS nothing</th>
<th>IPLER</th>
<th>CMMA-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>28</td>
</tr>
</tbody>
</table>

Column B
User CPU and CP Overhead

![Bar chart showing User CPU and CP Overhead](chart.png)
Working Set Sizes
DIAG Rate

Column B

WAS CMMA IPLER CMMA
No CMM WAS and IPLER
WAS CMMA-1 IPLER CMMA
WAS no CMM IPLER CMMA-1
<table>
<thead>
<tr>
<th>Test</th>
<th>Page read sec</th>
<th>Page Write sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAS no CMM IPLER CMMA</td>
<td>788</td>
<td>1217</td>
</tr>
<tr>
<td>WAS CMMA IPLER CMMA</td>
<td>421</td>
<td>1717</td>
</tr>
<tr>
<td>WAS CMMA IPLER CMM-1</td>
<td>42</td>
<td>208</td>
</tr>
<tr>
<td>WAS CMMA IPLER No CMM</td>
<td>782</td>
<td>1927</td>
</tr>
<tr>
<td>no CMM WAS and IPLER</td>
<td>242</td>
<td>1038</td>
</tr>
<tr>
<td>WAS CMM-1 IPLER no CMM</td>
<td>2989</td>
<td>3220</td>
</tr>
<tr>
<td>WAS CMM- 1 IPLER CMMA</td>
<td>1847</td>
<td>2172</td>
</tr>
<tr>
<td>WAS CMM- 1 IPLER CMMA</td>
<td>2004</td>
<td>1234</td>
</tr>
<tr>
<td>WAS no CMM IPLER CMM-1</td>
<td>3004</td>
<td>5112</td>
</tr>
</tbody>
</table>
Late breaking news....

• IBM will depreciate CMM-A in future code releases
 – Had difficulty getting CMM-A accepted by the Linux kernel developers
 – Parts of it may reappear in the future
Thank you to

- Barton Robinson
- Dave Jones
- Dominic Coulombe