
Help! My (Virtual)
Penguin Is Sick!

Or
Aptenodytes Patagonicus*

Problems on z/VM

Phil Smith III
SHARE 109
August 2007
Session 9248

* King Penguin, of course!

The difference between
applications people and systems people:

Applications people worry about how it will work.

Why We’re Here

Systems people worry about how it will fail.

If you support production, you’re a systems person!

Agenda

• We’ll cover:
• Ways Linux can get sick
• Techniques to decide what’s wrong
• Debugging information you can gather

• We won’t cover:
• Detailed use of debugging tools (gdb, et al.)
• Dump (core) analysis

 Paramedic / First Responder functionality, not
ER surgery or pathology lab forensic reports!

Penguins and
Bears, Oh My!

Penguin
Diseases

101

The Modal Penguin Ailment

• “Why isn’t my Linux guest responding?” AKA:
• Can I get from here to there?
• If I can get there, is there a “there” there?
• If there is a “there” there, is it open?

• These problems correspond to:
• Networking problems
• Linux issues
• VM troubles

A Baseline is Useful!

• Linux guests vary widely
• Networking configuration
• Performance profile
• Services provided

• Keep written (and online) notes about your guests
• IP addresses, network interfaces, routing, etc.
• Typical/observed performance characteristics
• Disk space usage

• In a crisis, you need to know
how things should look!

Network Issues

• Is it a network issue:
• Between the user and VM?
• Between the VM stack and the Linux virtual machine?
• Within the Linux virtual machine?

• If you can’t get to the machine, it sure won’t respond!

VM Troubles

• Is the Linux virtual machine even logged on?
• Someone might have logged it off, FORCEd it, etc.

• Is the virtual machine in a stopped state?
• Users may disconnect from machines carelessly, leaving them stopped

• Is VM broken?
• If VM is sick, Linux sure won’t run!

• Is VM letting the virtual machine run?
• CP might not be giving it resource

Linux Issues

• Is it a kernel problem within the Linux guest?
• Even Linux can have problems — OOMs (Out-Of-Memory errors), loops,

or Oopses (kernel errors)

• Is a specific service (ssh, ftp, etc.) broken?
• If target service is down, Linux will appear to be down

• Is it resource exhaustion within Linux?
• Insufficient disk space, or suffering from OOMs can cause some/all Linux

services to wait
• Is an application or service hogging resources within the Linux virtual

machine?

Penguin Problem
Identification
Taking Your Penguin’s
Temperature and Pulse

Linux Diagnostic Tools

• Use Linux commands for diagnosis:
• ps (Process Status)
• df (Display Filesystems)
• free (memory usage display)
• etc…

• Many of these just display /proc files
• /proc is a pseudo-filesystem whose files contain various system settings,

counters, etc.
• Better than running control blocks in memory!
• Access files like any other file: cat, etc.
• Write to /proc to change system settings on-the-fly

Diagnosing Network Issues

• Try to ping Linux from user’s machine
• Success means network OK between user & Linux
• Helps if you know the Linux hostname/IP address
• Also good to know whether Linux guest normally responds (some don’t;

some firewalls block ICMP)

• Try traceroute to Linux from user’s machine
• traceroute failure at last hop before Linux implicates Linux networking
• Must know normal routing and thus normal “last hop”!
• Linux, Windows, VM all have traceroute, spelled varying ways

Diagnosing Network Issues

• If Linux networking appears broken:
• Log onto guest virtual machine directly
• Then log into Linux as root
• May not be possible if local root login disabled (may be able to login as

another user and su to root)

• Use ifconfig and/or netstat -i to examine network
configuration and status

• Bouncing connection sometimes helps
(ifconfig down followed by ifconfig up)

Diagnosing Network Issues (continued)

• Useful CP commands:
• #CP QUERY VIRTUAL NIC shows whether virtual NICs on Guest LANs

are connected
• #CP QUERY LAN DETAILS shows what Guest LANs look like, including

IP addresses assigned
• Use #CP QUERY LAN DETAILS lanname if many LANs

• Try cat /proc/net/arp
• Shows cached hardware addresses
• If none, that may tell you network isn’t very happy
• Recommendation is to disable ARP caching anyway if using VSWITCH, so

of limited usefulness

Diagnosing Network Issues (continued)

• If QDIO network, ping broadcast (Bcast) address shown by
ifconfig:
ping -b -c 1 10.3.2.255
WARNING: pinging broadcast address
PING 10.3.2.255 from 10.3.2.2 : 56(84) bytes of data.
64 bytes from 10.3.2.2: icmp_seq=0 ttl=64 time=41 usec

• On 3270, use ping –c 1, or ping will run forever
• No <Cntrl>C on 3270; some distros support ^C

• More than one response from an IP address means duplicate IP!

• Learn to use tcpdump (or equivalent tool)
• Beyond scope of this presentation, but very powerful!

Diagnosing VM Troubles

• Is VM broken?
• Try to log onto another VM userid
• If that doesn’t work, head for the machine room!

• Is network to/from VM healthy?
• Try to ping and traceroute VM from your PC
• Try to ping external host from VM
• If you can get out but not back in, look for routing problem external to VM

• Is the Linux virtual machine even logged on?
• Log onto a VM userid and issue
#CP QUERY USER linuxid

• Response linuxid NOT LOGGED ON is a problem!

(Digression) VM SPOOLed Consoles

• VM lets you keep a copy of all console activity for a virtual machine
• Conceptually similar to having root logged on using a hardcopy terminal

• Files are saved in VM system SPOOL space

• Closed on demand or automatically at system shutdown or user
logoff

• Invaluable resource for determining abnormal virtual machine
events

• A bit less useful for Linux, since most services do not log to console
• Oopses, OOMs, some segfaults are logged to console

How To SPOOL the Console

• CP SPOOL command turns on SPOOLing:
CP SPOOL CONSOLE START

• CP TERMINAL TIMESTMP ON useful:
• Timestamps all output

• Various options control default destination userid, class,
filename/filetype

• Useful to indicate date/time SPOOL started:
CP SPOOL CONSOLE START NAME yyyymmdd hh:mm:ss

• Once file is closed, file timestamp will be close time, so this adds useful
info

• May want to centralize console collection:
CP SPOOL CONSOLE START TO CONSAVER

Finding (Open) SPOOLed Consoles

• To determine if a running virtual machine has its console
SPOOLed:
#CP QUERY PRT ALL linuxid
• Look for open CON file:
ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE
linuxid 6216 T CON nnnnnnnn 001 NONE OPEN- 0009 name type

• Mere existence of file is useful data point

• To close the console and send it to yourself:
#CP SEND CP linuxid CLOSE CONSOLE yourid

(where yourid is your userid)
• CP SEND requires privilege class C

Processing VM SPOOLed Consoles

• Result of previous command is message:
RDR FILE nnnn SENT FROM linuxid CON WAS mmmm RECS rr …

• Note the “nnnn” value — that’s the SPOOL file number in your
virtual reader

• Issue CMS PEEK command to view the file:
PEEK nnnn (FOR *
• Places you in XEDIT session, viewing file contents
• Large files require time, virtual storage to read
• Note: files may span days; HCPMID6001I appears each midnight

• CMS RECEIVE command reads file to disk
• PF9 in PEEK, or:
RECEIVE nnnn fn ft fm

Finding (Closed) Console Files

• To find SPOOLed consoles for non-running virtual machines (or
from previous logons):
#CP QUERY RDR ALL linuxid
#CP QUERY PRT ALL linuxid
• Shows files in linuxid ‘s virtual reader or printer
#CP QUERY RDR ALL XFER ALL linuxid
• Shows files sent/transferred to other virtual machines

• Use CP TRANSFER to move files to your reader:
TRANSFER ownerid RDR nnnn *
• Then use PEEK, RECEIVE, et al.

Notes About SPOOLed Consoles

• Consoles can become very large
• For guests with significant console activity, consider closing periodically to

keep files manageable
• E.g., close at midnight via WAKEUP-based machine
• EOF option closes automatically every 50,000 records (desirability

depends on how you manage the files)

• Naming consoles rationally helps a lot
• Use NAME option when SPOOLing
• RECEIVE them as “userid yyyymmdd”, perhaps

• Vendor console management products exist

When/Why Was Linux Logged Off?

• Examine operator’s console to see when/ why guest logged off:
User linuxid LOGOFF AS linuxid USERS= n

• Logged off “normally”, either by a user command or by Linux itself after
shutdown

User linuxid LOGOFF AS linuxid USERS= n FORCED BY vmid
• Logged off by CP FORCE command issued by vmid

User linuxid LOGOFF AS linuxid USERS= n FORCED BY SYSTEM
• Logged off due to CP “timebomb” logoff, after being in a read for (usually) 15

minutes while disconnected
• Look for more nuggets at bottom of guest console

Diagnosing VM Troubles

• Is Linux virtual machine stopped in CP READ?
• Issue CP SEND CP linuxid BEGIN to start it

• Harmless at worst

• Use RUNNABLE EXEC (see Resources) to check

• How did it get there?
• Force disconnected with RUN OFF

• by system or because user closed emulator while connected

• Reconnected and left in CP READ (with RUN OFF)
• CP STOP or CP CPU ALL STOP issued on guest

 Lesson:
Run Linux guests with CP SET RUN ON!!!

Diagnosing VM Troubles

• Is VM giving the virtual machine any service?
• CP might not be giving it resource
• Likely if Linux virtual machine reconnect shows RUNNING with no keyboard

response
• If it seems normal at reconnect, hit ENTER a couple of times, look for VM
READ, Linux login: prompt

• If no read, or significant delay before login prompt, VM may not be running
the virtual machine

 Basic understanding of scheduling and dispatching is
important

Scheduler and Dispatcher 101

• Some critical concepts
• Guests must be runnable to do work
• CP must be willing to schedule the guest
• CP must be willing to dispatch the guest

• A guest is always in one of three lists:
• Dormant list: guest has no work to do
• Dispatch list: guest is active, CP is allowing it to run
• Eligible list: guest is active, CP is not allowing it to run
• (Can also be running…special case of Dispatch list!)

Scheduler and Dispatcher 101

• CP scheduler analyzes resources, decides whether enough to
give guest service

• Entirely storage-related (memory)
• If not enough available, guest does not get scheduled

• CP dispatcher gives guests access to CPUs
• If multiple guests are active, they take turns
• VM is very good at this — supports tens of thousands of active users with

excellent response time

Dispatch Classes – Class 1

• When first dispatched, guest is Class 1 (“Q1”)
• CP waits one Class 1 Elapsed Timeslice (C1ETS) to see if it goes idle

voluntarily
• Guests that do not go idle within that timeslice are preemptively stopped

from execution— sent back to the scheduler
• C1ETS is dynamically calculated to keep a fixed % of guests in class 1
• C1ETS should be enough for short, interactive transactions (minor CMS

commands)

Dispatch Classes – Class 2

• If guest does not go idle in one C1ETS, it enters Class 2 (“Q2”)
• Next time CP runs it, given 8x C1ETS
• Guests that do not go idle within that amount of time are rescheduled
• Such guests are presumed to be running a command, but not necessarily

doing something “major”

Dispatch Classes – Class 3

• If guest does not go idle within class 2 C1ETS multiple, it enters
Class 3 (“Q3”)

• Next time CP runs it, given 6x Class 2 = 48x C1ETS
• Guests that do not go idle within that amount of time are rescheduled
• Such users are presumed to be running a long-running command

Dispatch Classes – Class 0

• QUICKDSP ON bypasses some rules
• Still get rescheduled, but never held in eligible list

• Interactive guests (on terminals, hitting keys) also get Q0 stays
(“hotshot” stays)

• Still get rescheduled, but “go to head of line” briefly
• Return to their previous queue level after Q0 stay

Leaving the Dispatch List

• Guests leave dispatch list because they:
• Go idle voluntarily (load a wait PSW)
• Wait on a CP resource (paging, DIAGNOSE I/O)
• Leave SIE due to execution of a privileged instruction

• 300ms queue drop test timer set on dispatch list exit
• Guest resuming activity within that period are reinserted into previous

place in queue
• Guests that don’t go idle never get queue dropped!

How This Plays Out…

• CP scheduling is based on storage analysis
• If not enough, guests are held in Eligible list (E-list)
• Assumption: other guests will go idle, storage will become available soon
• If not, E-listed guests never get scheduled

Why This Goes Wrong

• Linux machines tend to:
• Be quite large (virtual storage size)
• Have working set close to virtual storage size
• Stay active (rarely/never go idle)

• Linux real storage requirements are thus much higher than the
average CMS guest

• If enough Linux guests are logged on, CP notices it will
overcommit real storage

• One or more such guests “lose”, are E-listed —
and stay there!

How Does This Manifest?

• System is running along fine
• One guest too many is started
• Things “just stop”!

• Dispatched guests “should” go idle
• Linux guests typically don’t, stay runnable all the time

• Historically, guests doing I/O were “active”
• Recent releases have mostly eliminated this

• Remember the queue drop timer
• Guests never go idle (as far as CP can tell)
• Never get scheduled properly, so E-listing permanent!

Detection

• CP INDICATE QUEUES EXPANDED shows:
LINUX902 Q3 PS 00013577/00013567 -232.0 A00
LINUX901 Q3 PS 00030109/00030099 -231.7 A00
VSCS Q1 R 00000128/00000106 .I.. -208.7 A00
VMLINUX3 Q3 IO 00052962/00051162 -.9398 A00
VMLINUX3 MP01 Q3 PS 00000000/000000000612 A00
LINUX123 E3 R 00177823/00196608 5255. A00

• HELP INDICATE QUEUES shows meaning of output
• CP privilege class E required
• Note: “deadline time” (sixth column) indicates when CP thinks the guest

will run
• Guest LINUX123 is not running any time soon…

Remediation

• Buy lots more storage ($<6K/GB — cheap!)

• Tune applications so guests do queue drop
• Obviously only meaningful if guests are nominally idle
• Remember cron et al. may wake them anyway

• Log off some guests
• You didn’t need that WAS application, did you?

• Tune guest storage sizes
• Linux uses “extra” storage for file buffers
• Smaller guests may actually perform better

Diagnosing Kernel Problems

• Log onto Linux guest to see if it’s even alive:
• Hit ENTER, look for VM READ, login: prompt
• No VM READ means Linux is “hung” (looping,

E-listed, or somehow busted)
• No login prompt could just mean login isn’t running

• Again, it helps to know what normal behavior is!

• Look at SPOOLed console for Oops messages

• “What’s an Oops?”
• A system ABEND, in VM terms: a kernel failure
• Like VM, may leave system in unusable state
• Doesn't necessarily indicate code bug — faulty hardware can cause an

Oops (unlikely on VM)

Basic Oops Analysis

• Utility ksymoops maps addresses in Oops output to kernel
modules

• Uses system map file, usually found in /boot

• Oops output used by ksymoops is in a file
• Usually found in /var/log/messages
• If syslogd not running, extract with dmesg utility

(dmesg > oops.log)
• If Linux not even that alive, cut&paste from console log, or type it back in!
 If cascading Oopses, only first usually relevant

Diagnosing Kernel Loops

• Use #CP INDICATE USER linuxid EXPANDED to watch
guest CPU time

• If increasing rapidly, guest may be looping (could just be busy, though)
• Also note I/O counts, look for massive I/O load

• If loop suspected, log onto guest, use
CP TRACE:

• #CP TRACE INST RUN NOTERM PRINT
• Run a while; monitor with #CP QUERY PRT * ALL
• Then issue #CP TRACE END, #CP CLOSE PRT *, and RECEIVE the

file
• Analyze for repeated hits/patterns (or ask vendor to)

Diagnosing Broken Linux Services

• Use ps aux to show what services are running, pipe through
grep to find target:
ps aux | grep ssh
• Finds any processes that mention “ssh” (may find the grep itself, too)

• Restart service that’s not up and should be
• Perhaps restart it anyway if it claims to be up but isn’t responding!

Diagnosing Broken Linux Services

• Look at system log files
• /var/log/messages often interesting

• dmesg also shows recent kernel messages
• Looks at “kernel ring buffer”

• Sort of like CP trace table, but just messages

• Look at logs for service in question
• Location not predictable, alas

• Prescribed by Linux Filesystem Hierarchy Standard, but...
• Try /var/log/servicename, application directories

• Note: Linux & VM times may differ (timezone, drift)
• Default logging levels often omit useful information

• May need to change, wait for reoccurrence

Diagnosing Resource Exhaustion

• If Linux runs short on a resource, results “may be unpredictable”
• Well-behaved applications will fail in graceful ways
• Severe/rapid resource depletion may prevent this

• Nothing unique about Linux resources:
• Disk space
• Memory
• Page (swap) space
• CPU
• Any and all can run short!

Diagnosing Disk Space Exhaustion

• Use “df” (Display Filesystems):
df -a –h
Filesystem Size Used Avail Use% Mounted on
none 592M 94M 464M 17% /
none 0 0 0 - /proc
none 0 0 0 - /dev/pts
/dev/dasd/0000/part1 485M 17M 468M 4% /tmp

• Most interesting part is “Use%”
• Filesystems above 90% are suspect

• May be full due to temporary file usage

• Again, useful to know “normal” usage levels

Diagnosing Memory Exhaustion

• Linux may take OOM errors when insufficient “real” (virtual) memory is
available

• Applications can get OOMs; kernel too (game over!)

• OOMs are reported on Linux console:
Out of Memory: Killed process (processname)

(application OOM)
Out of memory and no killable processes

(kernel OOM)

• processname same as ps would show
• May or may not be actual problem process

• OOM killer configurable as of kernel level 2.4.23
• Now applications may get individual memory allocation failures, must

handle

Diagnosing Memory Exhaustion

• free command displays system memory use:
free -t
 total used free shared buffers cached
Mem: 191092 185160 5932 0 13032 80548
-/+ buffers/cache: 91580 99512
Swap: 197176 2920 194256
Total: 388268 188092 200176

• “-/+ buffers/cache” line most interesting
• Shows usage without file buffers and cache
• Those pages reclaimable for system use (DPA, in VM terms)
• If Swap space mostly/entirely in use, expect OOMs!

Diagnosing CPU Exhaustion

• As in most environments, a single application can grab enough CPU to
slow Linux

• Control mechanisms exist, but are not enabled by default

• top command is “performance monitor” tool
• sar is a popular free alternative (see Resources)
• Vendor tools exist (RMF PM, Velocity, Perfman — see Resources)

• uptime shows 1-, 5-, 15-minute CPU averages
• Look for rising trend to show recent problem
• Values above 1 mean CPU fully loaded (work waiting)
• Rising values may not mean Linux is using more CPU

• Could mean higher fraction of less available CPU

Output from top Command

 4:26pm up 5 days, 7:10, 2 users, load average: 1.00, 1.00, 1.00
82 processes: 80 sleeping, 2 running, 0 zombie, 0 stopped
CPU states: 0.8% user, 14.0% system, 0.0% nice, 85.1% idle
Mem: 191092K av, 185808K used, 5284K free, 0K shrd, 12976K buff
Swap: 197176K av, 2920K used, 194256K free 80288K cached
 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
 6250 root 17 0 1060 1060 844 R 5.9 0.5 0:01 top
 6142 root 9 0 2320 2320 1828 S 0.3 1.2 0:02 sshd
 1 root 9 0 556 540 492 S 0.0 0.2 0:02 init
 2 root 9 0 0 0 0 SW 0.0 0.0 0:00 kmcheck
 3 root 9 0 0 0 0 SW 0.0 0.0 0:00 keventd

etc…

• Note that the top command is top itself!
• Look at other candidates, note “heavy hitters”
• “top d 5” auto-refreshes every 5 seconds, shows some trends

• See man page to interpret, especially STAT value
• Note “0.0% nice”
• Negative value would mean some tasks have priority

Other Performance Measurements

• Look at /proc/loadavg
• 4th value: #processors/#processes running (“2/81”)
• 5th value: # of processes started since system boot
• Rapidly changing 5th value = something going on!

• SNMP can provide data, depending on settings
• Must be enabled, and SNMP collector operating somewhere!
• Do not leave default passwords (public/private strings) in place (obvious, but

far too many folks do)

• Linux I/O statistics may be useful
• Enable by echo set on > /proc/dasd/statistics
• Must be enabled before problem to be useful!
• Data saved in /proc/dasd/statistics

Other Performance Measurements

• /proc/chandev shows state of devices
• Useful if other evidence suggests a device problem

• Learn useful CP commands:
• QUERY VIRTUAL ALL (lots of output!)
• QUERY VIRTUAL DASD (show all virtual DASD)
• QUERY VIRTUAL xxxx (show a specific device)
• QUERY MDISK (show virtual DASD ownership)

• VM performance tools provide external performance
measurement

• Can profile usage; most don’t show activity inside Linux

• iostat (partner to sar) also does I/O monitoring

VM Monitor Data

• z/VM generates monitor data on demand
• Highly granular, very efficient mechanism

• Linux for System z can, too
• Data generated believed to be suspect
• Must correlate with z/VM data to be meaningful
• Stay tuned…

Penguin
Forensics

Recording Evidence Before
Burying the Body

First Failure Data Capture

• IBM promotes First Failure Data Capture:
• Collecting useful debugging information when a problem first occurs
• “Try a reboot” is not FFDC!
• VM, MVS, AIX, DB2, even Tivoli push FFDC
• Windows XP Error Reporting is (sort of) FFDC

• As Linux matures, FFDC concepts seep in
• Logging, trace tables, memory leak/overlay traps, more dump

capabilities…
• Still mostly not standard features, however — optional installs

Log Levels

• syslogd (syslog daemon) collects and writes messages from
various services, applications

• Of course, it has to be running to be useful!
• Can centralize messages from multiple systems

• Level of messages to be logged is configurable
• Understanding logging levels for your services/applications is essential to ensuring

FFDC

• Standard Linux syslogd isn’t very smart/flexible
• Insufficiently granular in many cases
• Uses UDP—messages get lost due to network congestion
• Alternatives exist, e.g., syslog-ng (www.balabit.com)

Cores

• Traditional *ix dumps were “core files”
• Created when applications did something blatantly illegal
• Created in current working directory, either core or core.pid

• Most distributions ship with cores disabled
• Average user wouldn’t know what to do with them!
• May contain sensitive data from running applications

• bash ulimit –c size enables (current login)
• ulimit –c unlimited means “dump everything”
• ulimit –c displays current setting (any value > 0 = enabled)
• See man bash for details

Dumps

• LKCD (lcrash) — Linux Kernel Crash Dump
• Must be installed before the problem occurs
• lcrash is the “IPCS” tool to analyze the dump

• As a VMer, I want to VMDUMP a sick penguin:
#CP VMDUMP 0-END TO MAINT
• Use IBM vmconvert to convert to LKCD format
• VM Dump Tool is programmable, could also handle

• Standalone dump available for z/Linux
• IBM mini-manual: Using the Dump Tools (LNUX-1208-01) at
www.ibm.com/servers/eserver/
zseries/os/linux/pdf/l39dmp24.pdf

• Analyze standalone dumps with lcrash, too

Linux Debugging Tools

• Kernel breakpoint tools:
• KProbes (Kernel Probes):
www-128.ibm.com/developerworks/library/
l-kprobes.html

• DProbes (Dynamic KProbes):
sourceforge.net/projects/dprobes/

• Kernel event (trace table) logging:
• LTT (Linux Trace Toolkit): www.opersys.com/LTT/index.html
• Strace (System call Trace):

Included in most modern distros (or Google it)

More Linux Debugging Tools

• Memory debuggers:

• YAMD (Yet Another Malloc Debugger):
www.cs.hmc.edu/~nate/yamd/

• NJAMD (Not Just Another Malloc Debugger):
fscked.org/proj/njamd.shtml

• General debugger:
• gdb (The GNU Project Debugger):
www.gnu.org/software/gdb/gdb.html

Learning to Debug Linux

• Zapping Linux bugs:
• Visit www.ibmsystemsmag.com and search

• Mastering Linux debugging techniques:
• www.ibm.com/developerworks/library/
l-debug/?n-l-8152

FFDC: What To Save

• Linux data
• System log files
• Application log files
• Any core files
• Application configuration files

• VM data
• VM console logs
• CP command output
• Trace files
• Monitor data
• Performance monitor reports
• Any dumps
• Guest directory entries

Conclusion

Summary

• To the VMer, Linux is obscure and opaque

• To the Linux expert, VM is the same!

• To provide proper support, learn to use the tools
• Both VMers and Linux folks can learn from each other

• As always, use the community
• linux-390@marist.edu: z/Linux mailing list
• ibmvm@listserv.uark.edu: z/VM mailing list

z/VM and Linux — even better together!

Resources

• Velocity Software (ESALPS): www.velocity-software.com

• RMF PM: www.ibm.com/servers/eserver/zseries/zos/rmf/rmfhtmls/
pmweb/pmlin.html

• Perfman: www.perfman.com
• sar (part of sysstat): freshmeat.net/projects/sysstat/

• ksymoops: www.gnu.org/directory/devel/debug/ksymoops.html
• Performance tips: www.vm.ibm.com/perf/tips/linuxper.html

• RUNNABLE EXEC (virtual machine status): email me

Contact Information and Credits

Contact Info

Phil Smith III

703.568.6662

phil@velocity-software.com

Thanks To…

Alex “Puffin” deVries

Scott Loveland

Neale Ferguson

Len Reed

Christopher Neufeld

Barton Robinson

Rod Stewart

Bob Thomas (z/Journal)

Rob van der Heij

