The Linux IPL Procedure

SHARE 2008 San Jose – Session 9274

Edmund R. MacKenty
Rocket Software, Inc.
Purpose

- De-mystify the Linux boot sequence
- Explain what happens each step of the way
- Describe why each step exists
- Tell you how to learn more
General Design Principles

- Flexibility: uses not thought of by designers
- Extensibility: accommodate specific end-user needs
- Reuse-ability: of code and user data
- Controllability: higher-level code can drive it
- Portability: can operate in different environments
- Simplicity: easy to understand, use; limited side-effects
Overview

• Boot loader
• Kernel
• Initial RAM disk
• Init process
• Runtime configuration scripts
• User login
Concepts

- The Kernel
- Device drivers
- Kernel modules
- Filesystems
- Mounting a filesystem
- Processes
- The onion
- The two trees
- Run Levels
- The online manual
Manual Pages

- Online manual is a good source of information
- References to manpages use the form: `page(section)`
 - Section 1: User Commands
 - Section 2: System Calls
 - Section 3: Library Functions
 - Section 4: Special Files
 - Section 5: File Formats
 - Section 6: Games
 - Section 7: Conventions and Miscellany
 - Section 8: Administrative Commands
- To learn about `init(8)`, use the command: `man 8 init`
- Use `info(1)` for more information about some commands
- The `apropos(1)` and `whatis(1)` commands do searches
- Different distros have different manpages available
Linux: The Onion

- Linux consists of many layers surrounding a kernel
Linux: The Two Trees

- Linux consists of two trees: Processes and Files
- Processes inherit properties from their parent
- Files reside within their parent directory
Structure of the Kernel

- The Linux kernel is not monolithic.
- All device drivers and many sub-components may be built as modules, which can be loaded or unloaded as needed.
- This permits one kernel to run efficiently on lots of different hardware.
- The kernel build process is amazingly configurable.
- Some core components must be compiled in:
 - Memory management
 - Virtual filesystem layer
 - Process scheduler
 - Multi-processor support
 - TCP/IP networking (if used)
- Examples of dynamically-loaded modules:
 - Filesystems: ext3, reiserfs, jfs
 - Support for specific hardware: SCSI, DASD, USB, Crypto
 - Network drivers
Processes

- A unit of execution scheduled by the kernel
- Each process runs in its own address space
- Fork: creates a new, child, process
 - Inherits code and data segments
 - Gets copies of all open files, sockets, etc.
 - Process execution returns from fork() call
- Exec: Loads a new program into a process
 - All open files are closed
 - New code and data segments are allocated
 - Process execution continues at entry point of new program
- “Running a program” means a process forks and the child execs the program
Filesystems

- A logical structure built within a disk partition to manage files
- Many kinds of filesystems are supported
- There is one root filesystem: the base of the directory tree
- A filesystem of any type may be mounted on a directory
- Mounting is how new storage devices are added
- Unreferenced filesystems may be unmounted

```plaintext
/bin /home /lib /usr ...
/home /fred /mack /nms
/usr /lib /local /X11
```

```
root
```

```
bin
```

```
home
```

```
lib
```

```
usr
```

```
fred mack nms
```

```
lib local X11
```

© 2008 Rocket Software, Inc. CONFIDENTIAL
The Boot Loader

- z/VM IPLs a Boot Loader from DASD
- zipl(8) is the boot loader for zSeries Linux
- Knows where to find the kernel within the Linux filesystem
- Passes kernel command-line options
- Configured in `/etc/zipl.conf` [zipl.conf(5)]
- Uses the eckd0 program to store the subchannel address
- Reads kernel file into memory, jumps to entry point
Starting the Kernel

• Kernel is usually in a compressed file
• Beginning of file is program that uncompressed the rest
• Kernel builds its memory pools
• Kernel detects processors, estimates their speed
• Kernel starts its internal threads
• Kernel initializes built-in device drivers
• Drivers do hardware detection
• Drivers can use kernel command line arguments
The Initial RAM disk

• What is an initial RAM disk, and why use one?
 ▪ Extra drivers and setup code
 ▪ Useful when entire kernel won't fit on a floppy (for x86)
 ▪ Lets a distro have a single kernel config across all platforms
 ▪ On zSeries, initrd loads the DASD and zfcp device drivers

• Boot loader told kernel where to find initrd
• Kernel creates a temporary filesystem in memory
• Unpacks the initrd image into that filesystem
• Runs the program /linuxrc on it
Initial RAM disks for zSeries

• Loads kernel modules
 • DASD device driver
 • zfcp device driver
 • ext3 filesystem
 • LVM drivers
• Does LVM initialization [see lvm(8), vgscan(8)]
• Mounts the real root filesystem from DASD
• Makes the real root filesystem be the system root
• The mkinitrd(8) tool creates the initrd image
Finishing Kernel Initialization

- Kernel continues when `/linuxrc` on the initrd ends
- Makes the root filesystem read-only, so it can be checked
- Finds `/sbin/init` and runs it
Init: process number one

- Init(8) is the first user-mode process
- It is the root of the process tree
- All other processes are started by init or its descendants
- Reads its configuration file: /etc/inittab [see inittab(5)]
- Invokes rc-scripts [see init.d(7)]
- Manages changes between runlevels
The default runlevel is defined here
id:3:initdefault:

First script to be executed, if not booting in emergency (-b) mode
si::bootwait:/etc/init.d/boot

/etc/init.d/rc takes care of runlevel handling
l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
#l4:4:wait:/etc/init.d/rc 4
l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6

what to do in single-user mode
ls:S:wait:/etc/init.d/rc S

what to do when CTRL-ALT-DEL is pressed
ca::ctrlaltdel:/sbin/shutdown -r -t 4 now
~~:S:respawn:/sbin/sulogin /dev/ttyS0

on S/390 enable console login in all runlevels
1:012356:respawn:/sbin/mingetty /dev/ttyS0
What is an rc-script?

• Runtime configuration scripts live in /etc/init.d
• Each rc-script manages a distinct service or daemon
• These are shell scripts (but they don't have to be)
• Each accepts a single command as an argument:
 - start: starts the service, initializing some resource
 - stop: stops the service, shutting down some resource
 - restart: stops then starts the service
 - status: tells you what state the service is currently in
What Is A Runlevel?

- A feature of the init(8) program
- Controls which processes are allowed to run
- Change to runlevel \(N \) with command: `init N`
- Runs master rc-script (`/etc/init.d/rc`) with new runlevel
 - Stops all rc-scripts not in the new runlevel
 - Starts all rc-script that are in the new runlevel
- Runlevels are implemented by directories containing symbolic links to rc-scripts (`/etc/rc?.d`)
 - \(\text{KXX}name \) stops (kills) the service named \(name \).
 - \(\text{SXX}name \) starts the service named \(name \).
Traditional Set Of Runlevels

• 0: Halt the system
• 1: Single user mode
• 2: Multi-user mode
• 3: Multi-user with networking
• 4: (unused)
• 5: Multi-user with networking and graphical desktops
• 6: Reboot
Boot-time rc-scripts

- Run at boot-time from `/etc/init.d/rc` via `init(8)`
- Bring up user-space (non-kernel) resources:
 - Mount `/proc` and `/sys` pseudo-filesystems (kernel interfaces)
 - Check the root filesystem `[fsck(8)]`
 - Initialize the LVM subsystem, searching for devices using LVM `[vgscan(8)]`
 - Check all remaining filesystems `[fsck(8)]`
 - Enable any swap devices
 - Re-mount root to be writable
 - Mount all other filesystems as described by `/etc/fstab` `[fstab(5)]`
Service rc-scripts

- Initialize services and daemons for a particular runlevel
- Bookkeeping daemons:
 - cron – periodically run other commands
 - hotplug – detect newly-installed devices (DASD being linked)
 - syslog – collects logging output from other processes
- Network services:
 - interfaces – assign IP addresses or do DHCP, set up routes
 - NFS – mount network filesystems
- Network daemons:
 - sendmail – SMTP daemon listening on port 25
 - xinetd – a meta-daemon listening on many ports, invokes FTP, TELNET...
 - NTP – Network Time Protocol daemon using UDP connections
- Applications:
 - X-Windows – Starts an X display manager to provide user desktops
 - WebSphere – Starts up a web services engine
 - DB2 – Starts one or more database instances
User Logins on Terminals

- Init(8) starts getty(8) processes on attached terminals
- Getty(8) sets up serial tty lines, auto-detecting speed, etc.
- Getty(8) presents a **login**: prompt
- Exec's login(1), giving it the username
- Login(1) gives **password**: prompt, does authentication
- If successful, login(1) invokes the user's shell
User Logins from the Network

- An rc-script starts sshd(8) process
- Sshd(8) listens on port 22 for network connections
- Sshd(8) forks a child process to handle each connection
- SSH client negotiates user credentials with server
- Child sshd authenticates the user credentials
- If successful, child sshd forks the user's shell
- Child sshd continues to encrypt/decrypt data with SSH client
The Linux IPL Procedure

SHARE 2008 San Jose – Session 9274

Contact Information:
Presenter: Ed.MacKenty@RocketSoftware.com
Company: http://www.rocketsoftware.com

Your primary source for enterprise software