
The Linux IPL Procedure

SHARE 2009 Austin – Session 9274

Edmund R. MacKenty
Rocket Software, Inc.

Purpose

• De-mystify the Linux boot sequence
• Explain what happens each step of the way
• Describe why each step exists
• Tell you how to learn more

DASD

General Design Principles

• Flexibility: uses not thought of by designers
• Extensibility: accommodate specific end-user needs
• Reuse-ability: of code and user data
• Controllability: higher-level code can drive it
• Portability: can operate in different environments
• Simplicity: easy to understand, use; limited side-effects

Overview

• Boot loader
• Kernel
• Initial RAM disk
• Init process
• Runtime configuration scripts
• User login

Concepts

• The Kernel
• Device drivers
• Kernel modules
• Filesystems
• Mounting a filesystem
• Processes
• The onion
• The two trees
• Run Levels
• The online manual

Manual Pages

• Online manual is a good source of information
• References to manpages use the form: page(section)

 Section 1: User Commands
 Section 2: System Calls
 Section 3: Library Functions
 Section 4: Special Files
 Section 5: File Formats
 Section 6: Games
 Section 7: Conventions and Miscellany
 Section 8: Administrative Commands

• To learn about init(8), use the command: man 8 init
• Use info(1) for more information about some commands
• The apropos(1) and whatis(1) commands do searches
• Different distros have different manpages available

Linux: The Onion

• Linux consists of many layers surrounding a kernel

Linux: The Two Trees

• Linux consists of two trees: Processes and Files
• Processes inherit properties from their parent
• Files reside within their parent directory

Structure of the Kernel

• The Linux kernel is not monolithic
• All device drivers and many sub-components may be built as

modules, which can be loaded or unloaded as needed.
• This permits one kernel to run efficiently on lots of different

hardware.
• The kernel build process is amazingly configurable.
• Some core components must be compiled in:

 Memory management
 Virtual filesystem layer
 Process scheduler
 Multi-processor support
 TCP/IP networking (if used)

• Examples of dynamically-loaded modules:
 Filesystems: ext3, reiserfs, jfs
 Support for specific hardware: SCSI, DASD, USB, Crypto
 Network drivers

Processes

• A unit of execution scheduled by the kernel
• Each process runs in its own address space
• Fork: creates a new, child, process

 Inherits code and data segments
 Gets copies of all open files, sockets, etc.
 Process execution returns from fork() call

• Exec: Loads a new program into a process
 All open files are closed
 New code and data segments are allocated
 Process execution continues at entry point of new program

• “Running a program” means a process forks and the child
execs the program

Process A Process B Process Bfork() exec()

Filesystems

• A logical structure built within a disk partition to manage files
• Many kinds of filesystems are supported
• There is one root filesystem: the base of the directory tree
• A filesystem of any type may be mounted on a directory
• Mounting is how new storage devices are added
• Unreferenced filesystems may be unmounted

 /bin
 /home
 /lib
 /usr
 ...

 /fred
 /mack
 /nms

 /lib
 /local
 /X11

root
home

usr

 /

bin home lib usr

fred mack nms lib local X11

The Boot Loader

• z/VM IPLs a Boot Loader from DASD
• zipl(8) is the boot loader for zSeries Linux
• Knows where to find the kernel within the Linux filesystem
• Passes kernel command-line options
• Configured in /etc/zipl.conf [zipl.conf(5)]
• Uses the eckd0 program to store the subchannel address
• Reads kernel file into memory, jumps to entry point

DASD

zipl
Memory

Kernel

DASD

Starting the Kernel

• Kernel is usually in a compressed file
• Beginning of file is program that uncompresses the rest
• Kernel builds its memory pools
• Kernel detects processors, estimates their speed
• Kernel starts its internal threads
• Kernel initializes built-in device drivers
• Drivers do hardware detection
• Drivers can use kernel command line arguments

The Initial RAM disk

• What is an initial RAM disk, and why use one?
 Extra drivers and setup code
 Useful when entire kernel won't fit on a floppy (for x86)
 Lets a distro have a single kernel config across all platforms
 On zSeries, initrd loads the DASD and zfcp device drivers

• Boot loader told kernel where to find initrd
• Kernel creates a temporary filesystem in memory
• Unpacks the initrd image into that filesystem
• Runs the program /linuxrc on it

Initial RAM disks for zSeries

• Loads kernel modules
 DASD device driver
 zfcp device driver
 ext3 filesystem
 LVM drivers

• Does LVM initialization [see lvm(8), vgscan(8)]
• Mounts the real root filesystem from DASD
• Makes the real root filesystem be the system root
• The mkinitrd(8) tool creates the initrd image

Finishing Kernel Initialization

• Kernel continues when /linuxrc on the initrd ends
• Makes the root filesystem read-only, so it can be checked
• Finds /sbin/init and runs it

Init: process number one

• Init(8) is the first user-mode process
• It is the root of the process tree
• All other processes are started by init or its descendants
• Reads its configuration file: /etc/inittab [see inittab(5)]
• Invokes rc-scripts [see init.d(7)]
• Manages changes between runlevels

Example inittab file (SuSE SLES 8)
The default runlevel is defined here
id:3:initdefault:

First script to be executed, if not booting in emergency (-b) mode
si::bootwait:/etc/init.d/boot

/etc/init.d/rc takes care of runlevel handling
l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
#l4:4:wait:/etc/init.d/rc 4
l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6

what to do in single-user mode
ls:S:wait:/etc/init.d/rc S

what to do when CTRL-ALT-DEL is pressed
ca::ctrlaltdel:/sbin/shutdown -r -t 4 now
~~:S:respawn:/sbin/sulogin /dev/ttyS0

on S/390 enable console login in all runlevels
1:012356:respawn:/sbin/mingetty /dev/ttyS0

What is an rc-script?

• Runtime configuration scripts live in /etc/init.d
• Each rc-script manages a distinct service or daemon
• These are shell scripts (but they don't have to be)
• Each accepts a single command as an argument:

 start: starts the service, initializing some resource
 stop : stops the service, shutting down some resource
 restart: stops then starts the service
 status: tells you what state the service is currently in

What Is A Runlevel?

• A feature of the init(8) program
• Controls which processes are allowed to run
• Change to runlevel N with command: init N
• Runs master rc-script (/etc/init.d/rc) with new runlevel

 Stops all rc-scripts not in the new runlevel
 Starts all rc-script that are in the new runlevel

• Runlevels are implemented by directories containing
symbolic links to rc-scripts (/etc/rc?.d)

 KXXname stops (kills) the service named name.
 SXXname starts the service named name.

Traditional Set Of Runlevels

• 0: Halt the system
• 1: Single user mode
• 2: Multi-user mode
• 3: Multi-user with networking
• 4: (unused)
• 5: Multi-user with networking and graphical desktops
• 6: Reboot

Boot-time rc-scripts

• Run at boot-time from /etc/init.d/rc via init(8)
• Bring up user-space (non-kernel) resources:

 Mount /proc and /sys pseudo-filesystems (kernel interfaces)
 Check the root filesystem [fsck(8)]
 Initialize the LVM subsystem, searching for devices using LVM

[vgscan(8)]
 Check all remaining filesystems [fsck(8)]
 Enable any swap devices
 Re-mount root to be writable
 Mount all other filesystems as described by /etc/fstab

[fstab(5)]

Service rc-scripts

• Initialize services and daemons for a particular runlevel
• Bookkeeping daemons:

 cron – periodically run other commands
 hotplug – detect newly-installed devices (DASD being linked)
 syslog – collects logging output from other processes

• Network services:
 interfaces – assign IP addresses or do DHCP, set up routes
 NFS – mount network filesystems

• Network daemons:
 sendmail – SMTP daemon listening on port 25
 xinetd – a meta-daemon listening on many ports, invokes FTP,

TELNET...
 NTP – Network Time Protocol daemon using UDP connections

• Applications:
 X-Windows – Starts an X display manager to provide user

desktops
 WebSphere – Starts up a web services engine
 DB2 – Starts one or more database instances

User Logins on Terminals

• Init(8) starts getty(8) processes on attached terminals
• Getty(8) sets up serial tty lines, auto-detecting speed, etc.
• Getty(8) presents a login: prompt
• Exec's login(1), giving it the username
• Login(1) gives password: prompt, does authentication
• If successful, login(1) invokes the user's shell

init getty login bashexec()exec()fork()/exec()

User Logins from the Network

• An rc-script starts sshd(8) process
• Sshd(8) listens on port 22 for network connections
• Sshd(8) forks a child process to handle each connection
• SSH client negotiates user credentials with server
• Child sshd authenticates the user credentials
• If successful, child sshd forks the user's shell
• Child sshd continues to encrypt/decrypt data with SSH client

/etc/rc sshd

sshd bash

init fork()/exec() fork()/exec()

fork()/exec()fork()

The Linux IPL Procedure

SHARE 2009 Austin – Session 9274

Contact Information:
Presenter: Ed.MacKenty@RocketSoftware.com
Company: http://www.rocketsoftware.com

