Using z/VM vswitch

David Kreuter

August 15, 2006
Baltimore SHARE
Session 9124
Using vswitch on z/VM

- Definition of guest lan
- Vswitch concepts
- Vswitch implementation, management, and recovery
- VM TCPIP stack configuration
- Linux stack configuration
Guest Lans

- Virtual network adapters connect IP stacks in virtual machines.
- No hardware is required.
 - It’s all done by CP commands, directory statements, configuration file statements, etc.
- High speed and high volume networks.
- One z/VM system can have multiple guest lans.
 - Guest lans can connect to other guest lans …
 - Or be isolated from other guest lans
- One IP stack can belong to multiple guest lans.
- Supports multicast, unicast, broadcast networks.
- Supports all protocols.
- VM TCPIP and linux support guest lan
VSWITCH Concepts

- Special kind of Guest LAN
- Like a Guest LAN Provides network of virtual network interfaces
- Connects directly to an OSA-Express QDIO Interface
- Or can run disconnected from real devices.
- Connects to external LAN segments without need for routing on z/VM.
- Operates as layer 2 or layer 3.
- Can have multiple Vswitches on one z/VM LPAR.
VSWITCH Presentation Goals

- Show controller command for dynamic controller management with two ranges of devices
- Show controller configuration
- Show configuration of 1st level vm tcpip stack
- Show configuration of 1st level linux stack
- Show configuration of 2nd level vm tcpip stack
- Show recovery scenarios
Typical Guest Lan

Virtual nic

Virtual network

Guest lan 1.2.3.x

1.2.3.33
Linux stack

1.2.3.100
VM TCPIP Stack
10.1.1.100

Routing packets between 1.2.3.x and 10.1.1.x networks

1.2.3.133
Linux stack

OSA

Physical network

10.1.1.114

10.1.1.115

SHARE Session 9124
All Rights Reserved VM RESOURCES LTD.
Prototype Vswitch

Z/VM

linux 10.1.1.14
linux 10.1.1.15
linux 10.1.1.16
linux 10.1.1.17

CP Vswitch

No routing

Real switch

OSA
MAC 08 00 20 E4 64 79

linux 10.1.1.114
MAC 01 02 03 04 05 06

linux 10.1.1.115
MAC 01 02 03 04 05 07
No routing

From virtual machines: OSA receives layer 3 packet constructs Layer 2 frame and sends outbound.

To virtual machines: OSA receives layer 2 frame constructs layer 3 packet and sends to stack

Uses subchannel to reach stack

OSA Mac used on network
Z/VM vswitch layer 2

CP DEFINE VSWITCH ... ETHERNET ..

OSA Arp table

MAC 02 00 00 00 00 02 10.1.1.14
MAC 02 00 00 00 00 03 10.1.1.15
MAC 02 00 00 00 00 04 10.1.1.16
MAC 02 00 00 00 00 05 10.1.1.17
MAC 01 02 03 04 05 06 10.1.1.114
MAC 01 02 03 04 05 07 10.1.1.115

Real switch

No routing

MAC 08 00 20 E4 64 79

linux 10.1.1.14
linux 10.1.1.15
linux 10.1.1.16
linux 10.1.1.17

linux 10.1.1.114
MAC 01 02 03 04 05 06

OSA

SHARE Session 9124 All Rights Reserved VM RESOURCES LTD.
Participates in VLAN

- Supports Virtual Local Area Networks (VLANs) as per IEEE 802.1Q.
- CP provides virtual switch function.
- Hosts (Virtual Machines with IP stacks) on separate VLANs are isolated from each other.
- VLAN support operates in a layer 2 or 3 vswitch.
- Vlan membership CP and/or ESM protected.
VLANS and z/VM Vswitch

CP VSWITCH

LX1 VLAN11
LX2 VLAN11
LX3 VLAN11
LX4 VLAN2
LX5 VLAN2
LX6 VLAN2

OSA

No routing

10.1.1.x.

Physical switches

SHARE Session 9124

All Rights Reserved VM RESOURCES LTD.
Our Vswitch Network

TCPIPLX controller

TCPIPLZ controller

LFORXX93
linux
.159

LFOR0001
2nd level vm
.156

TCPIPLY
VM stack
.158

EC00-EC02
EB00-EB02

osa devices

EC10-EC12

VMRTSW
172.27.120.x

Guest lan

Other host
172.27.120.155

Server gateway
172.27.120.254

172.27.120.155

172.27.120.254
Our Vswitch Network: nic devices

The virtual machines all have nic devices. QDIO type devices require 3 addresses: read, write and data. Nic devices are coupled to the guest lan VMRTSW. Hint: for linux cloning use the same nic address for all cloned linuxes.

Participants on vswitches use virtual nic devices.
OSA and QDIO Mode

- QDIO mode is a z series high speed and high volume data transfer mechanism
 - Initiated as an I/O but …
 - Once started remains active
 - And does not use standard I/O instructions
- OSA in QDIO mode supports:
 - Layer 3: IP mode: forwards IP broadcasts and multicasts; uses IP destinations from the IP packet. Supports VLAN.
 - Layer 2: Ethernet mode: uses MAC addresses from the LAN frame. Used by z/VM vswitch and the linux QETH drivers. Support VLAN along with multicast, broadcast and all protocols.
- Guest lans support virtual QDIO mode.
Our Vswitch Network: osa devices

A vswitch has one set of OSA QDIO devices active with multiple stacks. Non-vswitch OSA use is one set of QDIO devices per adaptor.
Multiple LPAR configuration on the same subnet

LPAR “A”

Linux .159

Linux .179

VMRTSW 172.27.120.x

EC00-EC02

LPAR “B”

Linux .59

Linux .79

VMRTSW 172.27.120.x

EC03-EC05

Chpid EC type OSD shared by LPAR “A” and “B”
A Few Words on VSWITCH

• The VSWITCH table of MACs, IP addresses, and virtual stacks is maintained by CP.
• The controller machine does not have DEVICE/LINK statements for the vswitch OSA devices.
• The OSA devices are automatically attached by CP to the controller machine when the VSWITCH is created.
 – One active set of OSA devices per vswitch.
• Virtual machines must be explicitly granted permission to join the vswitch.
 – Or access can be controlled by RACF.
Let’s take a look

- Vswitch will be defined to use two sets of devices: EC00-EC02 and EB00-EB02:
 - EC00-EC02 will become active; EB00-EB02 will be standby.
 - No load balancing
- CP will look for controller (VM TCPIP stack machine):
 - Explicitly defined by CP command or SYSTEM CONFIG file statement
 - Or available machine (connected to *VSWITCH service)
- Will show two types of recovery:
 - Detaching EC00-EC02 (results similar to a cable pull)
 - Forcing off the active vswitch controller
- DEFINE VSWITCH is Class B
- DEFINE VSWITCH configuration file statement
- Guest lan user defines NIC with type QDIO
Defining the VSWITCH from MAINT

```
q ec00-ec02 eb00-eb02
OSA EC00 FREE  , OSA EC01 FREE  , OSA EC02 FREE  , OSA EB00 FREE
OSA EB01 FREE  , OSA EB02 FREE

define vswitch vmrtsw ip controller * rdev ec00 eb00
VSWITCH SYSTEM VMRTSW is created
HCPSWU2830I VSWITCH SYSTEM VMRTSW status is ready.
HCPSWU2830I TCPPLX is VSWITCH controller.
OPERATOR: HCPSWU2830I VSWITCH SYSTEM VMRTSW status is ready.
OPERATOR: HCPSWU2830I TCPPLX is VSWITCH controller.

q ec00-ec02 eb00-eb02
OSA EC00 ATTACHED TO TCPPLX EC00
OSA EC01 ATTACHED TO TCPPLX EC01
OSA EC02 ATTACHED TO TCPPLX EC02
OSA EB00 ATTACHED TO TCPPLX EB00
OSA EB01 ATTACHED TO TCPPLX EB01
OSA EB02 ATTACHED TO TCPPLX EB02
```

Create a vswitch called vmrtsw as a layer 3 using rdevices ec00-ec02 and eb00-eb02. Choose any available controller.
<table>
<thead>
<tr>
<th>Device</th>
<th>Type: VSWITCH-IUCV</th>
<th>Status: Connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSWITCHDEV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queue size: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IUCVid: *VSWITCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priority: B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link VSWITCHLINK</td>
<td>Type: IUCV</td>
<td>Net number: 1</td>
</tr>
<tr>
<td>BytesIn: 876</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BytesOut: 1474</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Type: VSWITCH-OSD</th>
<th>Status: Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMRTSWEC00DEV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queue size: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address: EC00</td>
<td></td>
<td>Port name: UNASSIGNED</td>
</tr>
<tr>
<td>Arp Query Support:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Type: QDIOETHERNET</th>
<th>Net number: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMRTSWEC00LINK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Type: IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadcast Capability: Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multicast Capability: Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Type: VSWITCH-OSD</th>
<th>Status: Inactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMRTSWEB00DEV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queue size: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address: EB00</td>
<td></td>
<td>Port name: UNASSIGNED</td>
</tr>
<tr>
<td>Arp Query Support:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Type: QDIOETHERNET</th>
<th>Net number: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMRTSWEB00LINK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Type: IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadcast Capability: Unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multicast Capability: Unknown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Controllers: TCPIPLX and TCPIPLZ

- In their PROFILE TCPIP’s this statement:

 VSWITCH CONTROLLER ON

 ... but no need for HOME, GATEWAY, START statements ... unless there are other adapters

- DIRECTORY statement required:

 IUCV *VSWITCH MSGLIMIT 65535
Allow these virtual machines to join the vswitch guest lan (class B) … or SYSTEM CONFIG statement

```
set vswitch vmrtsw grant lfor0001
Command complete

set vswitch vmrtsw grant lforxx93
Command complete

set vswitch vmrtsw grant tcpiply
Command complete
```
Ask which machines have access

```bash
query vswitch
  access
VSWITCH SYSTEM VMRTSW Type: VSWITCH Connected: 3 Maxconn:
  INFINITE
  PERSISTENT RESTRICTED NONROUTER Accounting: OFF
  VLAN unaware
  State: Ready
  IPTimeout: 5 QueueStorage: 8
Portname: UNASSIGNED RDEV: EC00 Controller: TCPIPLZ VDEV: EC00
Portname: UNASSIGNED RDEV: EB00 Controller: TCPIPLZ VDEV: EB00
BACKUP
  Authorized userids:
    LFORXX93 LFOR0001 SYSTEM TCPIPLY
```
LFOR0001 runs a 2nd level VM system. It has a virtual nic defined at FFFC-FFFE. In the 2nd level this ‘real’ device is attached to 3rd level TCPIP machine. TCPIP drives this as an osa qdio device.
Definitions for Ifor0001

- First level directory:

 NICDEF FFFC TYPE QDIO DEVICES 3 LAN SYSTEM VMRTSW

- Second level ‘real’ devices:

 Q FFFC–FFFE
 OSA FFFC ATTACHED TO TCPIP FFFC
 OSA FFFD ATTACHED TO TCPIP FFFD
 OSA FFFE ATTACHED TO TCPIP FFFE
PROFILE TCPIP

DEVICE DEVFFFC OSD FFFC NONROUTER
LINK OSASERV QDIOETHERNET DEVFFFC MTU 1500
HOME
172.27.120.156 OSASERV
GATEWAY
172.27.0.0 = OSASERV 1500 0.0.255.0 0.0.120.0
DEFAULTNET 172.27.120.254 OSASERV 1500 0
START DEVFFFC

SYSTEM DTCPARMS

:nick.TCPIP :type.server
 :class.stack
 :Attach.FFFC-FFF
Lforxx93 (linux) Definitions

• Directory:

NICDEF FFFC TYPE QDIO DEVICES 3 MACID 01FF01 LAN SYSTEM VMRTSW

Macid is optional. It is appended to the MACID prefix. The MACID prefix is set in the SYSTEM CONFIG file in the VMLAN statement (VMLAN MACPREFIX xxxxxx). Default is 020000. Used by layer 2 vswitch support.

• Setup the card in the linux machine via yast or by hand
Setup the card in the linux machine via yast or by hand

• Via yast: must have working network in order to use ssh client (such as putty from windows).
 – This is for SUSE SLESx
• Via 3270 (no network access to linux) can use line editor such as sed
 – Useful when working with cloned machine
1. In yast select network devices/network card
2. Choose the card you wish to configure; configure

Network card setup
Configure your network card here.
Adding a network card:
Choose a network card from the list of detected network cards. If your network card was not autodetected, select Other (not detected) then press Configure.

Editing or Deleting:
If you press Change, an additional dialog

Network cards configuration
Available are:
- IBM OSA Express Ethernet card (0.0.e706)
- IBM OSA Express Ethernet card (0.0.eb00)
- IBM OSA Express Ethernet card (0.0.fff0)
- IBM IUCV
- Other (not detected)

[Configure...]

Already configured devices:
- Hipersockets Interface (HSI)
 Configured with Address 10.1.2.100
- IBM OSA Express Ethernet card (0.0.88f0)
 Configured with Address 0.0.0.0

[Change...]

[Back] [Abort] [Finish]
3. Configure the card; choose next (then in the next screens click finish then quit)
Configuring by hand

- Configuration files for network interfaces stored in `/etc/sysconfig/network` in SUSE SLES9.
- Use `sed` or other line editor to change files.
- IBM device configurations stored in “online control block” file system `/sys`.
- In the example, commands are done from the `/etc/sysconfig/network` directory.
Cloned machine has same IP as the master ... (just after cloning):

```
# cat ifcfg-qeth-bus-ccw-0.0.fff0
BOOTPROTO='static
BROADCAST='172.27.120.255'
IPADDR='172.27.120.155'
MTU=
NETMASK='255.255.255.0'
NETWORK='172.27.120.0'
REMOTE_IPADDR=
STARTMODE='onboot'
UNIQUE='3IPn.FOqOuhDmSR4'
_nm_name='qeth-bus-ccw-0.0.fff0'
```

A cautionary tale: take a copy!!

```bash
cp ifcfg-qeth-bus-ccw-0.0.fff0
original.ifcfg-qeth-bus-ccw-0.0.fff0
```
Using sed “select lines with 155 and change to 159” in all lines and redirect output to new file temp:

```
sed s/155/159/g ifcfg-qeth-bus-ccw-0.0.fff0 > temp
sed s/155/159/g ifcfg-qeth-bus-ccw-0.0.fff0 <work # sed s/155/159/g
ifcfg-qeth-bus-ccw-0.0.fff0 > temp
```

Display the file just created by output redirection:

```
cat temp
BOOTPROTO='static'
BROADCAST='172.27.120.255'
IPADDR='172.27.120.159'
MTU='
NETMASK='255.255.255.0'
NETWORK='172.27.120.0'
REMOTE_IPADDR=''
STARTMODE='onboot'
UNIQUE='3IPn.FOqOuhDmSR4'
_nm_name='qeth-bus-ccw-0.0.fff0'
```
Rename the file:
```
# mv temp ifcfg-qeth-bus-ccw-0.0.fff0
mv temp ifcfg-qeth-bus-ccw-0.0.fff0
```

Display the configuration file:
```
# cat ifcfg-qeth-bus-ccw-0.0.fff0
BOOTPROTO='static'
BROADCAST='172.27.120.255'
IPADDR='172.27.120.159'
MTU=''
NETMASK='255.255.255.0'
NETWORK='172.27.120.0'
REMOTE_IPADDR=''
STARTMODE='onboot'
UNIQUE='3Ipn.FOqOuhDmSR4'
_nm_name='qeth-bus-ccw-0.0.fff0'
```
Still has the old configuration; needs to be changed

```
# ifconfig eth0
ifconfig eth0
eth0      Link encap:Ethernet  HWaddr 02:00:00:01:FF:01
          inet addr:172.27.120.155  Bcast:172.27.120.255
             Mask:255.255.255.0
          inet6 addr: fe80::200:0:100:5/64 Scope:Link
            UP BROADCAST RUNNING MULTICAST  MTU:1492  Metric:1
            errors:0 dropped:0 overruns:0 frame:0
            TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
            collisions:0 txqueuelen:1000
            RX bytes:2632 (2.5 Kb)  TX bytes:652 (652.0 b)
```

Take the link down
```
ifdown eth0
eth0   configuration: qeth-bus-ccw-0.0.fff0
```
```sh
# ifup eth0
ifup eth0
eth0
eth0  configuration: qeth-bus-ccw-0.0.fff0

Interface is now up

eth0  Link encap:Ethernet  HWaddr 02:00:00:01:FF:01
      inet addr:172.27.120.159  Bcast:172.27.120.255
      Mask:255.255.255.0
      inet6 addr: fe80::200:0:100:5/64 Scope:Link
      UP BROADCAST RUNNING MULTICAST  MTU:1492  Metric:1
      RX packets:24 errors:0 dropped:0 overruns:0 frame:0
      TX packets:13 errors:0 dropped:0 overruns:0 carrier:0
      collisions:0 txqueuelen:1000
      RX bytes:3402 (3.3 Kb)  TX bytes:1422 (1.3 Kb)
```

bring the link up

Interface is now up
Start up Messages

linux version 2.6.5-7.97-s390x (geeko@buildhost) (gcc version 3.3.3 (S Use linux)
#1 SMP Fri Jul 2 14:21:59 UTC 2004
We are running under VM (64 bit mode):
qeth: loading qeth S/390 OSA-Express driver ($Revision: 1.77.2.20
/>$Revision: 1.98.2.11 $/>$Revision: 1.27.2.5 $/>$Revision: 1.8.2.2 $/>$Revision: 1.7.2.1
/>$Revision: 1.5.2.4 $/>$Revision: 1.19.2.7 $:IPv6 :VLAN)
qeth: Device 0.0.fff0/0.0.fff1/0.0.fff2 is a Guest LAN QDIO card (level: V511)
with link type GuestLAN QDIO (portname:)
qeth: IP fragmentation not supported on eth0
qeth: VLAN enabled
qeth: Multicast enabled
qeth: IPV6 enabled
qeth: Broadcast enabled
Definitions for TCPIPLY

Directory statement for TCPIPLY:

NICDEF 0800 TYPE QDIO DEVICES 3 LAN SYSTEM VMRTSW

PROFILE TCPIP

DEVICE DEV@0800 OSD 0800 NONROUTER
LINK OSASERV QDIOETHERNET DEV@0800 MTU 1500
HOME
172.27.120.158 OSASERV
GATEWAY
172.27.0.0 = OSASERV 1500 0.0.255.0 0.0.120.0
DEFAULTNET 172.27.120.254 OSASERV 1500 0
START DEV@0800
VSWITCH Presentation Checkpoint

At this point:

- VSWITCH VMRTSW defined
- 3 virtual machines permitted to use it
- Stacks connected to VSWITCH on virtual nics:
 - LFOR0001: 2nd level VM system with TCPIP machine at 172.27.120.156
 - LFORXX93 linux machine at 172.27.120.159
 - TCPIPLY VM TCPIP stack machine at 172.27.120.158
- Additional stack machine sharing OSA port at IP address 172.27.120.155
- Two controller machines, TCPIPLZ and TCPIPLX
Will Now Show …

• Network management commands
 – netstat
 – ping
 – Failover:
 • Device removal
 • Controller failure
 • During recovery two applications active: FTP (large transfer) and TELNET. Both applications remained available after recovery.
Before tcpip in Ifor0001 joins

```
netstat arp all tcp tcpipmlx
```

Querying ARP cache for address *

Adapter-maintained data as of: 07/07/05 14:24:41

OSA mac

- Link VMRTSWEC00LINK : QDIOETHERNET: 00025509E705 IP: 172.27.120.155
- Link VMRTSWEC00LINK : QDIOETHERNET: 00025509E705 IP: 172.27.120.158
- Link VMRTSWEC00LINK : QDIOETHERNET: 00025509E705 IP: 172.27.120.159
- Link VMRTSWEC00LINK : QDIOETHERNET: 080020E46479 IP: 172.27.120.254

Physical switch mac
After LFOR0001 joins

```
netstat arp all tcp tcpiplx
VM TCP/IP Netstat Level 510
Querying ARP cache for address *

Adapter-maintained data as of: 07/07/05 14:35:01

<table>
<thead>
<tr>
<th>Link VMRTSWEC00LINK</th>
<th>QDIOETHERNET: 00025509E705</th>
<th>IP: 172.27.120.155</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link VMRTSWEC00LINK</td>
<td>QDIOETHERNET: 00025509E705</td>
<td>IP: 172.27.120.156</td>
</tr>
<tr>
<td>Link VMRTSWEC00LINK</td>
<td>QDIOETHERNET: 00025509E705</td>
<td>IP: 172.27.120.158</td>
</tr>
<tr>
<td>Link VMRTSWEC00LINK</td>
<td>QDIOETHERNET: 00025509E705</td>
<td>IP: 172.27.120.159</td>
</tr>
<tr>
<td>Link VMRTSWEC00LINK</td>
<td>QDIOETHERNET: 080020E46479</td>
<td>IP: 172.27.120.254</td>
</tr>
</tbody>
</table>
```

Joins the arp table
First level pings from TCPIPLY

ping 172.27.120.156
Ping Level 510: Pinging host 172.27.120.156.
 Enter 'HX' followed by 'BEGIN' to interrupt.
PING: Ping #1 response took 0.002 seconds. Successes so far 1.

ping 172.27.120.158
Ping Level 510: Pinging host 172.27.120.158.
 Enter 'HX' followed by 'BEGIN' to interrupt.
PING: Ping #1 response took 0.001 seconds. Successes so far 1.

ping 172.27.120.159
Ping Level 510: Pinging host 172.27.120.159.
 Enter 'HX' followed by 'BEGIN' to interrupt.
PING: Ping #1 response took 0.001 seconds. Successes so far 1.

ping 172.27.120.155
Ping Level 510: Pinging host 172.27.120.155.
 Enter 'HX' followed by 'BEGIN' to interrupt.
PING: Ping #1 response took 0.001 seconds. Successes so far 1.
Second level pings from TCPIP in LFOR0001

ping 172.27.120.156
Ping Level 510: Pinging host 172.27.120.156.
 Enter 'HX' followed by 'BEGIN' to interrupt.
PING: Ping #1 response took 0.001 seconds. Successes so far 1.

ping 172.27.120.158
Ping Level 510: Pinging host 172.27.120.158.
 Enter 'HX' followed by 'BEGIN' to interrupt.
PING: Ping #1 response took 0.001 seconds. Successes so far 1.

ping 172.27.120.159
Ping Level 510: Pinging host 172.27.120.159.
 Enter 'HX' followed by 'BEGIN' to interrupt.
PING: Ping #1 response took 0.001 seconds. Successes so far 1.

ping 172.27.120.155
Ping Level 510: Pinging host 172.27.120.155.
 Enter 'HX' followed by 'BEGIN' to interrupt.
PING: Ping #1 response took 0.001 seconds. Successes so far 1.
lforxx93:~ # ping -c 1 172.27.120.156
PING 172.27.120.156 (172.27.120.156) 56(84) bytes of data.
64 bytes from 172.27.120.156: icmp_seq=1 ttl=60 time=0.588 ms

--- 172.27.120.156 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.588/0.588/0.588/0.000 ms

lforxx93:~ # ping -c 1 172.27.120.158
PING 172.27.120.158 (172.27.120.158) 56(84) bytes of data.
64 bytes from 172.27.120.158: icmp_seq=1 ttl=60 time=0.225 ms

--- 172.27.120.158 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.225/0.225/0.225/0.000 ms
linux pings 2 of 2

lforxx93:~ # ping -c 1 172.27.120.159
PING 172.27.120.159 (172.27.120.159) 56(84) bytes of data.
64 bytes from 172.27.120.159: icmp_seq=1 ttl=64 time=0.064 ms

--- 172.27.120.159 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.064/0.064/0.064/0.000 ms

lforxx93:~ # ping -c 1 172.27.120.155
PING 172.27.120.155 (172.27.120.155) 56(84) bytes of data.
64 bytes from 172.27.120.155: icmp_seq=1 ttl=60 time=0.664 ms

--- 172.27.120.155 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.664/0.664/0.664/0.000 ms
QUERY VSWITCH VMRTSW DETAILS

<table>
<thead>
<tr>
<th>VSWITCH SYSTEM VMRTSW</th>
<th>Type: VSWITCH</th>
<th>Connected: 3</th>
<th>Maxconn: INFINITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSISTENT</td>
<td>RESTRICTED</td>
<td>NONROUTER</td>
<td>Accounting: OFF</td>
</tr>
<tr>
<td>VLAN Unaware</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State: Ready</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPTtimeout: 5</td>
<td>QueueStorage: 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portname: UNASSIGNED</td>
<td>RDEV: EC00</td>
<td>Controller: TCPIPLZ</td>
<td>VDEV: EC00</td>
</tr>
<tr>
<td>Portname: UNASSIGNED</td>
<td>RDEV: EB00</td>
<td>Controller: TCPIPLZ</td>
<td>VDEV: EB00 BACKUP</td>
</tr>
<tr>
<td>VSWITCH Connection:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX Packets: 8878</td>
<td>Discarded: 4</td>
<td>Errors: 0</td>
<td></td>
</tr>
<tr>
<td>TX Packets: 9215</td>
<td>Discarded: 0</td>
<td>Errors: 0</td>
<td></td>
</tr>
<tr>
<td>RX Bytes: 800654</td>
<td>TX Bytes: 1911124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>239.255.255.253</td>
<td>MAC: 01-00-5E-7F-FF-FD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFFE::1</td>
<td>MAC: 33-33-00-00-00-01 Local</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFFE::1:FFFD:FFFE</td>
<td>MAC: 33-33-FF-01-FF-02 Local</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 of 3 ...
Adapter Owner: LFORXX93 NIC: FFFC Name: UNASSIGNED
RX Packets: 568 Discarded: 0 Errors: 0
TX Packets: 276 Discarded: 0 Errors: 0
RX Bytes: 74526 TX Bytes: 41076

Device: FFFE Unit: 002 Role: DATA
Options: Broadcast Multicast IPv6 IPv4 VLAN

Unicast IP Addresses:

172.27.120.159 MAC: 02-00-00-01-FF-02
FE80::200:0:201:FF02 MAC: 02-00-00-01-FF-02 Local

Multicast IP Addresses:

224.0.0.1 MAC: 01-00-5E-00-00-01
224.0.0.251 MAC: 01-00-5E-00-00-FB

2 of 3 ...
Adapter Owner: **LFORE0001** NIC: **FFFC** Name: UNASSIGNED
RX Packets: 135 Discarded: 0 Errors: 0
TX Packets: 49 Discarded: 0 Errors: 0
RX Bytes: 33273 TX Bytes: 6902
Device: FFFE Unit: 002 Role: DATA
Options: Broadcast Multicast IPv4 VLAN
Multicast IP Addresses:
172.27.120.156 MAC: 02-00-00-00-00-04
Multicast IP Addresses:
224.0.0.1 MAC: 01-00-5E-00-00-01

Adapter Owner: **TCP1PLY** NIC: **0800** Name: UNASSIGNED
RX Packets: 126 Discarded: 0 Errors: 0
TX Packets: 31 Discarded: 0 Errors: 0
RX Bytes: 31768 TX Bytes: 5210
Device: 0802 Unit: 002 Role: DATA
Options: Broadcast Multicast IPv4 VLAN
Unicast IP Addresses:
172.27.120.158 MAC: 02-00-00-00-00-02
224.0.0.1 MAC: 01-00-5E-00-00-01
Before removing the rdevs

<table>
<thead>
<tr>
<th>q ec00–ec02 eb00–eb02</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSA EC00 ATTACHED TO TCPIPLX EC00</td>
</tr>
<tr>
<td>OSA EC01 ATTACHED TO TCPIPLX EC01</td>
</tr>
<tr>
<td>OSA EC02 ATTACHED TO TCPIPLX EC02</td>
</tr>
<tr>
<td>OSA EB00 ATTACHED TO TCPIPLX EB00</td>
</tr>
<tr>
<td>OSA EB01 ATTACHED TO TCPIPLX EB01</td>
</tr>
<tr>
<td>OSA EB02 ATTACHED TO TCPIPLX EB02</td>
</tr>
</tbody>
</table>

q vswitch vmrtsw

| VSWITCH SYSTEM VMRTSW Type: VSWITCH Connected: 4 Maxconn: INFINITE |
|-----------------------|------------------|------------------|
| PERSISTENT RESTRICTED NONROUTER Accounting: OFF |
| VLAN Unaware State: Ready |
| IPTtimeout: 5 QueueStorage: 8 |
| Portname: UNASSIGNED RDEV: **EC00** Controller: **TCPIPLX** VDEV: **EC00** |
| Portname: UNASSIGNED RDEV: **EB00** Controller: **TCPIPLX** VDEV: **EB00** |
| BACKUP |
Remove the Rdevs

```
det ec00-ec02 tcpiplx
TCPIPLX : EC00-EC02 DETACHED BY TCPMAINT
EC00-EC02 DETACHED TCPIPLX
TCPIPLX : 17:19:22 DTCOSD082E VSWITCH-OSD shutting down:
HCPSWU2830I VSWITCH SYSTEM VMRTSW status is devices attached.
HCPSWU2830I TCPIPLX is VSWITCH controller.
HCPSWU2830I VSWITCH SYSTEM VMRTSW status is in error recovery.
HCPSWU2830I TCPIPLX is new VSWITCH controller.
```

Also have performed a cable pull. Recovery proceeds similar to detaching the real devices.
TCPIPLX Recovery Messages 1 of 2

TCPIPLX : 17:19:22 DTCPRI385I Device VMRTSWEC00DEV:
TCPIPLX : 17:19:22 DTCPRI386I Type: VSWITCH-OSD, Status: Ready
TCPIPLX : 17:19:22 DTCPRI387I Envelope queue size: 0
TCPIPLX : 17:19:22 DTCPRI388I Address: EC00
TCPIPLX : 17:19:22 DTCQDI001I QDIO device VMRTSWEC00DEV device number EC02:
TCPIPLX : 17:19:22 DTCQDI007I Disable for QDIO data transfers
TCPIPLX : 17:19:22 DTCOSD361I VSWITCH-OSD link removed for VMRTSWEC00DEV
TCPIPLX : 17:19:22 DTCOSD080I VSWITCH-OSD initializing:
TCPIPLX : 17:19:22 DTCPRI385I Device VMRTSWEB00DEV:
TCPIPLX : 17:19:22 DTCPRI386I Type: VSWITCH-OSD, Status: Not started
TCPIPLX : 17:19:22 DTCPRI387I Envelope queue size: 0
TCPIPLX : 17:19:22 DTCPRI388I Address: EB00
TCPIPLX : 17:19:22 DTCQDI001I QDIO device VMRTSWEB00DEV dev number EB02:
TCPIPLX : 17:19:22 DTCQDI007I Enabled for QDIO data transfers
TCPIPLX : 17:19:22 DTCOSD238I ToOs: IPv4 multicast support enabled for VMRTSWEB00DEV
TCPIPLX : 17:19:22 DTCOSD319I ProcessSetArpCache: Supported for device VMRTSWEB00DEV
TCPIPLX : 17:19:22 DTCOSD341I Obtained MAC address 000255899D45 for device VMRTSWEB00DEV
TCPIPLX : 17:19:22 DTCOSD238I ToOs: IPv6 multicast support enabled for VMRTSWEB00DEV
TCPIPLXZ : 17:19:22 DTCOSD360I VSWITCH-OSD link added for VMRTSWEB00DEV
HCPSWU2830I VSWITCH SYSTEM VMRTSW status is ready.
HCPSWU2830I TCPIPLX is VSWITCH controller.
TCPIPLX : 17:19:26 DTCOSD246I VSWITCH-OSD device VMRTSWEB00DEV: Assigned IPv4 address 172.27.120.159
TCPIPLX : 17:19:26 DTCOSD246I VSWITCH-OSD device VMRTSWEB00DEV: Assigned IPv4 address 172.27.120.156
TCPIPLX : 17:19:26 DTCOSD246I VSWITCH-OSD device VMRTSWEB00DEV: Assigned IPv4 address 172.27.120.158
Kill Controller Machine

q controller
Controller TCPIPLX Available: YES VDEV Range: * Level 510
 Capability: IP ETHERNET VLAN_ARP
 SYSTEM VMRTSW Primary Controller: * VDEV: EC00
 SYSTEM VMRTSW Backup Controller: * VDEV: EB00

force tcpiplx

USER DSC LOGOFF AS TCPIPLX USERS = 16 FORCED BY TCPMNLAB

HCPSWU2843E The path was severed for TCP/IP Controller TCPIPLX.
HCPSWU2843E It was managing device EC00 for VSWITCH SYSTEM VMRTSW.
HCPSWU2843E The path was severed for TCP/IP Controller TCPIPLX.
HCPSWU2843E It was managing device EB00 for VSWITCH SYSTEM VMRTSW.
Recovery controller messages 1 of 2

TCPIPLZ : 17:22:14 DTCOSD360I VSWITCH-OSD link added for VMRTSWEC00DEV
TCPIPLZ : 17:22:14 DTCOSD080I VSWITCH-OSD initializing:
TCPIPLZ : 17:22:14 DTCPRI385I Device VMRTSWEC00DEV:
TCPIPLZ : 17:22:14 DTCPRI386I Type: VSWITCH-OSD, Status: Not started
TCPIPLZ : 17:22:14 DTCPRI387I Envelope queue size: 0
TCPIPLZ : 17:22:14 DTCPRI388I Address: EC00
TCPIPLZ : 17:22:14 DTCQDI001I QDIO device VMRTSWEC00DEV device number EC02:
TCPIPLZ : 17:22:14 DTCQDI007I Enabled for QDIO data transfers
TCPIPLZ : 17:22:14 DTCOSD238I ToOsd: IPV4 multicast support enabled for VMRTSWEC00DEV
TCPIPLZ : 17:22:14 DTCOSD319I ProcessSetArpCache: Supported for device VMRTSWEC00DEV
TCPIPLZ : 17:22:14 DTCOSD341I Obtained MAC address 00025509E705 for device VMRTWEC00DEV
TCPIPLZ : 17:22:14 DTCOSD238I ToOsd: IPV6 multicast support enabled for VMRTSWEC00DEV
Recovery controller messages 2 of 2

HCPSWU2830I VSWITCH SYSTEM VMRTSW status is ready.
HCPSWU2830I TCPIPLZ is VSWITCH controller.
TCPIPLZ : 17:22:14 DTCOSD360I VSWITCH-OSD link added for VMRTSWEC00DEV
TCPIPLZ : 17:22:18 DTCOSD246I VSWITCH-OSD device VMRTSWEC00DEV:
 Assigned IPv4 address 172.27.120.159
TCPIPLZ : 17:22:18 DTCOSD246I VSWITCH-OSD device VMRTSWEC00DEV:
 Assigned IPv4 address 172.27.120.156
TCPIPLZ : 17:22:18 DTCOSD246I VSWITCH-OSD device VMRTSWEC00DEV:
 Assigned IPv4 address 172.27.120.158
Additional Documentation

- REDP-3719-00 linux on IBM zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4
- SC24-6080-00 z/VM V5R1.0 Connectivity Guide chapter 2 and more
- SC24-6125-00 z/VM V5R1.0 TCP/IP Planning and Customization
- GC24-6102 z/VM 5.1 Getting Started with Linux on zSeries
- SC33-8289-01 linux on system z/9 and z/series Device Drivers, Features, and Command
Penultimate thoughts

- Recovery based on CP artifacts as opposed to, say, VIPA methods.
- Extends existing network topologies horizontally.
- No need for additional subnets once you transcend cultural barriers with network administrator.
- Ideally suited to Linux virtual machine environments.
Final Thoughts

• Wow!
• Recovery of both failures took just a few seconds.
• VSWITCHes can also support VLANs – not discussed today.
• Recommended approach to Linux on z/VM networks.
• Remember: CP manages the devices and the switch table.