Taming Your Storage Hungry Linuxen Using CMM(A)

David Kreuter
Austin SHARE
Session 9272
Taming Storage Hungry Linux Virtual Machines

• Problem case study
• CMM 1 – software controls service machine communication
• CMMA (CMM – 2) – hardware storage key bit settings
• Descriptions
• Scenarios
• Performance data
Tools

- CP commands
 - INDICATE, QUERY, XAUTOLOG, FORCE, SET
- CMS: REXX, PIPELINES
- CP MONITOR DATA
- Velocity products
- Linux commands:
 - cat, lsmod, ls, grep, vi, top, nice, cp, mv, rm
Linux on System z support for CMM1 is available in:

- Novell SUSE Linux Enterprise Server 9 (SLES9) SP3 since kernel level: kernel-s390(x)-2.6.5-7.257 dated 2006-05-16
- Novell SUSE Linux Enterprise Server 10 (SLES10) since GA
- Red Hat RHEL4 U7 2.6.9-73 (includes Out of Memory Notifier)
- Red Hat RHEL5.1 2.6.18-53 (includes Out of Memory Notifier)

In z/VM: 5.3.0 and beyond
- In 5.2.0 CMS APAR is required, VM64085, for full functionality
CMM1

- The VM Resource Manager service machine
- Linux drivers for CMM processing and message handling.
- Used effectively can reduce Linux storage footprint
CMM Linux Mechanics

• Load the CMM module with modprobe or insmod
 – *Not compiled in kernel is Novell SLES10*
• Parameter passing
• Checking the parameters after loading
• Dynamic and static loading methods
Dynamically loading the CMM module in Linux

```
# lsmod | grep cmm

# modprobe cmm

# lsmod

<table>
<thead>
<tr>
<th>Module</th>
<th>Size</th>
<th>Used by</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmm</td>
<td>33024</td>
<td>0</td>
</tr>
<tr>
<td>smsgiucv</td>
<td>24080</td>
<td>1 cmm</td>
</tr>
<tr>
<td>iucv</td>
<td>47704</td>
<td>1</td>
</tr>
</tbody>
</table>
```

SHARE 9272
Dynamically loading the CMM module in Linux specifying the sender

```
# modprobe cmm sender=SOMEVM
#
# lsmod
Module           Size  Used by
  cmm             33024  0
  smsgiucv        24080  1  cmm
  iucv            47704  1
:                  
```

SHARE 9272
Dynamically checking the parameters

cat /sys/module/cmm/parameters/sender
SOMEVM
#

Kernel level and distribution

cat /proc/version /etc/SuSE*
Linux version 2.6.16.60-0.21-default (geeko@buildhost) (gcc version 4.1.2 20070115 (SUSE Linux)) #1
SMP Tue May 6 12:41:02 UTC 2008

SUSE Linux Enterprise Server 10 (s390x)
VERSION = 10
PATCHLEVEL = 2

#
Not compiled in the kernel

grep -i cmm /boot/config-*
CONFIG_CMM=m
CONFIG_CMM_PROC=y
CONFIG_CMM_IUCV=y

In SLES SP10 cmm is not compiled into the kernel
Automatically loading the cmm module

- Train the kernel in /etc/sysconfig/kernel
- Pass parameters in /etc/modprobe.conf.local

```bash
~ grep -i cmm /etc/sysconfig/kernel
MODULES_LOADED_ON_BOOT="vmcp cmm"

~ cat /etc/modprobe.conf.local
#
# please add local extensions to this file
#
options cmm sender=OTHERVM
```
Checking after boot time

```bash
~ cat /sys/module/cmm/parameters/sender
OTHERVM
```
The VM Resource Manager

- Workload manager for z/VM
- Can be used to dynamically adjust virtual machine CPU consumption and I/O usage
- Used to message Linux virtual machines when using CMM
- Runs in the VMRMSVM service machine as supplied by IBM.
- One configuration file.
- Logs to a file.
The VMRMSVM Under the Hood

- Use CP MONITOR SAMPE data to determine:
 - Memory constraints
 - How much memory to instruct its’ Linux partner to release
- “Kicks in”
- Requires careful monitoring – can have profound positive impact but can also hurt
The VM Resource Manager: startup

xautolog vmrmsvm
Command accepted

AUTO LOGON *** VMRMSVM USERS = 62

HCPCLS6056I XAUTOLOG information for VMRMSVM: The IPL command is verified by the IPL command processor.

12:53:38 * MSG FROM VMRMSVM : IRMSER0023I VM Resource Manager Service Virtual
 Machine initialization complete. Proceeding to connect to Monitor.
Configuration file: NOTIFY statement in the VMRM CONFIG

Send messages to MAINT

ADMIN MSGUSER MAINT NOTIFY MEMORY LINUXA*

VMRMSVM 191
fn = VMRM
ft = CONFIG

Converse with all machines starting with LINUXA
(they need to be running cmm module)
The VM Resource Manager: CMM notifications

1
query mon sample
MONITOR SAMPLE ACTIVE
 INTERVAL 1 MINUTES
 RATE 1.00 SECONDS
MONITOR DCSS NAME - MONDCSS
CONFIGURATION SIZE 1000 LIMIT 1 MINUTES
CONFIGURATION AREA IS FREE
USERS CONNECTED TO *MONITOR - ESAWRITE VMRMSVM

2
::
 MONITOR DOMAIN ENABLED
 SYSTEM DOMAIN ENABLED
 PROCESSOR DOMAIN ENABLED
 STORAGE DOMAIN ENABLED
 USER DOMAIN ENABLED
 ALL USERS ENABLED
 I/O DOMAIN ENABLED
 ALL DEVICES ENABLED
 NETWORK DOMAIN ENABLED
 APPLDATA DOMAIN ENABLED
 ALL USERS ENABLED
The VM Resource Manager: orderly termination

CMS immediate command

```
cp send vmrmsvm hmonitor

12:54:28 * MSG FROM VMRMSVM : IRMMON0026I VM Resource Manager processing of monitor records ended. Pipe RC= 0
12:54:28 * MSG FROM VMRMSVM : IRMSER0012I VM Resource Manager Service Virtual Machine shutdown in progress
12:54:28 * MSG FROM VMRMSVM : IRMSER0027I VM Resource Manager Service Virtual Machine shutdown complete
VMRMSVM : 12:54:28 0 RC FROM IRMSERV
VMRMSVM : 12:54:28 Ready; T=0.17/0.19 12:54:28
```
VMRMSVM and Linux interaction

Notify via CP SMSG command

VMRMSVM ➔ LINUXAC

SMSG LINUXAF CMM SHRINK 375

SMSG LINUXAF ➔ LINUXXAD ➔ LINUXXF

SHARE 9272
VMRMSVM and Linux interaction

Notify via CP SMSG command

VMRMSVM

SMSG LINUXAF CMM SHRINK 375

Relpage means that the virtual machine doesn’t need the page backed up by CP. Therefore it can be reused; in this case by other Linux CMM participants.

Diag ’10’x RELPAGE

LINUXAF
Page SHRINK 1

Notify via CP SMSG command

VMRMSVM

SMMSG LINUXAF CMM SHRINK 375

LINUXAF 256000

Diag ‘10’x RELPAGE 375

SHARE 9272
Page SHRINK: machine is now 255625 pages

after RELPAGE 375

LINUXAF 255625
Next: Page SHRINK 100 pages

Notify via CP SMSG command

VMRMSVM

SMSG LINUXAF CMM SHRINK 100

LINUXAF 255625

SHARE 9272
Page SHRINK: can *increase* by 275 page (375-100)

Allows the guest to reclaim some of the storage previously released.
VMRMSVM logging -startup

2009-02-25 12:53:38 ServExe Entry -------------------------------

2009-02-25 12:53:38 ServExe MSG IRMSER0022I VM Resource Manager Service Virtual Machine initialization started

2009-02-25 12:53:38 ServExe PCfg VMRM CONFIG A1

2/25/09 7:54:41

2009-02-25 12:53:38 ServExe InitEnv MONITOR EVENT ACTIVE

BLOCK 500 P

ARTITION 8192

2009-02-25 12:53:38 ServExe InitEnv MONITOR DCSS NAME -MONDCSS

2009-02-25 12:53:38 ServExe InitEnv CONFIGURATION SIZE 50 LIMIT

VMRMSVM logging - termination

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Event Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-02-25</td>
<td>12:53:38</td>
<td>MonRexx</td>
<td>Entry MonIntCtr= 1, Record= ENDR C3CD2331A780FC, Processing record 25 Feb 2009 12:53:38</td>
</tr>
<tr>
<td>2009-02-25</td>
<td>12:54:06</td>
<td>MonRexx</td>
<td>Entry MonIntCtr= 2, Record= ENDR C3CD234C7CBE0A, Processing record 25 Feb 2009 12:54:06</td>
</tr>
<tr>
<td>2009-02-25</td>
<td>12:54:28</td>
<td>MonExec</td>
<td>Exit IRMMON0026I VM Resource Manager processing of monitor records ended. Pipe RC= 0</td>
</tr>
<tr>
<td>2009-02-25</td>
<td>12:54:28</td>
<td>ServExe</td>
<td>MSG IRMSER0012I VM Resource Manager Service Virtual Machine shutdown in progress</td>
</tr>
<tr>
<td>2009-02-25</td>
<td>12:54:28</td>
<td>ServExe</td>
<td>MSG IRMSER0027I VM Resource Manager Service Virtual Machine shutdown complete</td>
</tr>
</tbody>
</table>

Will close after 10,000 records. Keeps 1 copy around as VMRM LOG2.
Checking how many pages are participating

```
# cat /proc/sys/vm/cmm_pages
69362

in a 640m vm
```

```
69362/256 =271 -> 271Mb release
```
SHRINK values as reported in the VMRMSVM log file

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>System</th>
<th>Process</th>
<th>User</th>
<th>SHRINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>21:19:07</td>
<td>MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA8</td>
</tr>
<tr>
<td>21:19:07</td>
<td>MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA7</td>
</tr>
<tr>
<td>21:19:07</td>
<td>MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA6</td>
</tr>
<tr>
<td>21:19:07</td>
<td>MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA4</td>
</tr>
<tr>
<td>21:19:07</td>
<td>MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA3</td>
</tr>
<tr>
<td>21:20:07</td>
<td>MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA8</td>
</tr>
<tr>
<td>21:20:07</td>
<td>MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA7</td>
</tr>
<tr>
<td>21:20:07</td>
<td>MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA6</td>
</tr>
<tr>
<td>21:20:07</td>
<td>MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA4</td>
</tr>
<tr>
<td>21:20:07</td>
<td>MonCMM</td>
<td>CPCMD</td>
<td>SMSG</td>
<td>LINUXA3</td>
</tr>
</tbody>
</table>
Checking how many pages are participating

```
# cat /proc/sys/vm/cmm_pages
114687
# cat /proc/sys/vm/cmm_timed_pages
0
# cat /proc/sys/vm/cmm_timeout
0 0
```
CMMA – VM and Linux levels

- z/VM 5.3 plus APAR VM64265 and APAR VM64297
- SLES10 SP1 update kernel 2.6.16.53-0.18
- Redhat – not available
CMMA – instruction level communication

- Uses storage key to describe page contents
- ESSA instruction

<table>
<thead>
<tr>
<th>Bit Desc.</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable</td>
<td>Guest cannot recreate contents</td>
</tr>
<tr>
<td>Unused</td>
<td>Unused</td>
</tr>
<tr>
<td>Volatile</td>
<td>Useful content but may be discarded. Discard fault presented to guest</td>
</tr>
<tr>
<td>Potentially volatile</td>
<td>Dirty = CP handles as Stable Not dirty = CP handles as volatile</td>
</tr>
</tbody>
</table>
CMMA – instruction level communication

- CP investigates the bit settings:
 - Possibly steal unused, volatile, not dirty potentially volatile pages without necessarily having to page out contents.
 - CP can use clean disk cache pages, and if Linux needs it back, CP will reflect a discard interrupt.
 - Linux marks a page for removal CP may reuse it without having to page out.
 - Assist provided (Host Page-Management Assist) to let guest reclaim discard page without CP interception (remains runnable).
• MEMASSIST must be on for system and virtual machine.

```bash
cp query memassist
ALL USERS SET - ON
USER SETTING STATUS
MAINT ON INACTIVE

cp query memassist linuxa1
ALL USERS SET - ON
USER SETTING STATUS
LINUXA1 ON ACTIVE
```
System and Linux mechanics

- Kernel parameter is cmma=on

```bash
# dmesg | grep cmma
Kernel command line: root=/dev/ram0 init=/linuxrc rw
barrier=off selinux=0 TERM=dumb elevator=cfq cmma=on
BOOT_IMAGE=2
```
Tracing the ESSA instruction in a Linux virtual machine with class G TRACE command

<table>
<thead>
<tr>
<th>CP TRACE ESSA STEP 5</th>
<th>ESSA</th>
<th>B9AB2001</th>
<th>0000000000000000</th>
<th>00000000159AF000</th>
<th>CC 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-> 000000000001C00FA'</td>
<td>ESSA</td>
<td>B9AB1051</td>
<td>0000000000000004</td>
<td>00000000159AF000</td>
<td>CC 2</td>
</tr>
<tr>
<td>-> 000000000001BD4EC'</td>
<td>ESSA</td>
<td>B9AB1051</td>
<td>0000000000000004</td>
<td>00000000159AF000</td>
<td>CC 2</td>
</tr>
<tr>
<td>-> 000000000001BD4EC'</td>
<td>ESSA</td>
<td>B9AB1051</td>
<td>0000000000000004</td>
<td>0000000015AAA000</td>
<td>CC 2</td>
</tr>
<tr>
<td>-> 000000000020A596'</td>
<td>ESSA</td>
<td>B9AB6021</td>
<td>0000000000000000</td>
<td>0000000015AAA000</td>
<td>CC 2</td>
</tr>
<tr>
<td>-> 000000000001C00FA'</td>
<td>ESSA</td>
<td>B9AB2001</td>
<td>0000000000000000</td>
<td>000000001F425000</td>
<td>CC 2</td>
</tr>
</tbody>
</table>
Case Study

- When running WAS “idle” Linux machines remain in Q3 forever.
- Using resource needlessly, causing storage overcrowding in the high rent district.
- Attempted to duplicate problem in test lpar.
 - However machines do not sit in Q3 – but they still work through queues even when “idle”
Production System Queue Reports: 03:15 – 03:30

Velocity Software report ESAUSRQ

<table>
<thead>
<tr>
<th>UserID</th>
<th>Logged on</th>
<th>Non-Disc</th>
<th>Total Dispatc</th>
<th>Trans</th>
<th>Q0</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Idle</td>
<td>Active</td>
<td>conn</td>
<td>InQue</td>
<td>/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:30:00</td>
<td>87.0</td>
<td>.</td>
<td>70.3</td>
<td>.</td>
<td>55.9</td>
<td>781</td>
<td>0</td>
<td>10.5</td>
</tr>
<tr>
<td>Hi-Freq:</td>
<td>87.1</td>
<td>70</td>
<td>70.3</td>
<td>84</td>
<td>55.6</td>
<td>780</td>
<td>0.2</td>
<td>10.6</td>
</tr>
</tbody>
</table>

Same results at 3 a.m. …
Production System Queue Reports 15:15 – 15:30

Velocity Software report ESAUSRQ

<table>
<thead>
<tr>
<th>UserID</th>
<th>Logged</th>
<th>Non-Idle</th>
<th>Disc-Active</th>
<th>Total Conn</th>
<th>InQue</th>
<th>/min</th>
<th>Q0</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>15:30:00</td>
<td>87.0</td>
<td>.</td>
<td>70.3</td>
<td>.</td>
<td>56.0</td>
<td>725</td>
<td>0</td>
<td>10.7</td>
<td>5.3</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td>Hi-Freq</td>
<td>87.1</td>
<td>70</td>
<td>70.3</td>
<td>84</td>
<td>55.6</td>
<td>725</td>
<td>0.4</td>
<td>9.5</td>
<td>5.7</td>
<td>39.9</td>
<td></td>
</tr>
</tbody>
</table>

0 ***Key User Analysis***

Same results at 3 a.m. … … as at 3 p.m.
CP Storage: 2.5G with XSTORE .5G z9 with two IFLs uncapped LPAR

1. WAS started; each machine 1.5G

2. IPL LINUX; each machine 1G
Tried this approach

• Over commitment of 10:1 and higher
 – Inquiring minds want to know!
 • Done in a test LPAR
• Results were just not good
• Certain runs:
 – Caused thrashing
 • Exceptionally high CP overhead – CP tries to keep all
 vm’s happy ends up punishing all!
 – Elist formation
 • Severe memory resource shortage
Trying for the sweet spot: CP Storage: 2.5G with XSTORE .5G z9 with two IFLs uncapped LPAR

1. WAS started; each machine 640M
2. IPL LINUX; each machine 512M

SHARE 9272
Results

• Caveat: results are mine only based on limited circumstance testing.
• Caused extreme memory stress during most tests.
• Overcommitment of 10:1 didn’t work so well.
 – So what’s the right number: between 1 and 10…
 • Around 3 – 4? 5? … 6?
 – And cmm and cmma can help with overall storage management with careful management
• By no means formal tests.
• Will continue to evaluate
Comments

• The VMRMSVM “kick in” determined by “black box” internal values; no control.
• Maybe it was the nature of the tests but...
 – External setting of low, medium or high relpage processing would be nice.
 – Follow suggestions for using CMM with non-production workloads.
 – CMM-1 and CMMA are not “set it and forget it”
 – Requires a performance monitor!
 • Used Velocity products, CP, and linux commands.
• Nonetheless CMM-1 and CMMA are reasonable tools in the right hands.
Perceptions

• After the VMRMSVM has instructed servers to give up a lot of pages:
 – Simple tasks in those machines had elongated response times
 • Attempts to ssh
• Machines not in the VMRMSVM hit list continue to do well
 – *Keep cmm-1 away from production?*
Test suites:
6 was at 640M 4 IPLERS at 512M

9 tests performed

<table>
<thead>
<tr>
<th>WAS CMM</th>
<th>WAS CMMA</th>
<th>IPLER CMM</th>
<th>IPLER CMMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Paging Disk Occupancy

Page Space Occupancy

SHARE 9272
User CPU and CP Overhead

![Bar Chart]

- **User CPU and CP Overhead**
- **CP Overhead**
- **User CPU**

SHARE 9272 48
DIAG Rate

SHARE 9272
<table>
<thead>
<tr>
<th>Test</th>
<th>Page read sec</th>
<th>Page Write sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAS No CMM IPLER CMMA</td>
<td>788</td>
<td>1217</td>
</tr>
<tr>
<td>WAS CMMA IPLER CMMA</td>
<td>421</td>
<td>1717</td>
</tr>
<tr>
<td>WAS CMMA IPLERCMM-1</td>
<td>42</td>
<td>208</td>
</tr>
<tr>
<td>WASCMMA IPLER No C MM</td>
<td>782</td>
<td>1927</td>
</tr>
<tr>
<td>No CMM WAS and IPLER</td>
<td>242</td>
<td>1038</td>
</tr>
<tr>
<td>WAS CMM-1 IPLER no C MM</td>
<td>2989</td>
<td>3220</td>
</tr>
<tr>
<td>WAS CMM- 1 IPLER CMMA</td>
<td>1847</td>
<td>2172</td>
</tr>
<tr>
<td>WAS CMM- 1 IPLER CMMA</td>
<td>2004</td>
<td>1234</td>
</tr>
<tr>
<td>WAS no CMM IPLER CMM-1</td>
<td>3004</td>
<td>5112</td>
</tr>
</tbody>
</table>
Thank you’s

• Barton Robinson
• Dave Jones
• Dominic Coulombe
<table>
<thead>
<tr>
<th>Time</th>
<th>PID</th>
<th>Time</th>
<th>Utility</th>
<th>Wait</th>
<th>Resp</th>
<th>Shares</th>
<th>Time</th>
<th>Utili</th>
<th>Wait</th>
<th>Resp</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:33:00</td>
<td>63</td>
<td>34</td>
<td>17.0</td>
<td>2.6</td>
<td>0.47</td>
<td>2</td>
<td>51.5</td>
<td>9.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:32:00</td>
<td>63</td>
<td>33</td>
<td>18.0</td>
<td>2.9</td>
<td>0.36</td>
<td>2</td>
<td>50.4</td>
<td>9.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:31:00</td>
<td>63</td>
<td>31</td>
<td>17.0</td>
<td>2.6</td>
<td>0.50</td>
<td>2</td>
<td>73.5</td>
<td>12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:30:00</td>
<td>63</td>
<td>30</td>
<td>21.0</td>
<td>2.9</td>
<td>0.28</td>
<td>2</td>
<td>52.1</td>
<td>9.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:29:00</td>
<td>63</td>
<td>31</td>
<td>18.0</td>
<td>3.0</td>
<td>0.35</td>
<td>2</td>
<td>63.5</td>
<td>9.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:28:00</td>
<td>63</td>
<td>35</td>
<td>16.0</td>
<td>2.6</td>
<td>0.54</td>
<td>2</td>
<td>46.0</td>
<td>8.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:27:00</td>
<td>64</td>
<td>36</td>
<td>19.0</td>
<td>2.9</td>
<td>1.36</td>
<td>2</td>
<td>69.7</td>
<td>10.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:26:00</td>
<td>63</td>
<td>33</td>
<td>20.0</td>
<td>2.8</td>
<td>1.06</td>
<td>2</td>
<td>57.1</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:25:00</td>
<td>63</td>
<td>34</td>
<td>21.0</td>
<td>3.7</td>
<td>0.46</td>
<td>2</td>
<td>46.5</td>
<td>11.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:24:00</td>
<td>63</td>
<td>41</td>
<td>20.0</td>
<td>8.1</td>
<td>0.51</td>
<td>2</td>
<td>56.1</td>
<td>24.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:23:00</td>
<td>63</td>
<td>41</td>
<td>23.0</td>
<td>11.8</td>
<td>0.45</td>
<td>2</td>
<td>131.1</td>
<td>116.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:22:00</td>
<td>63</td>
<td>43</td>
<td>25.0</td>
<td>8.1</td>
<td>0.81</td>
<td>2</td>
<td>144.3</td>
<td>102.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

thrashing
<table>
<thead>
<tr>
<th>Time</th>
<th>Users</th>
<th>Avg.</th>
<th>Transact.</th>
<th>Paging</th>
<th>I/O</th>
<th>Avg.</th>
<th>Time</th>
<th>XStore</th>
<th>DASD</th>
<th>Rate</th>
<th>Resp</th>
<th>Rate</th>
<th>Rate</th>
<th>%Hit</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:33:00</td>
<td>63</td>
<td>34</td>
<td>17.0</td>
<td>2.6</td>
<td>0.47</td>
<td>2</td>
<td>51.5</td>
<td>9.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:33:00</td>
<td>63</td>
<td>34</td>
<td>17.0</td>
<td>2.6</td>
<td>0.47</td>
<td>19043</td>
<td>16K</td>
<td>4773</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:32:00</td>
<td>63</td>
<td>33</td>
<td>18.0</td>
<td>2.9</td>
<td>0.36</td>
<td>13692</td>
<td>17K</td>
<td>4988</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:31:00</td>
<td>63</td>
<td>31</td>
<td>17.0</td>
<td>2.6</td>
<td>0.50</td>
<td>35853</td>
<td>13K</td>
<td>3692</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:30:00</td>
<td>63</td>
<td>30</td>
<td>21.0</td>
<td>2.9</td>
<td>0.28</td>
<td>24361</td>
<td>15K</td>
<td>4721</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:29:00</td>
<td>63</td>
<td>31</td>
<td>18.0</td>
<td>3.0</td>
<td>0.35</td>
<td>32031</td>
<td>14K</td>
<td>4144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:28:00</td>
<td>63</td>
<td>35</td>
<td>16.0</td>
<td>2.6</td>
<td>0.54</td>
<td>11605</td>
<td>14K</td>
<td>4052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:27:00</td>
<td>64</td>
<td>36</td>
<td>19.0</td>
<td>2.9</td>
<td>1.36</td>
<td>35700</td>
<td>12K</td>
<td>3198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:26:00</td>
<td>63</td>
<td>33</td>
<td>20.0</td>
<td>2.8</td>
<td>1.06</td>
<td>21455</td>
<td>12K</td>
<td>3352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:25:00</td>
<td>63</td>
<td>34</td>
<td>21.0</td>
<td>3.7</td>
<td>0.46</td>
<td>11526</td>
<td>13K</td>
<td>3322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:24:00</td>
<td>63</td>
<td>41</td>
<td>20.0</td>
<td>8.1</td>
<td>0.51</td>
<td>18418</td>
<td>8547</td>
<td>2389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHARE 9272