
Managing a Penguin Farm on
the VM Prairie

Gordon W. Wolfe, Ph.D

Share 106, Seattle WA

Session 9210

March 2006

Disclaimer

• Use the contents of this presentation at your own risk. The author
does accept any liability, implicitly or explicitly, direct or
consequentially, for use, abuse, misuse, lack of use,
misunderstandings, mistakes, omissions, mis-information for
anything in or not in, related to or not related to, pertaining or not
pertaining to this document, or anything else that a lawyer can think
of or not think of.

• All information in this presentation is from the opinions and personal
experiences of Gordon Wolfe alone, and may or may not represent
the opinions or official stance of any other entity, specifically
including, but not limited to, present and former employers and
clients of the author.

Introduction

• VM originally created to run many operating systems on one real machine

• Perfect for running Linux guests. VM acts as “hypervisor’ or “Netbios” for Linux.

• Won’t go into reasons for using VM or Linux here.

• Assume you are familiar with both VM and Linux.

• Presentation will be specific to z/VM 5.1.0 and SuSE Linux SLES8/SLES9 as
experienced by the author, with extensions by implication to other operating
systems releases.

• Object here will be to discuss how to run MANY linuxes as VM guests and have a
productive system

• I will sometimes note availability of some commercial software products. I am
not aware of them all. Sorry if I missed anyone. Nothing in this presentation is
an endorsement of any product or Company.

The Problem

• VM can support hundreds (or thousands) of virtual servers. We
estimate about 350 productive Linux servers per z800 IFL
engine.

• When you get that many guest operating systems, how do you

– Keep everything consistent?

– Let them talk to each other and clients?

– Handle updates?

– Use VM’s resources most efficiently?

• You need a Plan!

Implementation at One
Installation

• One z800 with two IFL Engines and two s390
engines

• Six z/VM 5.1 LPARs - One for Linux

• OSA Express

• SuSE SLES7 on 2 guests

• SuSE SLES8 on 15 guests

• SuSE SLES9 (64-bit) on 32 guests

Consistency!

• Multiple Linux guests become impossible to
manage if they are all different.

• STANDARDIZE, STANDARDIZE,
STANDARDIZE!

– Stick to one distribution, one release of Linux

– Try as much as possible to make every Linux guest
work like every other Linux Guest.

– Keep similar files in the same places

Have Written Policies

• Have Formal Service Level Agreements

– Times of Operation/time of maintenance

– Guaranteed levels of performance

– Software levels

– General agreement, not one for each server.

– On-line server request form

– Help desk

– Announcement bulletins

Have Written processes to
follow

• For cloning a new server

• For fixing a damaged boot disk

• For upgrading software

• Adding disks, using LVM, etc.

Don’t Give Your Customers Root!

• You will know what and how software is installed

• Customer can’t modify the kernel

• Customer can’t modify security arrangements

• Give customer “su” if privileged commands are
needed - on a command-by-command basis.

• Let your Linux support personnel handle all
changes

Keep Policies and forms
accessible on the web

• Written policy on how to obtain a server. Maybe even form
for requesting a server.

• Lots of how-to documents for users:

– Setting up KDE

– Keeping Linux secure

– Running Samba

– Running Apache

– Etc.

• Can use Linux Apache for this purpose!

Common 191 disk

• Owned by clone server

• PROFILE EXEC

– Choose boot from DASD (default) or Reader

– If boot from DASD, SWAPGEN EXEC for V-DISK

– <server> EXEC to couple VCTCA’s or set up Guest Lan

• Contains files needed to boot from reader

– INITRD

– <server> PARMFILE

– IMAGE

• See Appendix 1 in handouts

Memory and Swap

• Linux swap to VM V-DISK in real/expanded storage
– Means VM does real paging - more efficient!

– Set up in PROFILE EXEC on common 191 disk

– Use SWAPGEN EXEC from sinenomine.com

– V-DISK defined in directory entry

• Keep Linux Memory to a minimum (otherwise Linux fills up with buffers)
– Reduce virtual memory until swapping just starts. (use TOP to see this)

– Only need 64MB for Apache, Samba server in SLES8, 96MB in SLES9.

– Need 256 MB for Oracle 9i - minimum!

– Need 384MB for WebSphere Application Server!

• Booting from the reader requires at least 128MB for SLES8 and SLES9

Patch and CD server

• NFS Server accessible r/o by any Linux administrator

– Use mount -t nfs -o patchsvr:/share /mountpoint from server1

• /cd - to do installs of new software - copy install CDs to this directory
– /cd/SLES8

• ../CD1

• ../CD2

– Use Mike MacIsaac’s mksles9root.sh to create the directory tree. See linuxvm.org/patches

Method One: Shared read-only
/Usr disks

• Advantages:
– Reduces usage of disk space

– All updates to /usr done in one place

• Disadvantages:
– Have to have multiple disks for each release new/old

– Have to separate out upgrade files on /usr and elsewhere

– Rather labor intensive for upgrades.

– Rpm database not necessarily kept in sync

Test, Clone and Production

191

292 boot

293 swap

294 /usr

295 /home

191

292 boot

293 swap

094 /usr

295 /home

191

292 boot

293 swap

294 /usr

295 /home

194 /usr

DDR

Link RR

V-Disk

Link RR
or

Migrate

Different Filesystems for
Different Applications

292 /

296 /opt/websphere

295 /home

294 /usr 294 /usr

297 /opt/oracle

296 /opt/websphere

297 /opt/oracle

298 /db001, etc

Link RR

Link RR

Link RR

Shared /usr and other
Filesystems

• Disk(s) owned by clone server

• 094 for production , 194 for new/updated self-link 194 as 294 RW

• Clone machine is shut down virtually all the time, except when updating files.

• Link clone 094 disk as 294 RR in directory of server

• /etc/fstab should mount /usr “ro”

• Parm line in /etc/zipl.conf should read dasd=0293,0292,294(ro),295-2AF
root=/dev/dasdb1

• Keep extra DASD devices in parm in case you need to add one later.

• When clone machine done updating 194, do

– mount /usr -o ro,remount

– sync;sync

– Shutdown

• Same for other R/O filesystems

Routing Updates and Changes

• Use scp and ssh to route new files around. (RPM -ql
<package> gives list of all files contained in
<package.rpm>)

• Have to set up each server to allow no-password
ssh/scp using public keys from a userid on your test
machine.

• Sample scripts in appendix 4 for automated method.

• Shut down server and swap LINK LXCLONE 094 294
RR for LINK LXCLONE 194 294 RR

• Reboot and hope it comes up.

Read/Write on a Read-Only
Directory

• R/O user means some functions have to be moved to a R/W disk,
e.g.

– Apache Webserver

– Move /usr/local/httpd to /home/httpd or other R/W location

– Update location in /etc/httpd/httpd.conf

Additional Files in a Read-
Only Directory

– Create a new subdirectory on a R/W disk

• Mkdir /home/mystuff

– Copy files from R/O directory (/usr/mystuff) to it

• Cd /usr/mystuff

• tar cf - . | tar xpf - -C /home/mystuff

• Add or change anything you want to here

– Mount R/W subdirectory over R/O subdirectory cd /home

• mount -o rw --bind /home/mystuff /usr/mystuff

– A variation is the Basevol/Guestvol schema
described at
http://linuxvm.org/Info/HOWTOs/basevol9.html

http://linuxvm.org/Info/HOWT

Method 2: Every user gets
nonshared Read-Write disks

• Advantages
– Upgrades are made easy - just install rpm’s from central

nfs server.

– Rpm database in sync

– Less labor intensive

– Able to share free space on disk.

• Disadvantages:
– /usr alone requires a full-pack 3390-3 for each linux. (“Disk

is cheap, labor is not.”)

– Can instead dedicate half a 3390-9 for all system areas.

Test, Clone and Production

191

292 boot

293 swap

/CD

191

292 boot

293 swap

191

292 boot

293 swap

Link RR

V-Disk

DDR DDR

Link RR

NFS Connect during service

•295 /home

Upgrades

• Have to set up each server to allow no-password ssh/scp
using public keys from a userid on your test machine.

• Ssh command to mount central nfs repositiory
of rpm’s

• Ssh commands to install rpms

• Umount nfs

• Can place all this in a single script or use
automation in appendix.

Cloning Penguins: Part 1
• Create exec to do couples (ctc, guest lan or vswitch),

parm file on 191

• Set up TCPIP to talk to server

• Create the directory entry

– Link RR to 191, /usr, other product disks

– Add in V-disk entry for swapping

– Add in disk for /home

• DDR the boot (and /usr?) disk from the clone server

Cloning Penguins: Part 2

• Boot the new server from the reader

– Mount /dev/dasdb /mnt

– Chroot /mnt

– Mount /dev/dasdc /usr

– dasdfmt /dev/dasdd (and fdasd, mke2fs)

– Mount /dev/dasdd1 /home

– Update files to make new server (SuSE)

• /etc/rc.config

• /etc/httpd/httpd.conf

• /etc/route.conf

• /etc/hosts

• /etc/fstab

• /etc/smb.conf

• Run /sbin/SuSEconfig

• Run zipl

– Exit, umount everything and shut down

Cloning Penguins: Part 3

• Boot the new server from DASD

• Set up authorities to start and stop server

• Place DNS name in DNS server

• Whole thing takes about 2-3 hours. Can be automated with
CMS execs and shell scripts preinstalled on the clone server.

– See Leland Lucius’ E2SH EXEC and E2CMD MODULE (On Sine
Nomine’s site) which allows editing of Linux ext2 and ext3
filesystems from CMS. You can create an entire exec to clone
linux servers! (takes about 15 seconds to run)

• Be Sure to keep a database of servers!

– DNS, userid, IP address, owner-name, comm method,
usage type

Database of Servers

Cloning Software Available (not
an endorsement)

• VMLINMAN
http://www.glasshousesystems.com/home.html

• STK SNAPVANTAGE
http://www.storagetek.com/prodserv/products/software/svan/

• LINUXCARE LEVANTA http://www.linuxcare.com

• ADUVA at http://www.aduva.com

• Unsupported demo software from Tung-Sing Chong at IBM
Endicott

– Code at http://www.vm.ibm.com/devpages/chongts/

– Instructions at
http://www.vm.ibm.com/devpages/chongts/tscdemo.html

http://
http://
http://
http://
http://
http://

Starting Servers

• Create a server start/stop userid

• Allow SMSG commands via WAKEUP

• Have list of authorized users

• Exec to do actual AUTOLOG of server

• PROFILE EXEC in Clone machine defaults to “boot
from disk” if no virtual console attached.

• User/owners of servers require second VM id to
start system

Stopping Servers (part 1)

• Put VMPOFF=LOGOFF into parm file
/etc/zipl.conf to log off Linux userid when
linux O/S quits

• Use journaled filesystems (ext3, reiserfs,
jfs) in case something breaks and you
can’t shut down cleanly

Stopping Servers. Part 2

– With z/VM 4.3’s SERVC facility and Linux 2.4.7 or later

• Linux can be patched to shut down automatically at CP
SHUTDOWN or CP SIGNAL SHUTDOWN

• Put ca:12345:ctrlaltdel:/sbin/shutdown -t1 -h now in
/etc/inittab - One process runs in Linux all the time.

• Included with SLES8, SLES9

Linux and Guest Lans or
VSWITCH

• Guest Lans are faster and easier than CTC or IUCV, but require z/VM 4.3.0 for full
function, and SLES8. VSWITCH is faster and easier yet (no TCPIP stack involved)
but requires z/VM 4.4 or later and SLES8 or SLES9.

– Up to 700 mb/sec

– Let SYSTEM own the guest lan. CP runs VSWITCH

– Define Guest lans in TCPIP’s PROFILE TCPIP
• DEVICE HIPR3 HIPERS 1F00 PORTNAME LINUXLAN AUTORESTART

• LINK QDIO3 QDIOIP HIPR3

– Define the guest lans or VSWITCH in AUTOLOG1
• DEFINE LAN LINUXLAN MAXCONN INF OWNERID SYSTEM TYPE HIPER

– Be sure Linux is set up to use guest lans
• /etc/sysconfig/network/ifcfg-hsi0 /etc/sysconfig/network/routes

• /etc/modules.conf /etc/chandev.conf

– In server startup exec, issue
• CP COUPLE A001 TO SYSTEM LINUXLAN (guest lan)

• CP COUPLE A001 TO SYSTEM VLINUX1 (vswitch)

Tuning Linux to work with VM

• On-Demand Timer: echo "0" >/proc/sys/kernel/hz_timer in SLES8, SLES9

• V-DISK for swap, minimum virtual storage (Use the SWAPGEN EXEC from
Sine Nomine’s site) In SLES8 or SLES9 31-bit, use dasd_diag_mod. Not
available in SLES9 64-bit.

• MINIOPT CACHE RECORDMDC for real DIAG minidisks. CMS
FORMAT/RESERVE + mke2fs. No dasdfmt or fdasd! 13X throughput for 50%
increase in I/O CPU.

• Use “dasdfmt -d cdl” or reserve first cylinder of pack for VM disk label. This
prevents Linux servers from changing the VOLSER of the VM pack. Otherwise
next time you IPL VM, the Linux server may not work!

– MDISK 294 3390 1 3338 V163E1 MR LINUX USR DASDC

• Use INCLUDE files and ACIGROUPS in the directory to better manage

• Stagger file-level backups of Linux servers.

If you have SNAPSHOT capability on your
DASD

• Use it instead of DDR to create the clone of the boot disk.

• Keep pre-formatted 3390-3 and 3390-9 volumes handy. (dasdfmt
and fdasd, but no mke2fs in case you want to use LVM.) Instead of
formatting the disk, just SNAPSHOT a copy. 5 seconds instead of 15
minutes per volume.

Updates and Changes

• Load patches, CD’s onto a Linux Patch server

– Easier to use than CD or Windows server

– Makes it available to those Linux owners who do
their own updates

• Update test server first

• When working, move to clone server

• Route around to production servers

• Using YAST2 and VNC, can do updates in place from
each server updated.

“Outsource” Linux maintenance
to someone else

• Unix gurus

• NT server people

• End user as last resort - use at least for
creating own userids and groups

• Set up formal Service Level Agreements
to follow.

Backing up Linux with VM

• VM:Backup will do physical (track) backups of
Linux, but must restore an entire filesystem disk set
to recover one file. E.g. all of /usr.

• Problem is compounded if using LVM for multiple-
volume filesystem. Have to restore ALL volumes of
a logical volume to restore one file!

• Same for DDR or any other VM backup system. No
file-level backups.

Backing up Linux with TSM

• TSM (Server on VM or z/OS) works well for file-level
backups

– VM server release 3, z/OS at release 5.

– but uses lots of network capacity, especially first time!

– Don’t use software compress in client machine. CPU
hog!

– Can do full or incremental, keep multiple generations.

– Stage to DASD first, then move to tape to minimize
number of tape drives used.

Other ways to back up Linux
at file level

• CA-Brightstor.

• Veritas NetBackup

• Other products on near horizon.

• If tape available to linux, can use
amanda.

Roll your own Backups
• Give Linux server capability to use BFS, OpenExtensions in directory,

BFS server

• Use Linux NFS, VMNFS server to mount BFS

• Use Tar to back up to NFS-mounted BFS

• Use VM:Backup to back up BFS

• Can do with 4 shell scripts and 3 files, but very labor intensive, requires
root privilege, and uses LOTS of disk space! (Contact me if you want
the scripts)

• With Neale’s cpint package and tape support in 2.4.7 (Both included in
SuSE SLES8) can go direct from Linux direct to tape with “tar” or
“dump”, but tape scheduling is a nightmare. Cpint can be used to SM
VMTAPE MOUNT (no response to Linux) and CP DETACH

Accounting

• Most Unix-type systems do not do job accounting very well.

• Hooks and packages available but require extensive kernel mods

• Future kernel may have job accounting in it.

• Under VM it’s simple! Use a separate server for each account! If you
have to share data among servers, use NFS!

• VM:Account will create (with exits) and collect charge records for CPU,
DASD, BFS, tape mounts, and so on.

• VM:Account will also do ad-hoc reports on usage. Cumbersome to set
up, but well worth it in the end. Beware! Users will want you to run
reports for them!

Close

• VM can be used as “hypervisor” for many linux guests

• The more guests you have, the more work maintaining them
is.

• Many members of Linux-VM community have come up with
some ideas for managing many servers.

• Commercial software solutions are still on the horizon.

• See Mark Post’s LinuxVM page at http://linuxvm.org

• Join the Linux-390 Listserver! (address on LinuxVM page
above)

http://

The Author

• Can be reached at:

• This presentation and related files can
be downloaded from:

– Http://locolobo.fastmail.fm/download.html

Appendix 1 - Starting up Linux

/*---*/
/* Common Profile Exec for Linux Server Machine */
/* By Gordon Wolfe, VM Technical Services 05/22/00*/
/*---*/
address command

'SET RDYMSG SMSG'
'CP SET ACNT OFF'
'CP SET RUN ON'
'CP SET RELPAGE OFF'
'CP SET EMSG ON'
'CP LIMIT CLEAR CP'

'CP SET PF11 IMMED FILEL'
'CP SET PF12 RETRIEVE'
'CP TERMINAL LINESIZE 255'
'CP TERMINAL CHARDEL OFF'
'CP SET EMSG ON'

/* Set up for this particular linux server machine */
'ESTATE' userid() 'EXEC A'
if rc <> 0 then exit rc
'EXEC' userid()

/* Determine if we start up Linux now. */
startflag = 'N'
iplflag = 'D'

/* Are we running disconnected? if so, start linux. */
'PIPE CP QUERY' userid() '| var usrline'
parse value usrline with . . term .
if term = 'DSC' then startflag = 'Y'

Appendix 1 - Continued
/* Not disconnected? ask to start up. */
/* Also find out where to start up from. Reader IPL or DASD ipl. */
else do
 say 'Do you want to start up LINUX now? (Y/N)'
 pull ans .
 if left(ans,1) = "Y" then startflag = 'Y'
 if startflag = 'Y' then do
 say 'Do you want to IPL from DASD or from the reader? (D/R)'
 say 'The default is to IPL from DASD.'
 pull ans .
 select
 when left(ans,1) = 'R' then iplflag = 'R'
 when left(ans,1) = 'D' then iplflag = 'D'
 when ans = '' then iplflag = 'D'
 otherwise do
 say ans 'is an invalid choice.'
 exit 8
 end
 end
 end
end

if startflag = 'Y' then do
 if iplflag = 'R' then queue 'EXEC SLES7IPL'
 if iplflag = 'D' then do
 queue '1'
 queue 'LXSWAP'
 'FORMAT 293 E (BLK 4096' /* format/reserve V-disk */
 if rc <> 0 then exit rc /* for swap space */
 queue '1'
 'RESERVE LINUX SWAP E6'
 if rc <> 0 then exit rc
 queue 'EXEC IPLDASD'
 end
end
exit

Appendix 1 - Continued
/* Sample LINUX002 EXEC for Linux userid LINUX002 */
address command
'CP COUPLE C16 TO TCPIP C20'
'CP COUPLE C17 TO TCPIP C21’
 or
'CP COUPLE A001 TO SYSTEM LCMEXT'

(Parmfile file Linux userid LINUX002)
ramdisk_size=32768 root=/dev/ram0 ro ctc=0,0xC16,0xC17,ctc0

/* IPLDASD EXEC */
ADDRESS COMMAND
TRACE o
'CP CLOSE RDR'
'CP PURGE RDR ALL'
'CP DETACH 190'
'CP DETACH 19E'
'CP IPL 292 CLEAR’

/* SLES7IPL EXEC */
/* exec to IPL Linux from the reader and run from a ramdisk */
/* by Gordon Wolfe, VM Technical Services 08/17/01 */
address command
trace o

/* Do we have enough virtual storage to do this? */
'MAKEBUF'
buf1 = rc
'EXECIO 1 CP (STRING Q V STOR'
pull . . stor .
'DROPBUF' buf1
stor = STRIP(stor,'L','0')
stor = STRIP(stor,'T','M')
if stor < 64 then do
 say 'Virtual storage must be 64M or greater to IPL from reader'
 say 'Perform CP DEF STOR 64M and IPL CMS.'
 exit 8
end

Appendix 1 - Continued

/* Do we have the files we need? */
'ESTATE' userid() 'PARM *'
if rc <> 0 then do
 say 'File' userid() 'PARM * not found.'
 exit 28
end

/* Find the filemode for the files we need */
'PIPE CMS LISTF SLES7 IMAGE * |',
 'take 1 |',
 'var imageloc'
parse value imageloc with . . fm .
fm = left(fm,1)

/* All looks okay, proceed. */
'CP CLOSE RDR'
'CP PURGE RDR ALL'
'CP SPOOL PUN * R'
'PUNCH SLES7 IMAGE' fm '(NOH'
'PUNCH' userid() 'PARM' fm '(NOH'
'PUNCH SLES7 INITRD' fm '(NOH'
'CP CHANGE RDR ALL KEEP NOHOLD'
'CP IPL 00C CLEAR'

Appendix 3 - Shutting Down Linux from VM

/* EXEC to send shutdown commands to a Linux guest */
/* Assumes root password is same as Linux VM userid password. */
/* Also assumes server has a parmline containing vmpoff=LOGOFF */
/* Userid running this exec must be a VMSECURE administrator */
/* By Gordon Wolfe, VM Technical Services 03/09/2001*/

address command

arg server .
'PIPE CP Q SECUSER' server '| drop 2 | var bkupsecuser'
if rc <> 0 then do
 say server 'is an unknown Linux server.'
 exit 8
end
parse var bkupsecuser with oldsecuser .
if oldsecuser = 'not' | oldsecuser = 'NOT' then oldsecuser = 'OFF'

line = 'shutdown -h now'

/* Set the secondary userid to ourself. */
'CP SET SECUSER' server userid()

/* Get the console logged on as root */
call linuxpwd server
if result <> 0 then exit result

/* And send the shutdown command */
'CP SEND' server line

/* Clean up and quit. */
done:
'CP SET SECUSER' server oldsecuser
exit

Appendix 3 - Continued

linuxpwd: procedure
address command

arg linuxmach .
if linuxmach = '' | linuxmach = 'LINUXMACH' then do
 say 'No Linux machine specified'
 return 8
end

/* Get the password for the server in the proper case. */
rootname = 'root'
call getpass linuxmach
if result = 28 then do
 say 'no password on file for' linuxmach
 return 8
end
else pw = lowercas(result)

do i=1 to 3
 'CP SEND' linuxmach rootname
 'CP SLEEP 1 SEC'
 'CP SEND' linuxmach pw
 'CP SLEEP 1 SEC'
end
return 0

getpass: procedure
/* procedure to query VMSECURE for the password of the server */
arg finduser .

Appendix 3 - Continued

'ERASE LINUX TEMP A'
'MAKEBUF'
buf1 = rc
queue 'SSAVE LINUX TEMP A'
queue 'QQUIT'
'VMSECURE EDIT' finduser '(NOPROF'
if rc <> 0 then do
 say finduser 'not found in VMSECURE'
 'ERASE LINUX TEMP A'
 return 28
end
'DROPBUF' buf1
'PIPE < LINUX TEMP A |',
 'locate /USER / |',
 'take 1 |',
 'specs word 3 1 |',
 'var pw'
'ERASE LINUX TEMP A'
return pw

/* Lowercas */
/* translates input argument to lowercase */
/* By Gordon Wolfe, Vm Technical Services 06/23/98 */
lowercas: procedure
arg inp
out = translate(inp,'abcdefghijklmnopqrstuvwxyz','ABCDEFGHIJKLMNOPQRSTUVWXYZ','.
return out

Appendix 4 - Routing Updates to Servers
From a Central Maintenance Server
File /root/updates/hosts - Place the names of the hosts to which updates will be routed
in this file.
#Nickname in hosts file or DNS name VM userid
#---------------------------------- ---------
clone LINUX000
test LINUX001
patch LINUX002
webserver LINUX003

File /root/updates/files - Place the fully-qualified filenames of files that will be routed
to the above hosts:
/etc/hosts
/etc/profile.local
product-20020505.rpm

File /root/updates/precommands - Place commands that you want the above hosts to execute
before moving any files
mkdir /root/test

File /root/update/postcommands - Place commands that you want the above hosts to execute
after moving files:
id
rpm -Uvh product-20020505.rpm

Then run /root/updates/update to send all files to all hosts then execute all commands on
all hosts:
rm runupdate
rexx updates.rex $1
chmod 770 runupdate
/root/updates/runupdate

Appendix 4 - Continued

This calls the rexx program updates.rex, which is

/* updates.rex */
/* An exec to create a shell script to take a list of files */
/* from the file ./files and send them to a group of linux servers */
/* listed in a file named ./hosts */
/* Then execute a number of commands taken from a file ./commands */
/* Called from shell script "update" */
/* Assumes: */
/* file names in ./files are fully qualified path names */
/* host names in ./hosts are resolvable through /etc/hosts */
/* the shell script created will be run from userid root */
/* Userid root on the receiving host has ssh configured to allow */
/* file copies and commands without a password from root on server */

trace off
signal off error

parse arg onehost .
if onehost <> '' then say "Processing for" onehost "only.”

/* First, get names of files into stem variable */
jfiles = 0
oldq = queued()
"cat files >FIFO"
do until queued() = oldq
 parse pull file
 if left(file,1) = "#" then iterate
 jfiles = jfiles + 1
 parse value file with fname.jfiles fnewname.jfiles .
 if fnewname.jfiles = '' then fnewname.jfiles = fname.jfiles
end

Appendix 4 - Continued
/* Next, get commands to execute into stem variable */
j1cmds = 0
oldq = queued()
"cat commands >FIFO"
do until queued() = oldq
 parse pull file
 if left(file,1) = "#" then iterate
 j1cmds = j1cmds + 1
 parse value file with precommand.j1cmds
end
 j2cmds = 0
oldq = queued()
"cat commands >FIFO"
do until queued() = oldq
 parse pull file
 if left(file,1) = "#" then iterate
 j2cmds = j2cmds + 1
 parse value file with postcommand.j2cmds
end

/* Next get list of hosts to send files to */
oldq = queued()
nhosts=0
"cat hosts >FIFO"
do until queued() = oldq
 parse pull line
 if left(line,1) = "#" then iterate
 nhosts=nhosts+1
 parse value line with hostname.nhosts vmuserid.nhosts .
 if onehost = hostname.nhosts then khost=nhosts
end
if onehost <> '' then do
 vmuserid.1 = vmuserid.khost
 nhosts = 1
 hostname.1 = onehost
end

Appendix 4 - Continued
/* for those hosts that are logged on, build a script */
/* Is the host logged on? */
do j=1 to nhosts
 oldq = queued()
 "hcp q" vmuserid.j ">FIFO"
 do until queued() = oldq /* get just last line */
 parse pull line
 end
/* Host is not logged on. Ignore it for now. */
 if strip(line) <> 'Ready;' then say '+++' hostname.j 'not running.'
 else do
/* Host is indeed running. */
 /* Build the shell script to execute the precommands */
 "echo -e echo -e Executing precommands on" host ">> runupdate"
 do i=1 to j1cmds
 newline = ”ssh"
 newline = newline “root@”host precommand.i
 "echo -e" newline ">> runupdate"
 end /* do i=1 to j1cmds */
/* Build the shell script to actually send the files */
 host = hostname.j
 "echo -e echo -e " ">> runupdate"
 "echo -e echo -e Sending files to" host ">> runupdate"
 do i=1 to jfiles
 newline = "rsync -pogt -r -e ssh -l" fname.i
 newline = newline host":"fnewname.i
 "echo -e" newline ">> runupdate"
 end
/* Build the shell script to execute the postcommands */
 "echo -e echo -e Executing postcommands on" host ">> runupdate"
 do i=1 to j2cmds
 newline = ”ssh"
 newline = newline “root@”host postcommand.i
 "echo -e" newline ">> runupdate"
 end /* do i=1 to j2cmds */
 end /* else do */
end /* do j=1 to nhosts */
exit

