Virtual Linux Server
Disaster Recovery Planning

Rick Barlow
Nationwide Insurance

August 26, 2009
Session 9137
Agenda

• Definitions
• Our Environment
• Business Recovery Philosophy at Nationwide
• Planning
• Execution
Definitions

• High Availability

 • “With any IT system it is desirable that the system and its components (be they hardware or software) are up and running and fully functional for as long as possible, at their highest availability. The most desirable high availability rate is known as “five 9s”™, or 99.999% availability. A good deal of planning for high availability centers around backup and failover processing and data storage and access.”

• Deal with significant outage within data center
 • LPAR failure
 • Operating System outage
 • Application ABEND
High Availability

Internet

- Cisco Switch w/ Firewall
- Prod FE (Copper)
- Prod BE (Copper)
- NetBackup

Intranet

- Cisco Switch w/ Firewall
- Prod FE (Copper)
- Prod BE (Copper)
- Tools (Copper)

Production

- LPAR 1
 - vSwitch
 - HTTP Server
 - HTTP Server

- LPAR 2
 - vSwitch
 - HTTP Server
 - HTTP Server

- LPAR 3
 - vSwitch
 - HTTP Server

- LPAR 4
 - vSwitch
 - HTTP Server

High Availability

- LPAR Microcode

1. OSA Exp2 Integrated Console Controller – System Management interface to host z/VM via TN3270; no TCP/IP stack
2. Secure web server for processor management and control – HMC functions only

OSA Exp2 cards are GbE with LC fibre connectors; OSA cards are 1000BaseT with RJ-45 copper connectors
Definitions

• **Disaster Recovery**

 “Disaster recovery in information technology is the ability of an infrastructure to restart operations after a disaster. While many of today's larger computer systems contain built-in programs for disaster recovery, standalone recovery programs often provide enhanced features. Disaster recovery is used both in the context of data loss prevention and data recovery.”

• **Deal with complete outage**

 • Natural catastrophe
 • Data center
 • Machine
Our Environment

- Two z10 installed in January 2009

Current configuration:

- Production box
 - 26 IFLs
 - 240GB memory
 - 4 z/VM LPARs
 - Tier 4+ data center
 - Fully redundant power, telecom, generators, etc

- Development box
 - 17 IFL engines on development box
 - 352GB memory
 - 5 z/VM LPARs (sandbox LPAR for system programmer test)
Planning

- Design
- Priorities
- Setup
- Automation
- Documentation
- Teamwork
Design

• What
 • Identify what needs to be recovered

• When
 • Need to know recovery objectives

• Where
 • Identify where recovery will occur
 • Second site
 • Vendor site

• How
 • Identify how to transfer programs and data
 • Identify how to perform recovery
Priorities

- Prioritizing your application recovery must be done by the people in your organization that understand the business processes.

- Business requirements that drive recovery time-frame
 - regulated
 - financial / investments
 - responsive to customers
Setup

- Asynchronous replication with SRDF between production and recovery sites
- Replicated volumes at recovery site
 - z/VM different unit address between north (prod) and south (dev/test/dr)
 - SAN target WWPN and LUN differ between production and recovery
- Manual processes
 - Stop replication link
 - Vary VM volumes online
 - Start Linux servers
 - Update DNS entries
 - Middleware and application hard-coded parameters (e.g. IP addresses)
- The DR process would be the same for the following failures
 - System z failure
 - DASD frame failure
 - SAN storage frame failure
- DWDM failure
 - No DR required, (two DWDM links in design)
Setup

- **z10**
- **EMC DMX1000**
 - Storage
 - ECKD
- **OS SAN**
- **FCP (x8)**
- **FICON**
- **(x4)**

Prod

- **z10**
- **EMC DMX-3/2500**
 - Storage
 - ECKD
- **OS SAN**
- **FCP (x8)**
- **FICON**

Dev

SRDF Replication

DWDM
Setup - Normal
Setup - Failure Happens

If failure occurs: manually stop replication. Bring volumes on-line at DR site, start Linux servers.
Setup – Recovery Begins

Servers identify DR configuration, change IP address, register new IP with DNS, start replication south to north.
Automation

• Avoid manual processes
 • Dependence on key individuals
 • Prone to mistakes
 • Slow

• Automated processes
 • Requires only basic knowledge of environment and technologies in use
 • Accuracy
 • Repeatable
 • Faster
 • Does not mean build it once then ignore;
 Requires regular review and updates
Automation

• Automation begins at provisioning
 • DR configuration stored with production configuration
 • CMS NAMES file
 • Contains all information about provisioned server
 • Copy stored on DR disk also
 • Also used to generate report of server definitions for easy lookup
 • Linux PARM file stored on CMS disk
 • Stored on disk accessible at boot time
 • Copy stored on DR disk also
 • Define everything needed to provision server and at boot time
Automation

- Extract from LINUX NAMES file for one guest

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>nick</td>
<td>WS001</td>
</tr>
<tr>
<td>userid</td>
<td>PZVWS001</td>
</tr>
<tr>
<td>node</td>
<td>VN2</td>
</tr>
<tr>
<td>desc</td>
<td>Prod web server 1</td>
</tr>
<tr>
<td>env</td>
<td>PROD</td>
</tr>
<tr>
<td>hostname</td>
<td>PZVMWS001</td>
</tr>
<tr>
<td>load</td>
<td>LINUXWS</td>
</tr>
<tr>
<td>ip</td>
<td>10.1.1.1</td>
</tr>
<tr>
<td>vswitch</td>
<td>PRODVSW1</td>
</tr>
<tr>
<td>vlan</td>
<td>2102</td>
</tr>
<tr>
<td>ip_nb</td>
<td>10.2.1.1</td>
</tr>
<tr>
<td>vsw_nb</td>
<td>NETBKUP1</td>
</tr>
<tr>
<td>vlan_nb</td>
<td>3940</td>
</tr>
<tr>
<td>ip_dr</td>
<td>10.221.1.1</td>
</tr>
<tr>
<td>vsw_dr</td>
<td>PRODVSW1</td>
</tr>
<tr>
<td>vlan_dr</td>
<td>2102</td>
</tr>
<tr>
<td>ip_drbu</td>
<td>10.222.1.1</td>
</tr>
<tr>
<td>vsw_drbu</td>
<td>NETBKUP1</td>
</tr>
<tr>
<td>vlan_drbu</td>
<td>3940</td>
</tr>
<tr>
<td>oth_ip</td>
<td>10.1.1.5 10.1.1.15</td>
</tr>
<tr>
<td>dr_oth_ip</td>
<td>10.221.1.5 10.221.1.15</td>
</tr>
<tr>
<td>status</td>
<td>2005-09-08</td>
</tr>
<tr>
<td>gold</td>
<td>V1.2</td>
</tr>
<tr>
<td>memory</td>
<td>256M</td>
</tr>
<tr>
<td>cpus</td>
<td>1</td>
</tr>
<tr>
<td>share</td>
<td>200, LS-200</td>
</tr>
<tr>
<td>comments</td>
<td></td>
</tr>
<tr>
<td>storage</td>
<td>2.3G</td>
</tr>
<tr>
<td>storage_os</td>
<td>7.1G</td>
</tr>
<tr>
<td>bootdev</td>
<td>251</td>
</tr>
</tbody>
</table>
Automation

- Extract from LINUX NAMES file for one guest (cont’d)

:storage_san.16.86G

:storage Сан_дr.16.86G
Automation

• PARM file

HOST=pzvmws001
ADMIN=10.1.1.1
BCKUP=10.2.1.1
DRADMIN=10.221.1.1
DRBCKUP=10.222.1.1
ENV=PROD
DRVIP=10.1.1.5,10.1.1.15
BOOTDEV=251
VIP=10.221.1.5,10.221.1.15
SAN_1=0100:5006048AD52D2588:005A000000000000,0200:5006048AD52D2587:005A000000000000
SAN_2=0100:5006048AD52D2588:0059000000000000,0200:5006048AD52D2587:0059000000000000
SAN_3=0100:5006048AD52E4F87:006A000000000000,0200:5006048AD52E4F88:006A000000000000
SAN_4=0100:5006048AD52E4F87:006B000000000000,0200:5006048AD52E4F88:006B000000000000
Automation

- Alternate Start-up Scripts
 - Identify production or DR mode
 - HCP – interact with CP
 - CMSFS – read CMS files
 - Set parameters for environment
 - Hostname to /etc/HOSTNAME
 - IP addresses to /etc/sysconfig/network/ifcfg-qeth-bus-ccw-0.0.xxxx
 - Color prompt by environment
 - \textit{Prod} = Red
 - \textit{DR} = Yellow
 - \textit{Tools} = Green
Automation

- Extract from boot.config

```bash
# Setup variables
echo "1" > /sys/bus/ccw/devices/0.0.0191/online
sleep 5
# modprobe required just in case
modprobe cpint
PARMDEV=`grep 191 /proc/dasd/devices|awk '{print $7}'`
QUSERID=`hcp query userid`
GUEST=`echo $QUSERID|cut -d" " -f 1`
LOCO=`echo $QUSERID|cut -c14`
LPAR=`echo $QUSERID|cut -c13-15`
BOX=`echo $QUSERID|cut -c1`
cmsfsca -d /dev/$PARMDEV -a ${GUEST}.PARMFILE > /tmp/sourceinfo
 . /tmp/sourceinfo

echo "0" > /sys/bus/ccw/devices/0.0.0191/online
```

Automation

- Result of cmsfscat

```
cat /tmp/sourceinfo

HOST=pzvmws001
ADMIN=10.1.1.1
BCKUP=10.2.1.1
DRADMIN=10.221.1.1
DRBCKUP=10.222.1.1
ENV=PROD
DRVIP=10.1.1.5, 10.1.1.15
BOOTDEV=251
VIP=10.221.1.5, 10.221.1.15
SAN_1=0100:5006048AD52D2588:005A000000000000, 0200:5006048AD52D2587:005A000000000000
SAN_2=0100:5006048AD52D2588:0059000000000000, 0200:5006048AD52D2587:0059000000000000
SAN_3=0100:5006048AD52E4F87:006A000000000000, 0200:5006048AD52E4F88:006A000000000000
SAN_4=0100:5006048AD52E4F87:006B000000000000, 0200:5006048AD52E4F88:006B000000000000
```
Automation

- More extract from boot.config

```bash
case "$ENV" in
    PROD)
      if [ "$LOCO" == "$BOX" ]
        then
          CLR="41"; #Red
        else
          CLR="43"; #Yellow/Gold
          ENV="DR";
        fi
      ;;
      DEV | JT | TOOLS | TOOL)
          CLR="42"; #Green
      ;;
    esac

Examples:
  barlowr@szvmjt002:JT:barlowr>
  barlowr@nzvmws001:PROD:barlowr>
```

This information is for sharing only and not an endorsement by Nationwide Insurance
Documentation

• Document everything
 • Declaration criteria
 • Contact information
 • Operating System
 • Middleware
 • Application
 • Network
 • Security
 • Lists of servers
 • Recovery process
 • Verification process
 • Fail-back process
Documentation

- **DR Procedure:**
 - Confirm DISASTER declaration
 - Begin shutdown all test/development guests to insure sufficient capacity.
 - Bring up production DR guests identified by business units for each application environment.
 - Make appropriate emergency DNS changes to point users to DR environment per definitions for each application environment.
Documentation

- **Return Procedure:**
 - Confirm DISASTER OVER declaration
 - Reverse disk replication; confirm synchronization
 - Follow instructions for confirmation of original production environment for each application.
 - Bring down DR guests identified by LDRPS for each application environment.
 - Make appropriate DNS changes to point users to non-DR environment per definitions for each application environment.
 - Resume normal disk replication.
Teamwork

- Recovery coordinator
- z/VM System Programmers
- Linux System Administrators
- Middleware
 - WAS Administrators
 - Database Administrators
 - MQ Administrators
- Application Teams
 - Testing methodology
 - Expected results

Avoid processes that are dependent on subject matter experts (SME) when a disaster happens
Execution

• Test
• Document results
• Compare to plan
• Repeat
Execution

• Where…
 • … to recover the systems
 • Your own second site
 • A recovery vendor
 • … do the people go
 • Identify what personnel need to travel to recovery site
 • Document travel procedures
 • Identify alternate (local) office space
 • Some office locations may be able to access recovery site if connectivity is available
Execution

• Testing
 • Test as often as feasible
 • Frequency may depend on having your own site or contracting with a vendor
 • Tests should be as close as possible to real recovery conditions
 • Operating systems are easy
 • Some subsystems are not so easy (e.g. large database)
 • Multi-platform applications can be more complex
 • Automate as much as possible to avoid manual effort
Document Results

Compare to Plan

• Detailed plans for all test scenarios
• Carefully track tests
• Document action items and follow up for improvements
• Build on successes
Repeat

• Do it again
• Do it regularly
• Corporate emphasis may be required to encourage all applications to test
“And I thought we were busy before Linux showed up!”