

IBM STG Lab Services Consulting 2008

9265 TCO: Comparing System z and Distributed Environments; Building the Business Case

Marlin Maddy Executive IT Consultant mmaddy@us.ibm.com

SHARE San Jose, CA August 2008

© 2008 IBM Corporation

IBM Systems and Technology Group 2008

IBM Systems and Technology Group (STG) Lab Services

Lab Services Mission and Profile

- Accelerate the adoption of new products and offerings.
- Deliver technical training tailored to customer needs
- Team with GTS and IBM Business Partners to optimize deployment of service offerings
- Develop processes to link Clients and Development

Our competitive advantage

- Leverage relationships with the Labs to build deep technical skills and exploit the expertise of our developers
- Provide timely skills transfer to our services teams and business partners
- Tightly integrated Lab Services and Technical Training

Helping our clients win the race!

Enterprise Systems Business Systems Mainframe Power Systems Modular Based Systems (System x/Blade/Clustered Solutions) System Storage IT Consolidation / Virtualization Data Center Services / Systems Management Training Services

_		
	_	
_		

WW STG Lab Services & Training Delivery

596 person team across 17 IMTs delivering a full portfolio of services and Technical Training

Recent Videos and article

Videos

Scorpion series part 1: Mainframe Cost Misconceptions Scorpion series part 2: Server Proliferation and Utilization Scorpion series part 3: Facility and Infrastructure Considerations Scorpion series part 4: Saving Money with zIIPS, zAAPs and IFLs Scorpion series part 5: Building a Business Case Scorpion series part 6: The Best Fit for System z

http://www-306.ibm.com/software/info/television/index.jsp?lang=en_us&cat=systemz&item=xml/A361366R16875X50.xml

The new TCO and the value of the mainframe Published on: 11 Jan 2007

The Mainstream -- January 2007 -- Issue 22

http://www-306.ibm.com/software/swnews/swnews.nsf/n/cres6x3lc8

IBM

Have you heard these statements?

" My mainframe cost 2x, 5x, 10x compared to my distributed environment" Mainframe

"Mainframe software costs are expensive and are driving me off the platform" Mainframe

"We are on a get off the mainframe strategy"Mainframe

"We keep adding servers and people" Distributed

"Our infrastructure can not support our servers" Distributed

Pain Point: Despite the emergence of virtualization tooling on Unix and Windows architectures, most enterprises continue to buy more processing power than is needed and end up getting ... more to manage, more costs, more complexity

Full Burden Cost vs. Incremental Cost

- Full burden cost is typically reflected in a chargeback system
 - Mainframe chargeback pools are typically 50% overstated
- Incremental cost is the "real" cost a customer will pay for additional capacity
- Cost Comparisons –Full Burden vs. Incremental
 - Incremental cost is 20 25% of the full burden cost
 - Hardware cost is typically 3x greater
 - 3 5 yr depreciation and blexed leases
 - Software cost is typically 4 5x greater
 - Capacity discounts (PSLC), New Workload pricing
 - ISV contracts have a significant impact
 - People costs
 - How many additional people are really needed
 - Facility costs
 - Allocations
 - •
- Chargeback methodology should not be used for comparing the cost of adding or removing a workload

IBM

Throughout the past 10+ years the cost dynamics of supporting corporate IT infrastructures has changed significantly as has the landscape.

Server Annual Cost Distribution

Installed vs. Used capacity

* system capacity (tpms) is an approximation of the transaction processing capability of each system. It cannot be compared to other commercial ratings or benchmarks and is invalid outside of the context of this IBM study.

Server utilization varies significantly by platform and that needs to be accounted for in the business case. The mainframe environment is used most efficiently, but is it the most or least expensive .

Datacenter Reality

- Mainframe
 - Well managed
 - Rock solid QoS
 - Expensive (perception)
 - Lowest TCO (reality)
- UNIX and Intel
 - Proliferation of servers
 - Lower systems utilization
 - Staffing growth
 - Inexpensive HW (perception)

IBM

Server Proliferation

Describe a current application environment

-Production

- Database server? How many?
- Application server? How many?
- Messaging server? How many?
- Failover servers? For each?
- -Additional Servers
 - Development servers? Multiple levels?
 - •Test servers? Multiple levels?
 - •Systems test? Multiple levels?
 - Quality Assurance servers?
 - •Education servers?
- -Disaster Recovery
 - •Do you have a DR site?

How many applications/types of workload do you have?

e-business Servers - Complexity and Cost

Web/App App F/O

Messaging

F/O

2-4w

Messaging

Database

Database F/O

2-4w

Test

-4w

Test/Education Integration

Hardware

- 3 primary production servers
- 16 total servers

5:1 ratio

Software

- 32+ processors for database software
 - ~ \$1.8M for 3yrs
- 15+ processors for application software

2-4w

Messaging D/R & QA

Database D/R & QA

D/R F/O

Why is utilization low?

Use of response time as a measure of capacity

- -Buy rather than tune
- Backup, development, test, training and integration servers
- Peaked, spiky workloads on dedicated rather than shared hardware
- I/O Bound workloads, contention
- Utilization controlled to avoid system stress and outages
- Incompatible release levels
- Incompatible maintenance windows

ikm		
		the second se

Summary of Server Scorecard Metrics Example

	Mainframe	UNIX	Intel
People Efficiency	Very Good	Average to Low	Very Good tend to be cloned infrastructure applications
Prime Shift Utilization	Very high (65-85%)	Fair/Good (10-20%)	Very low (1- 8%)
Online Availability	Excellent (99.9- 99.95%) * DB2 [®] avail. = 99.98%	Fair/Good (98.5- 99.7%) * Oracle avail. = 99.35	Not known (97.0-99.0%)
Total Spend / Year	M\$ / year	M\$ / year	M\$ / year
Usual Incremental Cost Ratio to Mainframe	1.0	0.9 – 1.5 x ** IBM System p 0.75 - 1.25x	<1.0 - 4.0 x
Typical Incremental to Current Cost Ratio	20 - 25 %	50 - 60%	50 - 60% * actual customer measurement

** based on multiple studies

© 2008 IBM Corporation

IBM STG Lab Services Consulting 2008

Are Space and Facility Costs and issue in the Data Center?

A Typical Distributed Environment

Lots of 1w, 2w, 4w boxes

Multiple operating system releases

Servers are under utilized

Source: Scorpion Study 1999 - 2007

Many servers are old

© 2008 IBM Corporation

Current State - Environmental costs are LOW on System z

Power and cooling resources are dominated by Wintel machines. Although these resources are not yet constrained at ABC, costs are rising steadily and will continue to do so. Environmental costs will be included in the business cases.

<u>Relative Internal Performance</u> is a cross-architecture capacity metric used here. It is to be used only within the context of this study and cannot be compared to external benchmarks or other IBM performance ratings. Load or Used RIPS is the product of estimated utilization and RIP per instance for all 2000 server instances.

IBM

Customer Studies

- WebSphere[®] customer
- Hardware
 - 5000+ MIPS
 - 1000+ servers (25% UNIX)
- Software
 - WebSphere currently on Solaris
 - Oracle and DB2[®]

Customer perception:

Solaris environment is 1/5 the cost of the mainframe

Production SUN Server Architecture

Source: Scorpion Study 1999 - 2007

Customer Example: Distributed SUN Server Solution – perception...

isn't always reality!

Customer perception was that the mainframe was 5x the cost of the existing Sun implementation

EEE Corp: WebSphere Business Case

Hardware at street prices - some Sun equipment was "used" Software based on customers' actual environment QoS & back-end connectivity not addressed Software licenses Proc. based - Oracle, WebSphere, DB2 Dev servers Annual maintenance 20% Average rate for servers \$11.5K/yr (non proc. Based)

Source: Scorpion Study 1999 - 2007

IBM STG Lab Services Consulting 2008

Specialty engines on System z9 and eServer zSeries

© 2008 IBM Corporation

IFL capacity increases "just happen"

when you do a mainframe hardware upgrade

TCO Impact of Mainframe Consolidations

Your TCO may vary:

- Potential for dramatic reductions in software expense for processor based licenses
- Significant reductions in power and cooling costs are typical
- People savings from virtualization
- Increased processor utilization

Source: Capricorn whitepaper

Workload consolidation using Linux on a mainframe can result in significant TCO savings

What about zSeries Application Assist Processors (zAAPs)?

3 Year Cost of Ownership

With zAAP processors, zSeries savings would have been 37%

Source: Scorpion Study 1999 - 2007

IBM STG Lab Services Consulting 2008

Recent customer studies

© 2008 IBM Corporation

Windows Application Servers

These two alternatives (VMware and Mainframe) differ in level of risk and estimated transition cost, but both are favorable from a business perspective and address the majority of workloads at XYZ.

101: win-app				Actua
Sizing	Current	Alt.Case.2	Alt.Case	3 Year Projectio
server type		x3950(8)7150NDC	z9-EC IFL	
total #CPU	3,106.92	640	64	90,000,000 -
used #CPU		640	64	
#Log.Servers	1550.00	1550	1550	80,000,000
#Phys.Servers	1486.84	40	64	70,000,000
avg.Log.srv RIP	596.9	217.9	32.9	
total capacity RIP	887,486.6	337,800.0	51,072.0	60,000,000
total workload RIP	40,240.7	40,240.7	40,240.7	50 000 000
average utilization	4.53%	11.91%	78.79%	30,000,000
				40,000,000
AOC: Annual Operating O	Costs			
Staff cost code	Win			30,000,000
SW cost code	win	WinStack-02	none	20,000,000
SW cost /CPU /yr	1,669	1,399	0	
SW cost /Lsrv /yr	911	880	0	
SW cost /Psrv /yr	207	207	0	
SW m&s /yr	6,905,008	2,267,484	0	Current Alt.Case.2 Alt.Case
maint /yr	1,212,901	216,000	0	
facilities /yr	1,229,994	89,698	24,769	■ transition ■ HW purchase ■ SW purchase
staff cost /yr	1,733,426	1,733,426	1,733,426	□ SO & Depr ■ staff cost /vr ■ facilities /vr
SO services / yr	8,167,487	8,167,487	9,906,121	maint /vr SW m&s /vr
depreciation /yr	6,624,310	1,241,760	0	E maint fyr
total AOC	25,873,126	13,715,855	11,664,316	14,208,810 est.potential saving /yr

© 2008 IBM Corporation

IBM Systems and Technology Group 2008

IEM

IBM

Current State - Staff Efficiency is HIGH on System z

Staffing Resources are dominated by Unix and Wintel machines and reflect the shared responsibilities between Infrastructure support and Application Development at ABC. Enhancing productivity to enable growth without additional staff will be highlighted in the business cases.

<u>Relative Internal Performance</u> is a cross-architecture capacity metric used here. It is to be used only within the context of this study and cannot be compared to external benchmarks or other IBM performance ratings. Load or Used RIPS is the product of estimated utilization and RIP per instance for all 1800+ server instances.

Windows Application servers – Virtualize on zVM/Linux where appropriate, with majority of work to virtualize on VMware.

What Makes the Best Fit for z

Leverage classic strengths of the zSeries

- High availability
- High i/o bandwidth capabilities
- Flexibility to run disparate workloads concurrently
- Requirement for excellent disaster recovery capabilities
- Security
- Facilities 15 yrs ago did you think facilities would be a mainframe strength

Shortening end to end path length for applications

- Collocation of applications
- Consolidation of applications from distributed servers
- Reduction in network traffic
- Simplification of support model

WebSphere MQ Series
DB2 Connect
CICS Transaction Gateway
IMS Connect for Java
Web Logic/WebSphere and JAVA applications development
Applications requiring top end disaster recovery model
LDAP security services
IBI Web Focus

Recent Videos and article

Videos

Scorpion series part 1: Mainframe Cost Misconceptions Scorpion series part 2: Server Proliferation and Utilization Scorpion series part 3: Facility and Infrastructure Considerations Scorpion series part 4: Saving Money with zIIPS, zAAPs and IFLs Scorpion series part 5: Building a Business Case Scorpion series part 6: The Best Fit for System z

http://www-306.ibm.com/software/info/television/index.jsp?lang=en_us&cat=systemz&item=xml/A361366R16875X50.xml

The new TCO and the value of the mainframe Published on: 11 Jan 2007

The Mainstream -- January 2007 -- Issue 22

http://www-306.ibm.com/software/swnews/swnews.nsf/n/cres6x3lc8

IBM STG Lab Services Consulting 2008

Have a Great Afternoon!

© 2008 IBM Corporation