
ID: LAB-001

Title: Scripting Lab Workbook

Version: 1.0.0

Date: 23 February 2007

Author: Neale Ferguson

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 2 of 27

Document History

Revision Who Description Date

1.0.0 Neale Ferguson First release 31 January, 2007

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 2 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 3 of 27

Contents
1.0 LINUX LAB WORKBOOK..4

1.1 REQUIREMENTS..4

1.1.1 Telnet Client...4

1.2 VI PRIMER AND EXERCISES...4

1.3 GETTING STARTED...5

1.4 WARNING!..8

1.5 VI QUICK REFERENCE...9

2.0 LAB ANSWERS...13

2.1 FILE PERMISSIONS AND UMASK...13

2.1.1 Answers..13

2.2 USING THE POSITIONAL PARAMETERS...15

2.2.1 Answer...15

2.3 USING GETOPTS TO PARSE COMMAND OPTIONS...16

2.3.1 Answer...16

2.4 USING IF/THEN/ELSE AND TEST..18

2.4.1 Answer...18

2.5 USING THE FOR LOOP TO ITERATE THROUGH A LIST..20

2.5.1 Answer...20

2.6 USING SUBROUTINES...21

2.6.1 Answer...21

3.0 APPENDIX C. HOW TO SPEAK 'STRINE...23

3.1 COMMON WORDS...23

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 3 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 4 of 27

1.0Linux Lab Workbook
For each of the labs take the time to find out what each of the commands do. Use the man
command to display what options the command takes, what its effects are, and what type
of things to expect.

One of the key features of any UNIX type system is there is usually a number of different
ways to achieve the same result. If your answer doesn’t match mine but you get the right
result then consider it correct!

1.1 Requirements
Before you start the exercises check the following sections to ensure you have the
materials you need to run.

1.1.1 Telnet Client

To perform these lab exercises you will need access to a decent Telnet client. The default
Windows client is pretty lousy, but it will work.

If you want one that I’ve found quite useful then go to
http://www.chiark.greenend.org.uk/~sgtatham/putty/ and download the file to disk.
Running this program will enable you to simply fire off a telnet session or allow you to
configure and save various settings. This client also has a Secure Shell (SSH) feature for
making secure connections to hosts.

1.2 vi Primer and Exercises
Some things you should know right away:

It is pronounced, “vee-eye”. That's important because you don't want people to think you
are completely illiterate, and they will if you say “veye” or “vee”.

There are people who will differ with this, but here is the deal: those people who
pronounce differently know that a great number of people say “vee-eye”, but a lot of the
people who do pronounce it “vee-eye” do not realize that there are other ways. So be
safe. Go with “vee-eye”.

By the way, if you have any modern version of SCO, what you probably want is the
graphical editor that is (of course) available only within the graphical environment.
Somebody shut that off a long time ago? Try “startx”. That editor does not begin to have
the truly awesome power and beauty of vi, but there is no learning curve.

A caveat: it is hard to see leading or trailing spaces with the graphical Edit program, and
there are places where spaces in the wrong spot can mysteriously break things. Be
careful, and remember this.

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 4 -

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 5 of 27

Of course, you cannot use the graphical editor on a dumb terminal or over a dial-up
connection. Nor can you use it if your graphical environment is kaplooey, or never
worked at all. So having at least a minimal knowledge of vi is helpful, if not absolutely
necessary.

1.3 Getting Started
Honestly, there are only a few things you have to know to use vi. There are lots of things
you should know, lots of things you could know that could make your life easier now and
then, but there really are only a handful of things you need to know to get a job done. It
may take you ten times longer than it would if you learned just a little bit more, but you
will get it done, and that is better than getting nothing done at all.

So let us get started. First thing to do is type:

vi /ect/student nn

No, that is not a misprint: I really want you to type “vi /ect/studentnn”. Trust me on
this one; it is all in a good cause.

Okay, if you have done that, and your system is not the strangest Unix system in the
whole world, you should see something that looks a lot like this:

Without doing anything at all, I want you to look at your screen. Notice that the
“/ect/studentnn” is at the bottom of the screen and it says “[New file]”. Memorize
what this looks like, because every time you mistype the name of a file, this is what you
will get.

Notice that, at least right now, vi doesn't care a bit that you don't (I'm pretty sure you
don't) even have a directory “/ect”, or a file called “studennn”. Right now, vi just

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 5 -

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
“/ect/studentnn” [New file]

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 6 of 27

doesn't care. All it knows is that there is no such file right now, so it must therefore be a
“New” file. Simple minded, yes.

Notice the “~”'s running down your screen? Those are called “tildes” if you prefer
accuracy, or “squigglies” by some people. I do not care what you call them, I just want to
to remember that in vi, those “~”'s mean “Nothing is there”. That's “nothing” as in
absolutely nuttin'. Not a bunch of spaces such as separate every word on this page, but
nothing at all. Zip, nothing, empty.

That makes sense, here. If /ect/studentnn is a new file, there should not be
anything in it. Good so far? Okay, let us try something. Press <ENTER>.

Nothing happened, right? Try the arrow keys. Do not hit any letters or anything else, just
the arrow keys. Anything happen? Can you move down into those squigglies? No? Why
not?

Because vi will not let you move over what is not there. Other editors (like the graphical
Edit program we talked about above), would just assume you want to add spaces or
empty lines, and would let you move down. Not vi, though. vi is picky about those
things, and you are stuck right where you are.

Well, there has to be a way to add text, right? Of course. There are two ways (actually a
whole lot more, but we are only going to learn two here-keep it simple, remember?). The
first way is to type a lower case “i”. If you can remember that “i” means insert, that will
be good. Go ahead, type an “i”, but don't type anything else. What happened?

Nothing, right? Actually, if someone else set up your editing environment, you might
have seen “INSERT MODE” appear at the bottom of your screen, but probably not. So,
that is the second thing you have learned about vi: if you type “i”, nothing happens.

But wait: something did actually happen. Try typing something else now, anything at all.
“The quick brown fox was not quick enough”. Wow. Look at that. It is working! Press
<ENTER>. Type some more. Great fun, right?

Okay, now I'm going to break it. Sorry, but this is the only way you are going to learn.
Press <ESC > . Go ahead, there is no point in typing more. Press <ESC > . Press it again.
And again. Wait, then <ESC > -<ESC > -<ESC > really fast, pause for a second and then
two more. Did your computer beep at you every time you pressed <ESC>? It might have
(it depends on a few things like: does your speaker work?), which is vi's charming way of
saying “Just what is your basic problem, dude? You already pressed it once; I did what I
am supposed to, but NOOO, you have to press it again, and again and again…”

OK, now try the arrow keys. If they don't work, use the “-” key to move up, the
<ENTER> to move down, Backspace to move left, and <SPACE-BAR> to move right.
Try to remember those in case you are ever in a situation where your arrow keys do not
work. If it is easier for you, you can also use “h”, “j”, “k” and “l” to move around. Try
it.

Notice that you still cannot move into those tildes. Nothing has changed; you've added
some text that you can move around in, but that is all.

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 6 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 7 of 27

Now let us add a line. Get yourself right on the very first line and then type “o”. The “o”
stands for “open”. Neat, is it not? A whole line opened up underneath where you were
and you can type whatever you want until you want to move around again. When you
want that, press <ESC > , and then you can move again.

If you cheated and used the arrow keys while you were typing, you might have found out
that they work, too. But do not count on that: you might not always have arrow keys that
work, and some versions of vi don't let you use them when you are typing.

Next lesson: Press <ESC > if you haven't already, and put yourself (well, the cursor)
anywhere on one of the lines you just typed. Type a lower case “d”. Nothing happens
(you get a lot of “Nothing happens” with vi). Do it again. Whoops! Did you see that
sucker disappear? No? Try it again, and pay closer attention. Type “d”, and then type it
again. Instant line eradicator!

Of course, sometimes you are going to delete a line you did not mean to delete. Type “u”
(“undo”). Magic?! Type it again. Wow. Again. And again. It's like stuck, isn't it?

Let's try something else. Get on the very first line and press “d” twice. Now move to the
very last line and type a “p”. Wow, now you can move lines! But wait, there's more: type
“p” again. And again. And once more. Now you can duplicate lines, too. “p” is for “put”.

Sometimes you don't want to remove lines, just characters. vi can do that. Put your cursor
on top of a character. Pick a mean looking one, a character that doesn't deserve to be in
your file. You are now judge, jury, and executioner. Does this character deserve to die?
You bet! Type an “x” and the little creep is gone. Changed your mind? Bring it back with
“u”. Toy with it: “u” and it's gone, “u” and it's back. Gone, back, gone back. Only you
can determine this letter's fate. There's another neat trick that can come in handy if you
transpose characters while typing. Say you accidentally type “lteters”. Put your
cursor on the first “t” and hit “x”. Then, without moving a muscle, hit “p”. You now
have “letters”. Neat.

One more thing about “x” (actually about almost any command, but we'll use “x” to
demonstrate). Put yourself at the beginning of a line and then type “i”, followed by
“hello”. Hit <ESC > , then move back to the “h” of “hello”. Watch carefully now:
type “5x”. “hello” disappears. Hit “u” and then try “3x”. Get the point? You could
type “58x” and the next 58 characters would disappear. The reason I mention this is that
sometime you will do it accidentally, and if I didn't give you this hint, you wouldn't have
a clue. Forewarned and all that.

You've now learned how to move around, how to insert and delete characters and whole
lines, and that's enough. There is no editing task that you cannot accomplish with just
this. Yes, there are faster and better ways to do all kinds of things that you might have to
do, but there is nothing you cannot do just knowing these few commands.

But you do have to learn how to write your changes and get out, and (important) how
NOT to write your changes and get out.

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 7 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 8 of 27

Let's try writing this file. To do that, press <ESC > if you are in insert mode, and then type
a “:”. The cursor moves to the bottom of your screen and your computer puts on a very
patient expression. You probably won't want to try this, but you could sit there for 6 or 7
hours and vi would do ABSOLUTELY NOTHING. vi is very, very patient.

But you aren't, right? So type “w”, which means “write”. OK, cool, the file is written, and
now we can.

What? What do you mean you got an error? What error? Let me see that stupid thing.
What did you do now? You probably broke it for good this time, and people are going to
be real mad at you because YOU PRESSED “w” WHEN YOU WEREN'T SUPPOSED
TO!

Yeah, I'm kidding. You got “No such file or directory”, didn't you? It's OK, nothing bad
happened. vi just can't write this file because of those crazy directory names we used. I
stacked the deck to deliberately create this problem for you.

Great. So you've typed 10,000 words of deathless prose that's due on your boss's desk
NOW, and you can't write it. Real amusing, right?

Naw. You can write it, you just can't write it to /ect/studentnn. How about we
write it to myfile.safe instead? To do that, simply hit “:” again so you are back at
the bottom, and this time type “w myfile.safe”. You get back something like

myfile.safe 3 lines, 64 characters

Are you worried what would have happened if your boss had an important file named
“myfile.safe”? Did you just overwrite that file with a bunch of stupid “brown fox”
gibberish? Can you do ANYTHING right?

Stop sweating. It wouldn't have happened. Try it again. Type “:”, then “w
myfile.safe”. See? It won't overwrite an existing file unless you type “w!”. You
might also want to know that if vi says a file is read-only, but you should be able to write
it anyway 'cause you are the superuser, the “w!” trick fixes that, too.

1.4 Warning!
That won't save you from complete stupidity. If you had started this session by giving the
name of a real file (like “vi /etc/inittab”), and then had deleted a bunch of lines
and added a bunch of new ones, and then typed “:w” (with nothing else, no name, just
the bare “w”), vi would have happily, efficiently, and mercilessly overwritten
/etc/inittab with your changes. The theory here is that you saw what you were
doing, so you must know what you were doing. So be it.

But let's say you messed up the file and you don't want to write it, you just want to quit.
Let's try it: mess up this file a little more. Delete a line, add a line, it doesn't matter, just
do something. Now do the “:” again, and type “q” (for “quit”).

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 8 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 9 of 27

Gotcha again. But notice that vi has given you a hint about what to do. It tells you that
you need to type “:quit!” to get out. Actually, you just need “:q!”, but you can type
it out if it makes you feel better.

That's it. You know the basics. I wish you'd learn more, 'cause it's worth it, but if this is
all you can take, it is enough. Quick review and we're out of here:

i insert

o open

dd delete line

x remove characters

u undo

p put

:w write file

:w! write absolutely

:q quit after saving (combine with “:wq”)

:q! quit without saving

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 9 -

© 1998 Anthony Lawrence. All rights reserved.

This article is copyrighted material. You have permission to use it for any purpose,
commercial or non-commercial, as long as it is kept intact and no modifications,
additions, or deletions are made except as allowed herein.

You may publish it in paper or electronic form. That includes magazine, newsletters,
and web pages, both internal and external, for profit or not. Banner ads and other
graphics may be removed, but all other text, hyperlinks and copyright notices,
including this, must remain. You may not delete text, alter it, or add to it in any way
that does not clearly delineate what is yours and what comes from this site. You may
alter fonts, font sizes and the like and reformat text as is appropriate for your use.

You may select specific paragraphs or sections, but if you do so, you must include this
entire notice also, noting that you have not published the entire article, or simply note
that the paragraphs you have published are part of a larger article and give the http
address of the actual article.

This general permission specifically does NOT apply to test questions and answers.

Some articles at http://www.aplawrence.com and http://www.pcunix.com are
copyrighted by other individuals or corporations; these paragraphs do not apply to
those articles even if accidentally included.

We do appreciate being advised of any such use: Email: tony@aplawrence.com.

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 10 of 27

1.5 vi Quick Reference
STARTING AND QUITING VI

vi starts vi without a named file to save to.

vi filename.txt start vi on an existing file (or supply name to save to if no file yet
exits.

<Esc> key puts you in edit mode if you weren't already there (the following
commands only work in edit mode).

:q! quit vi WITHOUT SAVING

:wq write (save) to supplied file name and quit

<Esc>-ZZ also saves and quits

:w newfile.txt write to a new file and don't quit (still editing newfile.txt)

:wq newfile.txt write to a new file and quit2) CURSOR MOVEMENTh <j vk ^l >

^ or 0 move cursor to start of line

$ move cursor to the end of the line

<ctrl> G indicates current line number of file where cursor currently is

<ctrl> F moves cursor ahead one page

<ctrl> B moves cursor back one page

<shift> H moves cursor to top of screen

<shift> L moves cursor to bottom of screen

1G move to line 1

G moves to last line

w advances by a word (W doesn't stop at punctuation)

b backs up by a word (B as well)

e go to the end of a word

BASIC EDITING

i puts you in insert mode, press <Esc> to exit

I ^ then i

a insert mode, but appending after cursor

A $ then a

o insert mode, opening new line below where you are

O insert mode, opening new line above where you are

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 10 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 11 of 27

u undo

x deletes a single character; 5x deletes next 5 characters

J deletes end-eof-line character (does a "Join" of current line with
next line)

. repeats last editing command

 r replaces current character with another

cw changes remainder of current word to whatever you type; <esc> to
end edit

/word finds occurrence of 'word' in the file

n finds next occurrence of 'word'

dd deletes line

3dd deletes 3 lines (from this line down)

23,50d deletes lines 23-50, inclusive

3Y "yank'' three lines (place in unnamed buffer)

"a3Y Yank three lines to a buffer called 'a'

p puts deleted (or yanked lines) below this line

P puts deleted (or yanked lines) above this line

"ap places lines from buffer 'a'

COMMAND LINE EDITING

:%s/word/WORD Replaces first occurrence of word with WORD on every line of the
file

:1,$s/word/WORD/g From lines 1 to the end of the file change word to WORD (g means
all occurrences on a line).

:1,23s/^word/WORD/ From lines 1 to 23 replace "word" at the beginning of any line with
"WORD"

:1,23s/word$/WORD/ From lines 1 to 23 replace "word" at the end of any line with
"WORD"

:1,$s/^...// From lines 1 to the end of the file remove "..." beginning any of
those lines.

:g/word/d Does a "grep'' to find lines with 'word', then deletes those lines

:1,$s/\&/and/g Replaces every occurrence of & (escaped) with "and"

:g/word/p Does a "grep'' to find lines with 'word', then prints those line
to the screen

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 11 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 12 of 27

:3,15s/^/\# Put a # at the beginning of lines 3 through 15

:%s/$/; Append a semicolon to the end of every line (note that "%" = "1,$")

FILE OPERATIONS

:r path\filename read in the specified file starting on the next line

:w save

:w filename save as filename

:wq save and quit

:q quit if no modifications since last save

:q! quit no matter what (without saving)

:e filename edit another file without having to quit and restart vi

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 12 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 13 of 27

2.0Lab Answers

2.1 File Permissions and umask
1. Create 3 files (‘all’, ‘group’, ‘owner’) & assign permissions using chmod:

 all - r/w to owner, group, and others

 group - r/w to owner and group, r/o to others

 owner - r/w to owner, r/o to group, none to others

2. Use the umask command to set default permissions:

 Try 022 when creating:

i. Directory ~/WORLDREAD

ii. File ~/WORLDREAD/readable

 Try 077 when creating:

i. Directory ~/HARDENED

ii. File ~/HARDENED/owneronly

3. Use ls –l to display privileges for these objects

2.1.1 Answers

1. Permissions:

touch all group owner

chmod 0666 all

chmod 0664 group

chmod 0640 owner

2. Set default privileges

umask 022

mkdir ~/WORLDREAD

touch ~/WORLDREAD/readable

umask 077

mkdir ~/HARDENED

touch ~/HARDENED/owneronly

3. Display privileges

ls –l | grep WORLDREAD

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 13 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 14 of 27

drwxr-xr-x 2 student12 users 4096 Jan 31 11:08 WORLDREAD

ls –l WORLDREAD

-rw-r--r-- 1 student12 users 0 Jan 31 11:12 readable

ls –l | grep HARDENED

drwx------ 2 student12 users 4096 Jan 31 11:13 HARDENED

ls –l HARDENED

-rw------- 1 student12 users 0 Jan 31 11:13 owneronly

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 14 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 15 of 27

2.2 Using the positional Parameters
Write a script:

 Displays the script name

 Displays the number of parameters

 Displays the parameters passed

 Use the shift command to shuffle the parameters down by 3 and display the new
1st parameter

2.2.1 Answer
#!/bin/bash
echo $0
echo $#
echo $*
shift 3
echo $1

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 15 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 16 of 27

2.3 Using getopts to parse command options
1. Use the getopts/while/case constructs to parse the options of a script that accepts the

following options:

-v Verbose (no operands)

-t Title (next operand is the actual title)

-l Logfile (next operand in the name of a file)

2. Print messages that tell the user

 Whether verbose option was specified

 The title (if specified)

 The name of the log file (if specified)

2.3.1 Answer
#!/bin/bash
while getopts vl:t: opt
do
 case "$opt" in
 v) echo "Verbose flag was specified"
 ;;
 l) echo "Logfile flag was specified with value $OPTARG"
 ;;
 t) echo "Title flag was specified with value $OPTARG"
 ;;
 esac
done

Alternatively, this format is more generic as it takes the logic out of the while loop and
moves it to the body of the script. This is useful when there may be co-dependent flags
for which processing in the loop would be complex. I also like to offload the getops
variable OPTARG as soon as possible.

#!/bin/bash
vFlag=0
lFlag=0
tFlag=0
while getopts vl:t: opt
do
 case "$opt" in
 v) vFlag=1
 ;;
 l) lFlag=1

LOGFILE=”$OPTARG”
 ;;
 t) tFlag=1

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 16 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 17 of 27

TITLE=”$OPTARG”
 ;;
 esac
done

if [$vFlag]
then

echo "Verbose flag was specified"
fi

if [$lFlag]
then

echo "Logfile flag was specified with value $LOGFILE"

fi

if [$tFlag]
then

echo "Title flag was specified with value $TITLE”
fi

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 17 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 18 of 27

2.4 Using if/then/else and test
Use the if/then/else/fi and test constructs to:

 Check for the existence of /etc/profile and display a message informing the user

 Read a variable from standard input using the read command and compare it
against a string “ABORT” and display a message saying whether the comparison
is true

 Repeat the previous test but make the comparison case insensitive

2.4.1 Answer
#!/bin/bash
file="/etc/profile"

#
Testing the file’s existence using ‘[‘
#
if [-f "$file"]
then
 echo "File $file exists"
else
 echo "File $file does not exist"
fi

Alternatively, the “test” command can be used instead of '['.

#
Testing the files’s existence using “test”
#
if test -f $file
then
 echo "File $file exists"
else
 echo "File $file does not exist"
fi

read VAR
if ["$VAR" == "ABORT"]
then
 echo "match"
else
 echo "No match"
fi

VAR=`echo $VAR | tr [:lower:] [:upper:]`

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 18 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 19 of 27

if ["$VAR" == "ABORT"]
then
 echo "match"
else
 echo "No match"
fi
exit

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 19 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 20 of 27

2.5 Using the for loop to iterate through a list
 Use the for statement to iterate through a list of vegetables: “carrot”, “potato”,

“turnip”, “bean”, “pea”

 Use the if statement to test for the existence of a file in /tmp that has the same
name as the vegetable

 Display a message telling the user whether that file exists or not

 Extra credit: Which file(s) are not empty

2.5.1 Answer
#!/bin/bash
for veg in "carrot" "potato" "turnip" "bean" "pea"
do
 if [-f /tmp/$veg]
 then
 echo -n "$veg exists: "
 if [-s /tmp/$veg]
 then
 echo "It is not empty"
 else
 echo "It is empty"
 fi
 else
 echo "$veg does not exist"
 fi
done

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 20 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 21 of 27

2.6 Using Subroutines
Create a script which:

 Takes a single parameter

 Based on the value of the parameter call one of 3 subroutines:

o one – which prints “subroutine one called” and returns 1

o two – which prints “subroutine two called” and returns 2

o xxx – which prints “subroutine xxx called with $1” and returns -1

 The mainline will take the return code from the subroutine and display it and exit
with that code

2.6.1 Answer
#!/bin/bash

one() {
 echo "Subroutine one has been called"
 return 1
}

two() {
 echo "Subroutine two has been called"
 return 2
}

xxx() {
 echo "Subroutine xxx has been called with parameter $1"
 return -1
}

case "$1" in
 1) one
 RC=$? # Save returned value
 ;;
 2) two
 RC=$?
 ;;
 *) xxx $1
 RC=$?
 ;;
esac
echo $RC # Note, executing echo changes $?
exit $RC # Which is why we unloaded it to RC

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 21 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 22 of 27

> sh c.c 1
Subroutine one has been called
1
> sh c.c 2
Subroutine two has been called
2
> sh c.c 3
Subroutine xxx has been called with parameter 3
255

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 22 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 23 of 27

3.0Appendix C. How to Speak 'Strine
(Courtesy of www.twi.ch & http://australia-online.com/diction.html)

If you want to pass for a native of Australia try speaking slightly nasally, shortening any
word of more than two syllables and then adding a vowel to the end of it, making
anything you can into a diminutive (even the Hell's Angels can become mere bikies) and
peppering your speech with as many expletives as possible.

3.1 Common Words
Arvo

Afternoon. “The Sarvo” means this afternoon, as in “Seeya the sarvo”. On Xmas
morning a lot of people go to the beach to test out their new prezzies. But by the
early arvo, they're at home stuffing themselves with Chrissie din-dins!

Avagoodweegend
Classic Aussie farewell comparable to American TGIF, basically means “Have a
good weekend!”

Bend the Elbow
To have a drink - pretty well self-explanatory!

Bickie
Rhymes with “sticky”. Literally means a biscuit, but Aussie bickies are more
like American cookies, and American biscuits are more like Australian scones
(pronounced like the “Fonz”!)... go figure!

Bloody
Universal epithet: the great Australian adjective. Used to emphasize any point or
story. Hence “bloody beauty”(bewdy!) or “bloody horrible” or even “absa-
bloody-lutely”!

Bludger
Lazy bastard, definitely an insult in Oz. Originally thought to be someone who
lives off the earnings of a call girl. In conversation, the verb 'to bludge' is most
commonly used like the US 'to bum' a cigarette.

Bob's Yer Uncle
“Everything is OK” or “Everything's Sweet” or “Going according to plan”.
Similar phrase includes: “She's apples!”... Bob may refer to Australia's long-
serving Prime Minister , Sir Robert “Bob” Menzies.

Bon-Bons
Christmas Crackers. Special party favours which are essential on the Christmas
table. Shaped like big lollies, their contents always include a corny joke or

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 23 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 24 of 27

riddle, small plastic toy and a paper party hat (which must be worn by all who
attend Chrissie dinner, even guests)

Bonzer
Pronounced “bonza” - grouse, great, excellent.

Boxing Day
December 26th. Public holiday and traditional outdoor barbie day. Major Aussie
sporting events kick off on this day including the 'Sydney to Hobart' and the
'Melbourne Test”.

Chew the Fat
To talk, engage in pleasant conversation, to have a chinwag.

Chook
Chicken. Often served barbecued at fancy turns (parties). If your hostess is
befuddled and/or overcome by trying to do too many things at once, one might
say she was “running around like a chook with its head cut-off!”

Chrissie
Christmas. By now you probably realize that Aussies like to shorten any words
they can by adding an “o” or “ie” or “y”. No bloke named Christopher would be
called Chrissie, probably 'Chrisso' or 'Toffa'.

Crack a Tinnie
Means to open up a can of beer major pastime during Aussie silly season.

Dial
Face. If some says to put a 'smile on your dial' it basically means to cheer up,
she'll be right, mate.

Dunny
The toilet, W.C., or bathroom. If someone busting to know where the dunny is,
tell 'em to “follow their nose to the thunderbox”.

Esky
Portable icebox or cooler - it's always a good idea to have one in the boot (trunk)
of your car stocked with some cold ones (ice cold tubes) just in case the party's
bar runs dry.

Fair Dinkum
Kosher, the real thing - as in “Fair Dinkum Aussie” (true blue Australian
original). Often used by itself as a rhetorical question to express astonishment
verging on disbelief ... “Fair Dinkum, mate?” (you' ve got to be kidding, haven't
you?)

Full as a Goog
Completely filled with food (and drink). A 'Goog' is an egg (sometimes called a
“googie egg”).

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 24 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 25 of 27

G'day
Universal greeting, used anytime day or night, but never as a farewell.
Pronounced “gud-eye”, usually followed by “mate” (mite) or a typically strung-
together “howyagoinallright” (= how are you today, feeling pretty good?)

Good Onya
Omnipresent term of approval, sometimes ironic, offering various degrees of
heartfelt congratulations depending on inflection. Indispensable during Aussie
small talk - substitute “really, oh yeh, aha, etc.”

Good Tucker
Excellent food. After pigging out at Chrissie lunch, it's polite to tell your hosts
how good the tucker was.

Grouse
Rhymes with “house” and means outstanding, tremendous. Can be applied
universally to all things social ... “grouse birds (women), grouse band, in fact,
grouse bloody gay and hearty (great party!)”

Happy as Larry
Fortunate, lucky. Who “Larry” is may forever be lost at the bottom of the
Katherine Gorge.

Holls
Vacations or 'holidays'. Since most Aussies get at least 4 weeks 'holls' every year
they usually take 2 or 3 of them at Chrissie which is our biggest family get
together time (like US Thanksgiving).

Hooroo
Pronounced “who-roo”... means “see ya later”, make sure you don't say g'day
when meaning goodbye - it's a dead giveaway you're not a true blue Aussie
battler!

Laughing Gear
Mouth. Common phrase is “Wrap your laughing gear around this one” i.e. Have
a drink!

Lolly
A sweet or candy. But to “Do Your Lolly” means to get agitated and angry,
similar to “Spit the dummie”

Mate
Friend, associate, or anyone you can't remember the name of

Melbourne Test
Game of cricket played by Australia's national cricko team versus visiting
country usually starting on Boxing day. The game lasts for up to 6 days, and is
watched religiously on the TV (like a 5 day Superbowl)

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 25 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 26 of 27

Ocker
Pronounced “ocka” - Typical uncultivated Australian, similar to American
“redneck”.

Paralytic
Extremely drunk. Not good form too early on at a bash (party) especially if you
end up having an “up & under” or “chunder” (puking or throwing-up while
inebriated).

Plonk
Wine. Never used to describe the other main alcoholic beverage at an Australian
social occasion - beer, i.e. the golden nectar, throat charmer, ice cold tube, etc.

Poets Day
Friday. Stands for P*ss off early, tomorrow’s Saturday.

Prezzie
A present or gift. If you've been a good little vegemite you'll probably get lots of
bonza prezzies.

Pull your head In!
Use sparingly, since this equates a rather annoyed “shut up & mind your own
business”. Only say this to the host if you know you're leaving (or off like a
bride's nightie).

Raw Prawn
Not necessarily an uncooked shrimp! If someone says “Don't come the Raw
Prawn with me, mate” it basically means “Don't try to fool me or rip me off” or
“Rack off Noddy, you're being a tad offensive”.

Rels/Relos
Relatives, The family members you probably only see every Christmas!

Ripper
Pronounced “rippa” means beaut, tippy-tops, grouse - that bloke named “Jack”
in the old Dart (England) was certainly not ripper!

Sheila
Archaic term now only found in Paul Hogan movies

Shout
To shout means to buy the next round (of drinks usually), so if someone says
“It's your shout, mate” don't get vocal, just buy a couple of tinnies (cans of beer)
and remain sociable, the next few drinks are someone else's responsibility!

Silly Season
Traditional summer holiday period, kicking off in December and running
through to our national holiday Australia Day, January 26th (similar to the US
July 4th).

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 26 -

Project: Issue Date: February 1, 2007

Doc-ID: LAB-001 Version: 1.0.0

Title: Scripting Lab Workbook Page: Page 27 of 27

Spit The Dummie
A “dummie” is Australian for a child's pacifier. Your Hostess will not usually
have cause to spit the dummie (completely lose her cool or go ballistic) if you
and your mates can act like proper toffs (refined gentlemen) and enjoy the
soiree!

Starters
Australian for Hors D'oeuvres or “appetizers”. Aussies call their appetizers
“entrees”. Also your first drink of the day, hence the ubiquitous question heard
throughout the Silly Season: “What's for Starters?” Also commonly called a
“Heart Starter”.

Strewth
Pronounced “sta-ruth”. A general exclamation of disbelief or shock: i.e.
“Strewth, would ya hava go at that, then?!” (My goodness, can you believe what
we're seeing!?)

Sydney to Hobart
World famous Australian ocean Yacht race that commences on Boxing Day in
Sydney Harbour boats from all around the world race down the East Coast
across Bass Strait to our Apple Isle, “Tassie” (Tasmania).

The Go
The “rage” or current trendy thing. The latest trend in clothing or whatever is
described as “all the go!”

Whinge
Rhymes with “hinge” as in door! Means to complain incessantly or to “belly
ache” (= “whine”). Whingers are not fun to have around and definitely not likely
to be asked back again to the next party. If you must whinge, keep it amongst
your good mates!

/home/SNAADS/neale/Documents/Education/Scripting Lab Workbook.doc
- 27 -

	1.0Linux Lab Workbook
	1.1Requirements
	1.1.1Telnet Client

	1.2vi Primer and Exercises
	1.3Getting Started
	1.4Warning!
	1.5vi Quick Reference

	2.0Lab Answers
	2.1File Permissions and umask
	2.1.1Answers

	2.2Using the positional Parameters
	2.2.1Answer

	2.3Using getopts to parse command options
	2.3.1Answer

	2.4Using if/then/else and test
	2.4.1Answer

	2.5Using the for loop to iterate through a list
	2.5.1Answer

	2.6Using Subroutines
	2.6.1Answer

	3.0Appendix C. How to Speak 'Strine
	3.1Common Words

