Linux/390 System Management for the Mainframe System Programmer

I know how to do “abc” with my usual OS. How do I do that with Linux/390?

Mark Post

Wednesday, March 2, 2005
Session # 9224
About me

- Mark Post (mark.post@eds.com)
- Senior Infrastructure Specialist (Systems Programmer, “plus”)
- EDS, Auburn Hills, Michigan
- Worked with IBM mainframes since entering college in 1973.
- Supported MVS and VM for GM and EDS
- Linux and Linux/390 Technical Lead since 01/2003
My Linux background

• First installed Slackware Linux on a PC at home in 1998.
• Involved with Linux/390 since May of 2000.
• Co-author of IBM Redbook: “Linux for zSeries and S/390: Distributions,” SG24-6264
• Active in the Linux-390 mailing list hosted by Marist College.
• Webmaster for the linuxvm.org web site.
• Ported Slackware® Linux to the mainframe, released as Slack/390 in July of 2004.
Agenda

- Cultural differences
- Terminology
- How does Linux/390 compare to Unix System Services?
- How does Linux/390 compare to other Linux platforms?
- What is a distribution, and why doesn't IBM have one?
- What hardware does Linux/390 support?
- What networking connections does Linux/390 support?
Agenda (2)

- Where’s SYS1.PARMLIB kept?
- Do I really have to know all this stuff?
- Linux/390 DASD management
- Backup and restore
- Software and maintenance management
- Data sharing with Linux/390 and other OS
- Job scheduling
Agenda (3)

- Security and user management
- Diagnostic information available (or not)
- Editors
- Basic vi concepts
- Scripting languages
- System logs
- Basic commands
Agenda (4)

• Advanced commands
• Kernel modules, insmod and modprobe
• System startup and shutdown
• Performance management
• Creating additional images
• Additional information resources
 • Web sites, Redbooks/pieces/tips, Usenet (news), O’Reilly Books
• Command comparisons
Cultural differences

- Open Source Community
- Open Source software
- Software quality
- Where and how you get support
- Expectations of self-reliance
- 3270 terminals vs VTxxx.
- Install Linux on a PC and use it.
- Is rebooting unnecessarily a sin?
Terminology

- IPL
- nucleus
- PLPA / LINKLIST
- TSO / CMS
- OSA
- PTF / APAR
- IEBUPDTE
- IEBUPDTE input
- SuperC / COMPARE
- xedit update mode

- boot
- kernel
- kernel modules
- shell
- NIC
- patch
- patch
- diff
- diff
- diff
Terminology (2)

- paging space
- multi-processor
- systems Programmer
- GUI
- pattern matching
- help files
- STC / SVM
- address space
- task (TCB)
- swap volume / file
- SMP
- system Administrator
- X / X-Window
- regular expression
- man pages
- daemon
- process
- thread
Terminology (3)

- runlevel
- device driver
- tarball (tar - tape archive)
 - `tar -cf backup.tar file1 file2 file3 file4`
 - `tar -xf backup.tar`
 - `tar -zcf backup.tar.gz file1 file2 file3 file4`
 - equivalent to `tar` command followed by `gzip` command
 - `tar -zcf backup.tgz file1 file2 file3 file4`
 - `tar -jcf backup.tar.bz2 file1 file2 file3 file4`
 - `tar -zxf backup.tgz`
How does Linux/390 compare to...

- Unix System Services
 - Linux/390 is “real” UNIX “under the covers.” Things that run on most other Unix systems can be run on Linux/390, usually without change (assuming source is available).
 - There is no such thing as SMP/E or SES in UNIX / Linux. (Not that USS really uses it either, per se.)
 - Option “switches” on various commands are different, due to different shells, or compliance to different standards.
 - The Linux man pages work without extra effort on OS/390 side.
 - There’s no confusion about which TCP/IP parameters are put where.
How does Linux/390 compare to...

- Unix System Services (cont.)
 - Things that you learn about other UNIX systems are generally easier to apply to Linux than USS.
 - There’s no “other side” (OS/390) to help bail you out when things get messed up.
 - Native ASCII. No EBCDIC <=> ASCII conversions.
 - Source code is available.
 - Default shell is more often bash than (t)csh.
How does Linux/390 compare to...

- Unix System Services (cont.)
 - No 3270 interface/limitations to work around. Which also means no real ISPF. (You can buy a clone of it, though.)
 - PL/1, CLISTs are not available.
 - REXX is available, but the package is called Regina.
 - HLASM is now available from Tachyon Software.
How does Linux/390 compare to...

• Other Linux Platforms
 • Very similar, but it lacks a lot of common PC-type hardware
 • 3270 support included for consoles in LPAR mode
 • S/390 specific hardware
What are distributions?

- VARs
- System Integrators
- Packagers
- Maintainers
- Developers
- Support
- Why doesn’t IBM have one?
Linux/390 hardware support

• Any processor that supports the “Halfword Immediate and Relative Branch Feature” instructions added with the G2.

• For decent performance, IEEE FPU is needed. (G5 and up, MP3000.)

• ECKD DASD

• FBA DASD

• 3480/3490/3590 Tapes

• SCSI over FCP now available
Linux/390 networking connections

- 3172
- OSA-2 (Token-Ring, Ethernet, Fast Ethernet)
- OSA-Express (Ethernet, Fast Ethernet)
- 2216 (Token Ring, Ethernet)
- QDIO OSA-Express (Gb Ethernet, Fast Ethernet)
- ESCON / CTC (native and under VM)
- IUCV (only under VM)
- HiperSockets (native and under VM)
- Guest LANs (only under VM)
- Cisco CLAW (CIP) - driver by UTS Global
Where’s SYS1.PARMLIB kept?

Just about everything you need is kept under /etc (at some level of hierarchy).

Individual text files (or groups of them), since no concept of a PDS in Linux.

Some *really* important ones:

- /etc/passwd
- /etc/shadow
- /etc/group
- /etc/gshadow
- /etc/inittab
- /etc/inetd.conf
- /etc/modules.conf
- /etc/fstab
- /etc/hosts
- /etc/resolv.conf
- /etc/rc.d/…
- /etc/httpd/…
- /etc/sysconfig/…
- /etc/samba/…
- /etc/pam.d/…
- /etc/ssh/…
Do I *really* have to know all this stuff?

• No, but shouldn’t you?

• If you really don’t want to know what’s going on or have a large virtual farm:
 • YaST (SuSE)
 • Nautilus (Red Hat)
 • Webmin (completely perl-based)
 • AdminUX (Green Light Advantage)
 • linuxconf (no longer recommended by RH)
 • Others
Quick Overview:

• 2 kinds of DASD layouts, cd1 and ld1.
• Adding/removing DASD
• Preparing DASD for use
 • Formatting
 • Partitioning (2.4.x kernels only)
 • Creating file systems and Swap
 • File systems vs. directories
• Backing up your DASD
Adding/Removing DASD

• For 2.4.x kernels, can be dynamic:
 • Adding a device
 • echo "add device range=devno-range" > /proc/dasd/devices
 • Disabling a device
 • echo "set device range=devno-range off" > /proc/dasd/devices
 • Enabling a device
 • echo "set device range=devno-range on" > /proc/dasd/devices
 • Still want to update /boot/parmfile or /etc/zipl.conf and re-run “zipl” to make the change permanent. (mkinitrd may also be required.)

• 2.6.x kernels use a completely different means.

• For 2.2.x kernels, requires updating /boot/parmfile, re-running “silo,” and rebooting.
Formatting DASD - 2.4.x, 2.6.x

- dasdfmt -b 4096 [-l volser] [-d layout]
 -f /dev/dasd?
 -n 0d18 (only if devfs is in use)
- dasdfmt -b 4096 -d cd1 -f /dev/dasda
- dasdfmt -b 4096 -d ld1 -n 0cf3
- dasdfmt -b 4096 -d cd1 -n 0d2f

- fdasd /dev/dasd?
 - Must create one, two, or three partitions
Formatting DASD - 2.2.x

- `dasdfmt -b 4096 [-l volser] -f /dev/dasd?`
- `dasdfmt -b 4096 [-l volser] -n fc23`
Creating file systems and Swap

• 2.4.x, 2.6.x Kernels
 • mke2fs -b 4096 /dev/dasd?1,2,3
 • mke2fs -b 4096 /dev/dasda1
 • mke2fs -b 4096 /dev/dasda2
 • mke2fs -b 4096 /dev/dasda3

• 2.2.x Kernels
 • mke2fs -b 4096 /dev/dasd?1
 • mke2fs -b 4096 /dev/dasda1
 • mke2fs -b 4096 /dev/dasdb1

• mkswap /dev/dasd?1 (2.2 kernels)
• mkswap /dev/dasd?1,2,3 (2.4, 2.6 kernels)
File systems vs. directories

/ (root) /opt
/bin /proc
/boot * /root (not to be confused with / root)
/dev /sbin
/etc /tmp
/home /usr
/lib /var
/mnt

Copyright 2002-2005 by Mark Post
Backup and restore

- Native Linux facilities
 - afio/cpio/tar

- Software packages (Open Source and proprietary)
 - Amanda / offlindr
 - DFSMSdss / DDR
 - Tivoli TSM/ADSM
 - Innovation FDRINSTANT/UPSTREAM
 - CA BrightStor
 - SecureAgent SecureBackup
 - UTS Global TSS-BAR
 - Veritas NetBackup
Software & maintenance management

• Since there is no such thing as SMP/E or SES, you have to learn a new mindset.

• There are “binary” packages for several platforms, primarily Intel. Different distributions use different methods to manage those packages: RPM, dpkg.

• Source packages (RPM, tar.gz, etc.) are always available for Open Source software.
Software & maintenance management (2)

- In a number of cases, there is no binary available for Linux/390. Compiling from source is the only option. This can be very easy or very difficult, depending on the package.

- You will become very familiar with the ‘tar,’ ‘gzip,’ and ‘make’ commands. Most likely ‘patch’ and ‘diff’ as well.
Software & maintenance management (3)

• Keeping track of security patches is very important, and people-intensive.

• Getting email notifications from security sources (CERT, etc.) is recommended.

• If you have to install a package from source, it probably won’t be too difficult.

 • `tar -zxf package.name.tar.gz`

 • `cd package-directory`

 • `./configure`

 • `make, and then make install`
Using RPM

- VERY high-level!
 - `rpm -i package.name.rpm` (install)
 - `rpm -e package.name` (remove)
 - `rpm -q package.name` (query)
 - `rpm -ql package.name`
 - `rpm -qlp package.name.rpm`
 - `rpm -qa`
 - `rpm -qf /path/to/file/name`

- `dpkg` on Debian-based systems
Data sharing with Linux/390 and other OS

- No direct, hard-wired sharing
- z/OS and z/VM don’t “know” ext2
- Linux doesn’t “know” VTOCS, etc.
 - Except now it does. But, no security!
- Various network-based methods
 - NFS
 - GFS
 - AFS
 - Samba (SMB / CIFS / MS Networking)
- Under VM - sharing minidisks read-only between guests.
Job scheduling

- Linux native facilities
 - cron
 - at
- Open Source:
 - DQS
 - queue
 - OpenPBS
 - generic NQS
- Proprietary
 - CA-7 Agent
 - Jobtrac
 - CA Scheduler
 - PBSPro
Security and user management

- Security in an ongoing process, not a status. It must be constantly attended to for you to have any chance at all.
- Most successful security breaches come from employees of a company, not outsiders.
- In contrast to typical mainframe security, Linux security is more network oriented.
- If possible, have a UNIX security person handle your Linux security needs.
Security and user management (2)

• Turn off ALL unnecessary services: telnet, ftp, smtp, time, finger, http, pop3, imap, login, shell, printer, nfs, etc., etc.

• Use OpenSSH instead of telnet, ftp, rlogin, rsh, rexec, rlogin, etc..

• Use shadow password utilities.

• Use TCP Wrappers (/etc/hosts.allow, etc.)

• Review your system logs regularly.

• Monitor security alerts from your suppliers, and from various security organizations.
Security and user management (3)

• Don’t lump all your users into one group (typically “users”).
• Don’t create a separate group for each user (Red Hat’s approach).
• Try to have reasonable groups defined so that people can share data appropriately, and put the proper users into them.
• Don’t give anyone a UID of zero unless it’s absolutely necessary (and even then think about other ways to avoid it).
Security and user management (4)

- Various tools are available for adding, deleting and changing user and group definitions. All information about users and groups are in plain text files.
 - SuSE has YaST
 - Red Hat has Nautilus and redhat-config-* tools
 - Webmin is popular
 - linuxconf was popular, but should not be used
 - useradd, userdel, usermod, groupadd, groupdel, groupmod are common
Security and user management (5)

- Protect the password of “root” very carefully.
- Login as “yourself” and su to root only when really needed.
- Consider using /etc/suauth to allow designated people to “su” using their own password.
- Consider using /etc/sudoers to grant some selected command authority to designated people.
Diagnostic information

- strace
- ulimit (to enable core dumps)
- gdb
- uptime
- top
- ksymoops
- netstat
- ping
- traceroute
- system logs
- dmesg
- standalone dump (2.4.x and 2.6.x kernels only)
Editors (Holy War fodder)

- vi / vim / elvis
- emacs / xemacs
- joe
- jed
- jove
- ed (sed)

- nano
- pico
- ne
- ned (3270 enabled)
- Nedit
- THE (The Hessling Editor)

No native free ISPF/PDF clones.
(2 proprietary ones)
Basic vi concepts

• Cursor keys work as expected (or h-j-k-l), as do Page up and Page Down, Delete and Backspace (when ssh client is properly configured.)

• Two important modes: command, insert.

• I’m pretty unfamiliar with vi, so I basically use insert mode and command mode.

• Insert button = insert mode (twice = replace)

• ESC = exit insert/command mode to visual mode.
Basic vi concepts (2)

- `:set smd` or `:set showmode`
 - gives visual indicator what mode you’re in
- `:d = delete a line`
- `:w = write updated file to disk`
- `:x = write updated file to disk and exit`
- `:q = quit if no updates have been made since the last save (:w)`
- `:q! = quit regardless`
- `:help = help me!`
Scripting languages (Holy War cont.)

- perl
- ash / bash / csh / tcsh / ksh / ksh93 / zsh
- Regina (REXX)
- OREXX
- Tcl
System logs

- Most of what you want will be in /var/log, or in a subdirectory of it.
- Names and contents vary by distribution
- Reviewing them *frequently* is important
- Samples:
 - /var/log/messages
 - /var/log/syslog
 - /var/log/debug
 - /var/log/boot.log
 - /var/log/dmesg
 - /var/log/proftpd.log
 - /var/log/maillog
 - /var/log/warn
 - /var/log/httpd/...
 - /var/log/samba/...
Basic commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Command</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rm</code></td>
<td><code>cd</code></td>
<td><code>cp</code></td>
</tr>
<tr>
<td><code>-rf</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>/*</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>cd</code></td>
<td><code>cp</code></td>
<td><code>mv</code></td>
</tr>
<tr>
<td></td>
<td><code>cp</code></td>
<td><code>mv</code></td>
</tr>
<tr>
<td><code>rm</code></td>
<td></td>
<td><code>ls</code></td>
</tr>
<tr>
<td><code>find</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>grep</code></td>
<td><code>cat</code></td>
<td><code>less / more</code></td>
</tr>
<tr>
<td><code>man</code></td>
<td><code>info</code></td>
<td><code>mount</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>umount</code></td>
</tr>
<tr>
<td><code>mkdir</code></td>
<td><code>rmdir</code></td>
<td><code>ps</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>pushd</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>popd</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>which</code></td>
</tr>
</tbody>
</table>
Advanced commands

- `ifconfig`
- `netstat`
- `route`
- `ping`
- `host / nslookup`
- `traceroute`
- `su`
- `sudo`
- `gzip / bzip2`
- `last`
- `chmod`
- `chown`
- `dmesg`
- `du`
- `df`
- `locate`
- `top`
- `sed`
- `head`
- `tail`
- `siloh / zipl`
- `wget`
- `export`
- `file`
- `insmod`
- `modprobe`
- `lsmod`
- `rmmod`
- `telinit`
Kernel modules, insmod and modprobe

• The kernel contains all the code necessary to run as an operating system. This includes device drivers, file system drivers, networking code, etc.

• Kernel modules are parts of the kernel that don’t have to be compiled into the kernel itself (but can be if you want to).

• This can allow you to update these components on the fly, without rebooting.
Kernel modules, insmod and modprobe (2)

- Since modules are *not* in the kernel, how do they get loaded into kernel storage?
 - insmod
 - modprobe
 - dynamically by the kernel if /etc/modules.conf has the right data in it.

- How does the module get its parameters?
 - provided on insmod command
 - read from /etc/modules.conf by modprobe and the kernel.
Kernel modules, insmod and modprobe (3)

- How does the kernel find the module?
 - Usually in /lib/modules/kernelver/something...
 - depmod -a command creates a cross reference of the modules and where they are located, and writes it into /lib/modules/kernelver/modules.dep.
 - modprobe figures out the dependencies and loads the modules in the right order. insmod does not do this.
System startup and shutdown

- From the HMC, just like any other OS, except no loadparms are needed/used.
- From VM, there are usually some CMS/CP commands issued in PROFILE EXEC, followed by a ‘CP IPL devno CLEAR’
- From VM, you can still IPL from the reader, if desired.
- snIPL (simple network IPL)
- How the rest of the system is brought up by init is a very complex process, beyond the scope of this talk.
System startup and shutdown (2)

- When shutting down, it is important to do it *properly*. File system corruption and data loss can result otherwise.
- Use the halt, reboot or shutdown command.
- You can use shutdown to warn any logged on users, and/or set the shutdown to some time in the future.
- The shutdown command has options to reboot, halt, or cancel a previous shutdown command.
Performance management

• Some “standalone” native Linux tools:
 • top, ntop, httperf, sar, iostat, gkrellm, pload, statnet, Big Brother, iptraf
 • Understand that in a shared environment, such as z/VM, these will all be lying to you in certain ways.

• Proprietary products
 • Velocity Software ESALPS (under z/VM)
 • BMC MAINVIEW
 • Candle OMEGAMON XE
Creating additional images

• Some commercial tools
• Can be done with home grown tools
• For large “penguin farms,” knowing what to share between images and how is key.
• IBM Redbook “Linux on IBM zSeries and S/390: ISP/ASP Solutions,” SG24-6299
Questions?
Additional information - web sites

- http://linuxvm.org/
 (Largely Linux/390 specific)
 (Linux/390 mailing list)
- http://www.slack390.org/
- http://www.kernel.org/
- http://www.linux.org/
- http://www.tldp.org/
 (The Linux Documentation Project)
Additional information - Redbooks

- Linux for S/390, SG24-4987
- Linux for zSeries and S/390: Distributions, SG24-6264
- Linux on zSeries and S/390: ISP/ASP Solutions, SG24-6299
- Linux on zSeries and S/390: Application Development, SG24-6807
- Linux on zSeries and S/390: System Management, SG24-6820
Additional information – Redbooks (2)

- Linux on zSeries and S/390: Large Scale Linux Deployment, SG24-6824
- Linux on zSeries and S/390: Performance Measurement and Tuning, SG24-6926
- Linux with zSeries and ESS: Essentials, SG24-7025
- Experiences with Oracle for Linux on zSeries, SG24-6552
- SAP on DB2 UDB for OS/390 and z/OS: Implementing Application Servers on Linux for zSeries, SG24-6847
Additional information – Redbooks (3)

• e-Business Intelligence: Leveraging DB2 for Linux on S/390, SG24-5687

• e-Business Intelligence: Data Mart Solutions with DB2 for Linux on zSeries, SG24-6294
Additional information – Redpieces

- Implementing Linux in your Network using Samba, redp0023
- Building Linux Systems Under IBM VM, redp0120
- Linux on zSeries and S/390: High Availability for z/VM and Linux, redp0220
- Linux on zSeries and S/390: Securing Linux for zSeries with a Central z/OS LDAP Server (RACF), redp0221
- Linux on zSeries and S/390: Server Consolidation with Linux for zSeries, redp0222
Additional information – Redpieces (2)

- Linux on zSeries and S/390: Cloning Linux Images in z/VM, redp0301
- Linux on zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN, redp3596
- Linux on zSeries and S/390: Managing a Samba Server from z/VM, redp3604
- Linux on zSeries and S/390: Porting LEAF to Linux on zSeries, redp3627
- Linux on zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs, redp3657
Additional information – Redpieces (3)

- Linux on zSeries and S/390: z/VM Configuration for WebSphere Deployments, redp3661
- Linux on zSeries and S/390: Building SuSE SLES8 Systems under z/VM, redp3687
- Linux on zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4, redp3719
- e-commerce Patterns for Linux on zSeries Using WebSphere Commerce Suite V5.1 Patterns for e-business series, redp0411
- Getting Started with zSeries Fibre Channel Protocol, redp0205
Additional information – Redpieces

(4)

- WebSphere Portal Installation on Linux for zSeries, redp3699
- Open Your Windows with Samba on Linux, redp3780
Additional information – Hints & Tips

- Linux on zSeries: Configuring gcc as a cross-compiler, tips0005
- Dynamic management of DASD devices in Linux running on zSeries, tips0023
- Formatting and Labeling a DASD Volume for Linux Guests Running Under z/VM, tips0275
- Partitioning DASD for Linux Guests Running under z/VM, tips0277
Additional information - Usenet
(“news”)
Additional information - O’Reilly books

 Apache Pocket Reference
* Building Internet Firewalls, 2nd Ed
* DNS and BIND, 4th Edition
* Learning Perl, 3rd Edition
* Learning the bash Shell, 2nd Edition
* Learning the vi Editor, 6th Edition
MySQL & mSQL
* Perl Cookbook
Perl for System Administration
Perl for Web Site Management
Perl in a Nutshell
Additional information - O’Reilly books (2)

* Practical UNIX & Internet Security, 2nd Edition
* Programming Perl, 3rd Edition
* Running Linux, 3rd Edition
 Samba Pocket Reference
 sed & awk Pocket Reference
* sed & awk, 2nd Edition
* sendmail, 2nd Edition
 sendmail Desktop Reference
* SSH, The Secure Shell: The Definitive Guide
* TCP/IP Network Administration, 2nd Edition
* Using Samba - comes with the software
 vi Editor Pocket Reference
Additional information - O’Reilly books (3)

* Networking CD Bookshelf
 TCP/IP Network Administration, 2nd Edition
 sendmail, 2nd Edition
 sendmail Desktop Reference
 DNS and BIND, 3rd Edition
 Practical UNIX & Internet Security, 2nd Edition
 Building Internet Firewalls

* The Perl CD Bookshelf, Version 2.0
 Programming Perl, 3rd Edition
 Perl for System Administration
 Perl in a Nutshell
 Perl Cookbook
 Advanced Perl Programming

Copyright 2002-2005 by Mark Post
Additional information - O’Reilly books (4)

* The Linux Web Server CD Bookshelf
 Running Linux, 3rd Edition
 Linux in a Nutshell, 3rd Edition
 MySQL & mSQL
 Programming the Perl DBI
 CGI Programming with Perl, 2nd Edition
Command comparison

<table>
<thead>
<tr>
<th>MVS</th>
<th>VM</th>
<th>Linux</th>
<th>DOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTC</td>
<td>L</td>
<td>ls / locate</td>
<td>dir</td>
</tr>
<tr>
<td>LISTD</td>
<td>L (L)</td>
<td>file</td>
<td>attrib</td>
</tr>
<tr>
<td>LIST</td>
<td>TYPE</td>
<td>cat</td>
<td>type</td>
</tr>
<tr>
<td>COPY</td>
<td>COPY</td>
<td>cp</td>
<td>copy</td>
</tr>
<tr>
<td>MOVE</td>
<td>MOVE</td>
<td>mv</td>
<td>move</td>
</tr>
<tr>
<td>RENAME</td>
<td>RENAME</td>
<td>mv</td>
<td>ren</td>
</tr>
<tr>
<td>DELETE</td>
<td>ERASE</td>
<td>rm</td>
<td>del</td>
</tr>
<tr>
<td>HELP</td>
<td>HELP</td>
<td>man / info</td>
<td>help</td>
</tr>
<tr>
<td>ICKDSF</td>
<td>FORMAT</td>
<td>dasdfmt / mke2fs</td>
<td>format</td>
</tr>
</tbody>
</table>
Command Comparison (2)

<table>
<thead>
<tr>
<th>MVS</th>
<th>VM</th>
<th>Linux</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEND</td>
<td>TELL / MSG / NOTE</td>
<td>write / talk / wall</td>
</tr>
<tr>
<td>LISTB</td>
<td>LOGOFF</td>
<td>/etc/motd</td>
</tr>
<tr>
<td>LOGOFF</td>
<td>PRINT</td>
<td>exit</td>
</tr>
<tr>
<td>PRINTDS</td>
<td>ATTACH</td>
<td>lpr</td>
</tr>
<tr>
<td>V ONLINE</td>
<td>DETACH</td>
<td>mount</td>
</tr>
<tr>
<td>V OFFLINE</td>
<td></td>
<td>uptime</td>
</tr>
<tr>
<td>D TS</td>
<td>Q U</td>
<td>users / w</td>
</tr>
<tr>
<td>D TS,L</td>
<td>Q N</td>
<td>ps -ax</td>
</tr>
<tr>
<td>D A,L</td>
<td>Q N</td>
<td></td>
</tr>
</tbody>
</table>

Copyright 2002-2005 by Mark Post
Command comparison (3)

<table>
<thead>
<tr>
<th>Linux</th>
<th>DOS</th>
<th>Linux</th>
<th>DOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>cd</td>
<td>cd</td>
<td>nslookup</td>
<td>nslookup</td>
</tr>
<tr>
<td>mkdir</td>
<td>mkdir</td>
<td>nslookup</td>
<td>nslookup</td>
</tr>
<tr>
<td>rmdir</td>
<td>rmdir</td>
<td>netstat</td>
<td>netstat</td>
</tr>
<tr>
<td>less / more</td>
<td>more</td>
<td>route print</td>
<td>route print</td>
</tr>
<tr>
<td>ping</td>
<td>ping</td>
<td>find</td>
<td>find</td>
</tr>
<tr>
<td>traceroute</td>
<td>tracert</td>
<td>set</td>
<td>set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright 2002-2005 by Mark Post