The Linux IPL Procedure

SHARE - Tampa
February 13, 2007
Session 9274

Edmund MacKenty
Rocket Software, Inc.

Purpose

* De-mystify the Linux boot sequence

* Explain what happens each step of the way
* Describe why each step exists

* Tell you how to learn more

Y
N

DASD ‘

Copyright © 2007 Rocket Software, Inc. Rocket

General Design Principles

* Flexibility: uses not thought of by designers

* Extensibility: accommodate specific end-user needs
* Reuse-ability: of code and user data

* Controllability: higher-level code can drive it

* Portability: can operate in different environments
e Simplicity: easy to understand, use; limited side-effects

4
Copyright © 2007 Rocket Software, Inc. Rocket

e —
Overview

Boot loader

Kernel

Initial RAM disk

Init process

Runtime configuration scripts
User login

4
Rocket

Copyright © 2007 Rocket Software, Inc. Rocket

_—
Concepts

* The Kernel

* Device drivers

* Kernel modules

* Filesystems

* Mounting a filesystem
* Processes

* The onion

* The two trees

e Run Levels

* The online manual

4
Rocket

Copyright © 2007 Rocket Software, Inc. Rocket

—!
Manual Pages

* Online manual is a good source of information

* References to manpages use the form: page(section)
Section 1: User Commands
Section 2: System Calls
Section 3: Library Functions
Section 4: Special Files
Section 5: File Formats
Section 6: Games
Section 7: Conventions and Miscellany
Section 8: Administrative Commands

* Tolearnabout init (8), use the command: man 8 init
* Use info(1) for more information about some commands

* The appropos(1) and whatis(1) commands do searches

* Different distros have different manpages available

4
Rocket

Copyright © 2007 Rocket Software, Inc. Rocket

Linux: The Onion

* Linux consists of many layers surrounding a kernel

Filesystems

Linux jfs
Kernel
ext?

reiserfs

4
Rocket

Rocket

Copyright © 2007 Rocket Software, Inc.

I —
Linux: The Two Trees

* Linux consists of two trees: Processes and Files
* Processes inherit properties from their parent
* Files reside within their parent directory

init

Rocket

Copyright © 2007 Rocket Software, Inc.

—!

Structure of the Kernel

The Linux kernel is not monolithic

All device drivers and many sub-components may be built
as modules, which can be loaded or unloaded as needed.

This permits one kernel to run efficiently on lots of different
hardware.

The kernel build process is amazingly configurable.

Some core components must be compiled in:
Memory management
Virtual filesystem layer
Process scheduler
Multi-processor support
TCP/IP networking (if used)

Examples of dynamically-loaded modules:
Filesystems: ext3, reiserfs, jfs
Support for specific hardware: SCSI, DASD, USB, Crypto

Network drivers “
| Rocket |

Copyright © 2007 Rocket Software, Inc. Rocket

—!
Processes

* A unit of execution scheduled by the kernel
* Each process runs in its own address space

* Fork: creates a new, child, process
Inherits code and data segments
Gets copies of all open files, sockets, etc.
Process execution returns from fork() call

* Exec: Loads a new program into a process
All open files are closed
New code and data segments are allocated
Process execution continues at entry point of new program
* “Running a program” means a process forks and the child
execs the program

Process A *forkﬁ—> Process B ‘ Process B

4
Rocket

Copyright © 2007 Rocket Software, Inc. Rocket

Filesystems

* A logical structure built within a disk partition to manage files
* Many kinds of filesystems are supported

* There is one root filesystem: the base of the directory tree

* A filesystem of any type may be mounted on a directory

* Mounting is how new storage devices are added

* Unreferenced filesystems may be unmounted

/

N

bin home lib usr

fred mack nms local X11

4
Rocket

Copyright © 2007 Rocket Software, Inc. Rocket

—!
The Boot Loader

z/VM |IPLs a Boot Loader from DASD

zipl(8) is the boot loader for zSeries Linux

Knows where to find the kernel within the Linux filesystem
Passes kernel command-line options

Configured in /etc/zipl.conf [zipl.conf(5)]

Uses the eckdO program to store the subchannel address
Reads kernel file into memory, jumps to entry point

A i
_ Memory

DASD :
4

d
r- Kemel “
 Rocket

Copyright © 2007 Rocket Software, Inc. Rocket

—!
Starting the Kernel

Kernel is usually in a compressed file

Beginning of file is program that uncompresses the rest
Kernel builds its memory pools

Kernel detects processors, estimates their speed
Kernel starts its internal threads

Kernel initializes build-in device drivers

Drivers do hardware detection

Drivers can use kernel command line arguments

4
Rocket

Copyright © 2007 Rocket Software, Inc. Rocket

-
The Initial RAM disk

* What is an initial RAM disk, and why use one?
Extra drivers and setup code
Useful when entire kernel won't fit on a floppy (for x86)
Lets a distro have a single kernel config across all platforms
On zSeries, initrd loads the DASD device driver

* Boot loader told kernel where to find initrd

* Kernel creates a temporary filesystem in memory
* Unpacks the initrd image into that filesystem

* Runs the program /1inuxrc on it

4
Rocket

Copyright © 2007 Rocket Software, Inc. Rocket

I —
Initial RAM disks for zSeries

e Loads kernel modules

* DASD device driver
© ext3 filesystem
* LVM drivers

Does LVM initialization [see lvm(8), vgscan(8)]
Mounts the real root filesystem from DASD
Makes the real root filesystem be the system root
The mkinitrd(8) tool creates the initrd image

4
Rocket

Copyright © 2007 Rocket Software, Inc. Rocket

Finishing Kernel Initialization

e Kernel continues when /1 inuxrc on the initrd ends
* Makes the root filesystem read-only, so it can be checked
* Finds /sbin/init and runs it

Rocket

4
Rocket

Copyright © 2007 Rocket Software, Inc.

Init: process number one

* Init(8) is the first user-mode process

* |tis the root of the process tree

* All other processes are started by init or its descendants

* Reads its configuration file: /etc/inittab [see inittab(5)]
* |nvokes rc-scripts [see init.d(7)]

* Manages changes between runlevels

4
Copyright © 2007 Rocket Software, Inc. Rocket

LlllJ!!
Example inittab file (SUSE SLES 8)

The default runlevel 1s defined here
1d:3:1n1tdefault:

First script to be executed, if not booting in emergency (-b) mode
si::bootwait:/etc/init.d/boot

/etc/init.d/rc takes care of runlevel handling
10:0:wait:/etc/init.d/rc 0
11:1:wait:/etc/init.d/rc 1

12:2:wait:/etc/init.d/rc 2
13:3:wait;/etc/init.d/rc 3
#14:4:wait:/etc/init.d/rc 4
15:5:wait:/etc/init.d/rc 5
16:6:wait:/etc/init.d/rc 6

what to do in single-user mode
Is:S:wait:/etc/init.d/rc S

what to do when CTRL-ALT-DEL 1s pressed
ca::ctrlaltdel:/sbin/shutdown -r -t 4 now
~~:S:respawn:/sbin/sulogin /dev/ttySO

on S/390 enable console login in all runlevels
1:012356:respawn:/sbin/mingetty /dev/ttyS0

4
Rocket

Rocket

—!
What is an rc-script?

* Runtime configuration scripts live in /etc/init.d
* Each rc-script manages a distinct service or daemon
* These are shell scripts (but they don't have to be)

* Each accepts a single command as an argument:
start: starts the service, initializing some resource
stop : stops the service, shutting down some resource
restart: stops then starts the service

status: tells you what state the service is currently in

4
Rocket

Copyright © 2007 Rocket Software, Inc. Rocket

—!
What Is A Runlevel?

* A feature of the init(8) program
e Controls which processes are allowed to run
e Change to runlevel N with command: init N

* Runs master rc-script (/etc/init.d/rc) with new runlevel
Stops all rc-scripts not in the new runlevel
Starts all rc-script that are in the new runlevel

* Runlevels are implemented by directories containing
symbolic links to rc-scripts (/étc/rc?.d)
KXXname stops (Kills) the service named name.
SXXname starts the service named name.

4
Rocket

Copyright © 2007 Rocket Software, Inc. Rocket

I —
Traditional Set Of Runlevels

0: Halt the system

1. Single user mode

2. Multi-user mode

3: Multi-user with networking

4: (unused)

5. Multi-user with networking and graphical desktops
6: Reboot

4
Rocket

Copyright © 2007 Rocket Software, Inc. Rocket

Boot-time rc-scripts

* Run at boot-time from /etc/init.d/xrc viainit(8)

. Brmg up user-space (non-kernel) resources:
Mount /proc and /sys pseudo-filesystems (kernel interfaces)
Check the root filesystem [fsck(8)]
Initialize the LVM subsystem, searching for devices using LVM [vgscan(8)]
Check all remaining filesystems [fsck(8)]
Enable any swap devices
Re-mount root to be writable
Mount all other filesystems as described by /etc/fstab [fstab(5)]

4
Rocket

Copyright © 2007 Rocket Software, Inc. Rocket

—!
Service rc-scripts

* |nitialize services and daemons for a particular runlevel

* Bookkeeping daemons:
cron — periodically run other commands
hotplug — detect newly-installed devices (DASD being linked)
syslog — collects logging output from other processes

* Network services:

interfaces — assign IP addresses or do DHCP, set up routes
NFS — mount network filesystems

* Network daemons:
sendmail — SMTP daemon listening on port 25
xinetd — a meta-daemon listening on many ports, invokes FTP, TELNET...
NTP — Network Time Protocol daemon using UDP connections

* Applications:
X-Windows — Starts an X display manager to provide user desktops
WebSphere — Starts up a web services engine
DB2 — Starts one or more database instances

4
Rocket

Copyright © 2007 Rocket Software, Inc. Rocket

—!
User Logins on Terminals

Init(8) starts getty(8) processes on attached terminals
Getty(8) sets up serial tty lines, auto-detecting speed, etc.
Getty(8) presents a 1ogin: prompt

Exec's login(1), giving it the username

Login(1) gives password: prompt, does authentication

If successful, login(1) invokes the user's shell

init wmqu% getty ﬂ login ﬂ bash

4
Copyright © 2007 Rocket Software, Inc. Rocket

—!
User Logins from the Network

An rc-script starts sshd(8) processes.

Sshd(8) listens on port 22 for network connections

Sshd(8) forks a child process to handle each connection
SSH client negotiates user credentials with server

Child sshd authenticates the user credentials

If successful, child sshd forks the user's shell

Child sshd continues to encrypt/decrypt data with SSH client

init W /etc/re ﬁwk(#exeé} sshd

fork0™ sshd W bash “
| Rocket

Copyright © 2007 Rocket Software, Inc. Rocket

The Linux IPL Procedure

Contact Information:

Presenter: Ed.MacKenty@RocketSoftware.com

Company: http://www.RocketSoftware.com

Copyright © 2007 Rocket Software, Inc.

4
Rocket

Rocket

