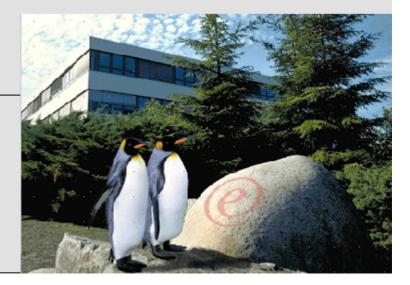


IBM Systems and Technology Group

Linux Performance Tools


SHARE 103 Technical Conference

August 15-20, 2004 New York City, NY Session 2592/9303

Oliver Benke
IBM Germany Lab
Email: benke@de.ibm.com

eServer Systems Management

© 2004 IBM Corporation

Trademarks

2

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

IBM*	RACF*	DB2*	Lotus*
the IBM logo*	RMF	WebSphere*	Tivoli(logo)*
OS/390*	zSeries	Domino	z/VM*
Parallel Sysplex*	Tivoli*	e business(logo)*	z/Architecture
MVS	CICS	e(logo)server	zSeries*
z/OS*	IMS	e(logo)businss	

^{*} Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

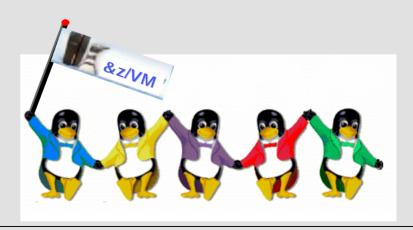
Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. See Java Guidelines

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC.


LINUX is a registered trademark of Linus Torvalds

^{*} All other products may be trademarks or registered trademarks of their respective companies.

Agenda

- 1. Performance Management, zSeries Architecture, ... Base concepts
- 2. Performance Tools with Usage Examples

Some basics

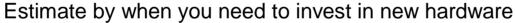
- § Performance Management
- § Resource Sharing, Overcommitted Resources, Virtualization CPU Resources in a virtualized environment
- § zSeries Mainframes: what's different?
- § Performance base concepts

Load Average

System/User CPU Consumption

§ The /proc filesystem

Performance Management


§ Online Monitoring, Problem drill-down; 1 day history (or 3 days for the weekend) needed

May be automated, using asynchronous events

Online performance data may be used by autonomic software components, like VMRM and IRD on zSeries

§ Long-term monitoring and capacity planning

Understand whether growth of resource consumption is bug driven or business driven

Mainframe Linux: Any Advantages?

§ Leading-edge Virtualization

z/VM or LPAR virtualization technologies

Possibility to virtualize and share CPUs, Channels (=I/O) and probably Memory (z/VM only)

§ Advanced Resource Sharing

Workload Management using Intelligent Resource Director IRD or z/VM VMRM

§ Optimized for Server Workloads

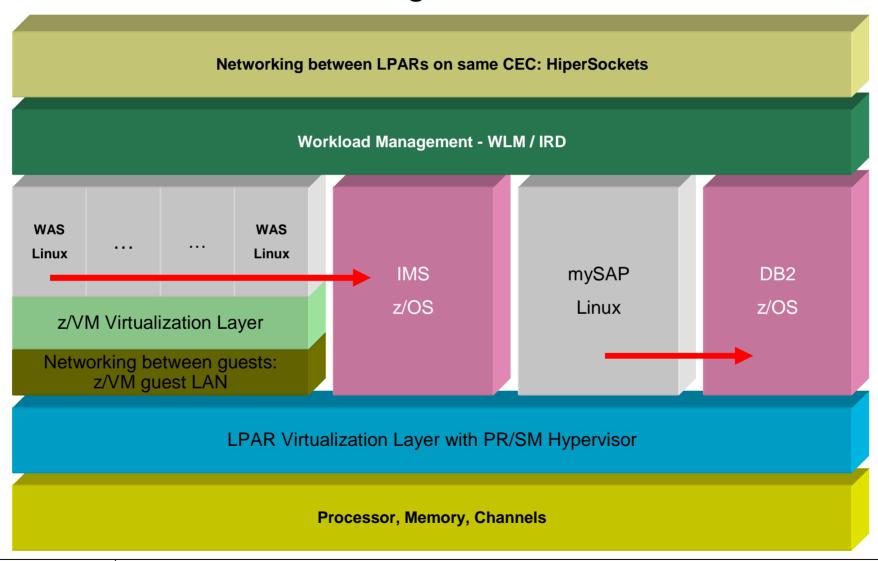
Reliability - Availability - Scalability

Horizontal and vertical scaling

High I/O performance, high memory bandwidth

§ Internal Networking Facilities

Memory-based networking using HiperSockets (LPAR) or GuestLAN (z/VM)


§ Server consolidation

zSeries Resource Sharing Overview

7

Virtual Resources

- § ... can be shared between several instances which do not even know about each other, like several companies hosted by the same data center
- § ... can be over-committed to a certain degree. However, this does not mean there are no limits, performance of over-committed systems can be very unpleasant. The useful capacity limit of virtual resources depends on the given workload mix you are running
- § ... can be created "out of nothing", so as an example, you may go create a whole network infrastructure with router, switches, links, and servers all virtual, all inside z/VM. No cabling, no hardware configuration changes, pure software. Virtual test floor.

9

Resource Sharing and Virtualization: Effects

§ No idle resources if any virtual server has useful work to be executed

This way, a mainframe can drive most resources to their capacity limits without penalties to the response times of critical business workloads

- § Different workload may compete for resources with each other, so performance tuning more challenging
- § For severe over-commitment of resources, overall performance may degrade if no proper workload management and tuning is in place (like thrashing effects)
- § Re-configuration of virtual data center very flexible; z/VM configuration changes instead of network cabling and hardware changes

IRD

- § Linux servers running in non-IFL LPARs can have their LPAR weights automatically managed by IRD. The policy is then defined in z/OS WLM.
- § As WLM/IRD does not look inside the Linux LPAR, the LPARs are managed as a whole in essence, the Linux LPAR is treated as one business application.

 In reality, this happens to be the case for normal Linux applications, as it follows the philosophy of client corver and dedicated corvers.

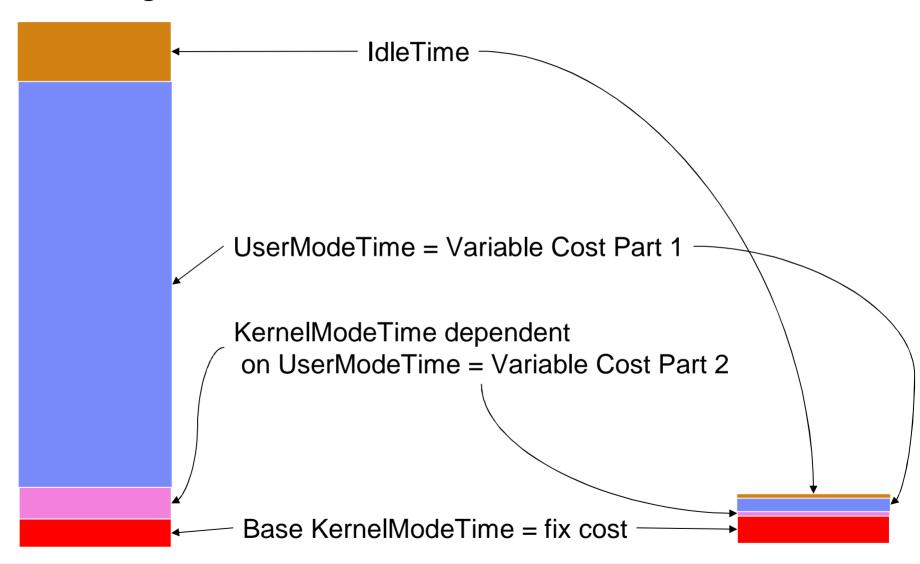
as it follows the philosophy of client-server and dedicated servers. Linux on the mainframe allows for multiple dedicated virtual servers on one physical server.

Internal Virtual Networks

11

- § HiperSockets: z900/z800 Hardware, can be used to communicate between different LPARs running z/VM, z/OS, Linux for zSeries, Linux under z/VM
- § For TCP/IP socket-based applications, this is transparent.
- § Alternative under z/VM 4.2 and higher: Guest LAN HiperSockets simulated in software, useful for communication of several guests running inside the same z/VM
- § Connect a "virtual network" (Guest LAN, HiperSockets) with a Linux router to the outside world; of course, this router could be a "hot spot", so carefully watch it
- § Older z/VM technologies: IUCV, vCTC

12



User-mode and kernel-mode CPU time consumption

- § If UserModeTime / KernelModeTime is relatively high and IdleTimePercentage is near zero, this can be an indicator that the underlying z/VM has a contention for CPU
- § This happens because if Linux is constrained for CPU, it may only be able to execute the most important kernel daemons and at the time it would probably start doing some useful work, the CPU is taken away
- § If KernelModeTime is relatively high, the system overhead is high, and this is usually a bad sign
- § However, as always, it depends; there are some workloads which simply need high amount of KernelModeTime CPU, and for those workloads, high KernelModeTime values are just normal

CPU Usage: Variable cost and Fixed cost

New cputime patch

14

- § Adds new field "CPU steal time" time Linux wanted to run, but z/VM gave the CPU to some other guest
- § This field will be very useful to understand CPU performance characteristics from within Linux, and much more precise than doing complicated correlation with out-of-band z/VM performance data
- § Btw in Linux kernel 2.6, there are some more very important new metrics, like CPU wait time time the CPU spent waiting for I/O completion

Resource Sharing of CPU resources: the zSeries way

zSeries HW: N-way SMP						
LPAR 1			LPAR 2	LPAR Hypervisor *PHYSICAL Dispatch Time = Overhead for		
Defined Capaciton Dedicated, # Ica Actual Capaciton	ogical CPUs,		Defined Capa Actual Capac			
z/VM, even mo		tualization	Linux for zSe z/OS			
LX1	LX2	LX3	User Mode	Kernel Mode	LPAR virtualization	
User K	User K	User K				

Shared Memory; CPU, I/O "double-shared"

Shared CPU, Shared I/O

Idle time

- § In the last picture, idle is not shown. Depending on whether CPU resources are dedicated or not, idle time cannot be attributed to single operating systems, as the zSeries box is only idle if and only if all of the running operating systems are idle concurrently. So for a well used system, you may not see any idle time.
- § However, if a CPU is dedicated to one operating system, it is used completely by this operating system, so it would make sense to charge this idle time to the operating system which has the dedicated resources.

Load Average

17

- § Average number of processes in the "run" queue
- § A runnable process is one that is ready to consume CPU resources right now; a process waiting for I/O is not runnable
- § A high load average value (in relation to the number of physical processors) is an indicator for latent demand for CPU. The processes waiting on the run queue are not waiting for I/O or other processes, they are waiting for CPU and they are otherwise ready to run.
- § load averages are available in various places; you may obtain it by typing

cat /proc/loadavg

or using program like xload

Linux Page Cache

18

- § The page cache contains pages of memory mapped files page I/O related system calls like *generic_file_read*. That's "cached" in /proc/meminfo.
- § It may contain files which can be freed, and the kernel actually discards those pages if it runs out of free memory.
- § Linux rarely has free space; everything not used is allocated for Page Cache, so even if Linux does not really need it all, it uses all available memory up to the last few percent up to now. "Active" and "Inactive" fields in /proc/meminfo give better information on what parts of memory are actively used.
- § Linux does not have any special memory regions to do I/O. The size of the memory used for I/O is in "buffers" temporary storage for raw buffers.

Timer Interrupt and Jiffies

19

- § Derived from PC timer interrupt (100 Hz)
- § Every time a timer interrupt occurs (100 times per second), the jiffies variable is incremented by one; that's one timer tick
- § CPU usage is accounted on in jiffies
- § If a process is running at the time the timer interrupt occurs, its CPU usage counter is incremented
- § Accuracy (10 msec) might be enhanced in future Linux versions
- § Jiffie-based performance measurement is wrong if running under z/VM
- § Solution: correlate information from LPAR Hypervisor, z/VM and Linux
- § On demand timer patch: for an idle Linux image running under z/VM, CPU resources are used up mainly for generating the jiffies. With this patch, jiffies are generated on demand.

Linux process memory: basic terms

- § SIZE: size of the address space seen by the process, virtual size
- § **RSS**: Resident Set Size actual amount of memory that the process is using in RAM
- § SHARE:

20

portion of the RSS that is shared with other processes, such as shared libraries

The /proc filesystem

21

- § Virtual filesystem
- § One of the interfaces between kernel space and user space; if the user gives a command like cat /proc/stat
 - the kernel executes some function to generate the needed "virtual file"
- § Parts of the /proc filesystem are human readable
- § Most performance measurement tools for Linux are based on /proc filesystem

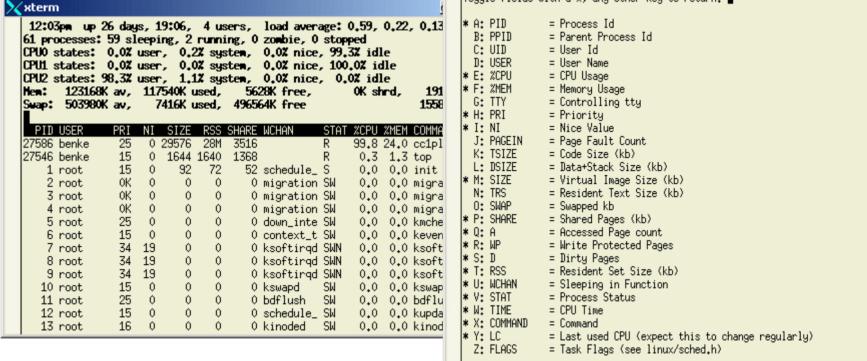
/proc/stat Example

```
benke@lnxrmf;"> more /proc/stat
cpu 220494 274647 1095518 701390830
cpu0 66125 77458 298850 233884730
cpu1 58940 102875 335467 233829881
cpu2 95429 94314 461201 233676219
page 17421389 12618473
swap 19506 22061
intr 0
disk_io; (94,0);(2894594,1601804,34839816,1292790,25236984)
ctxt 142638745
btime 1057071413
—More—(0%)
```


Linux Performance Tools

- § Standard UNIX Tools for performance-related problem analysis: top, ps, time, netstat, free, vmstat, iostat, strace, df, du, ping, traceroute
- § sysstat package (sar, sadc) for long-term data collection
- § BSD accounting
- § NET-SNMP
- § SBLIM
- § RMF for Linux, VM Performance Toolkit
- ... lots of useful point solutions for performance management

Advantages of good old UNIX standard tools


- § Can be used in own (shell) programs, in order to automate systems management (considered dangerous by some installations)
- § Very flexible
- § Available on every UNIX system (but one needs to be careful if it should run on both e.g. AIX as well as on Linux)
- § Usually quite fast and low impact on system performance
- § Nice for people who like to code
- § In any case, at least for problem drill-down analysis, you should know about the standard UNIX tools

Hard to learn, but everything is explained in man pages (well, almost everything;-)

top

■ Nice option: in interactive mode, enter <f>, <u>, <return> to see what the process is

ps - report process status

§ common set of parameters: ps aux

§ single out a user:

26

ps u --User apache

bash-2.05#	ps a	ux mc	ore							
USER	PID	%CPU	%MEM	VSZ	RSS	TTY	STAT	START	TIME	COMMAND
root	1	0.0	0.1	1536	160	?	S	Jan22	0:12	init
root	2	0.0	0.0	0	0	?	SW	Jan22	0:00	[kmcheck]
root	3	0.0	0.0	0	0	?	SW	Jan22	0:00	[keventd]
root	4	0.0	0.0	0	0	?	SW	Jan22	0:22	[kswapd]
root	5	0.0	0.0	0	0	3	SW	Jan22	0:00	[kreclaimd]
root	6	0.0	0.0	0	0	?	SW	Jan22	0:00	[bdflush]
root	7	0.0	0.0	0	0	?	SW	Jan22	1:05	[kupdated]
root	63	0.0	0.0	0	0	?	SW<	Jan22	0:00	[mdrecoveryd]
root	248	0.0	0.0	0	0	?	SW	Jan22	0:00	[keventd]
root	310	0.0	0.2	1732	292	?	S	Jan22	0:12	syslogd -m 0
root	315	0.0	0.6	2088	768	?	S	Jan22	0:00	klogd -2
rpc	325	0.0	0.0	1732	120	3	S	Jan22	0:00	portmap
rpcuser	338	0.0	0.1	1844	140	3	S	Jan22	0:00	rpc.statd
root	385	0.0	0.6	3180	800	?	S	Jan22	0:00	/usr/sbin/sshd
root	401	0.0	0.4	2876	512	?	S	Jan22	0:00	xinetd

Show running processes as a tree

```
xterm
 |benke@lnxrmf:~/rmfpms/src> pstree
 init-+-atd
       I-automount
       I-bdflush
       I-clustergat
       I-cron
       I-filegat
       I-gengati
       |-gpmddsrv---gpmddsrv---5*[gpmddsrv]
       I-keventd---gethsoftd0001
       I-kinoded
       I-k.journald
       I-klood
       I-kmcheck
       I-ksoftirgd_CPU0
       I-ksoftirgd_CPU1
       I-ksoftirgd_CPU2
       I-kswapd
       I-kupdated
       I-lym-mpd
       I-master-+-pickup
       I-mdrecoveryd
       I-migration_CPU0
       I-migration_CPU1
       I-migration_CPU2
       I-mingetty
       I-netgat
       I-nscd---nscd---5*[nscd]
       I-portmap
       I-procgati
       I-sshd---sshd---bash-+-3*[xterm---bash]
                                   `-xterm---bash---pstree
       I-syslogd
       "-xdm
 benke@lnxrmf:~/rmfpms/src>
```

27

```
xterm
  benke@lnxrmf:~/rmfpms/src> pstree -almore
  init)
    I-atd)
    I-automount) /netx file /etc/mount.xteam
    I=(bdflush)
    I-clustergat) 60
    I-cron)
    I-filegat) 60
    I-gengat) 60
    l−gpmddsrv)
        '-apmddsry)
            I-apmddsry)
            I-apmddsry)
            I-gpmddsrv)
            I-opmddsrv)
            '-apmddsrv)
    I-(keventd)
        '-(gethsoftd0001)
    I-(kinoded)
    I-(kjournald)
    I-kload) -c 7 -2
    I=(kmcheck)
    I-(ksoftirgd_CPU0)
    I-(ksoftirgd_CPU1)
    I-(ksoftirgd_CPU2)
    I=(kswapd)
    I-(kupdated)
    I=(lvm-mpd)
    I-master)
        I-pickup) -l -t fifo -u
        `-qmgr) -l -t fifo -u
    I-(mdrecoveryd)
    I-(migration_CPU0)
    I-(migration_CPU1)
    I-(migration_CPU2)
    I-mingetty) /dev/ttyS0
    I-netgat) 60
    I-nscd)
        `-nscd)
            I-nsed)
            I-nsed).
            I-nscd)
            I-nscd)
            `-nscd)
    I-portmap)
   1-procgat) 60
  --More--
```


free

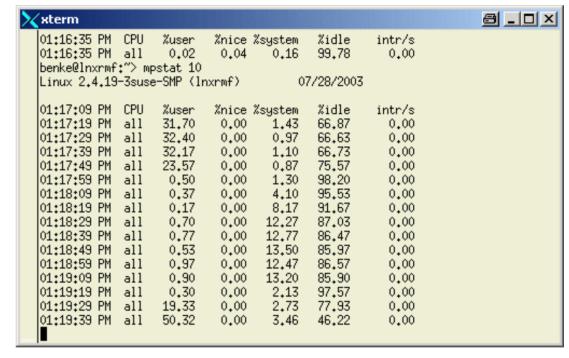
28

§ Give free memory; important is the second line, as buffer/cache memory is not really needed by Linux

[root@lnx	benk1 /root:]# free				
	total	used	free	shared	buffers	cached
Mem:	118092	116872	1220	0	4148	66124
-/+ buffe	rs/cache:	46600	71492			
Swap:	0	_ 0	0			

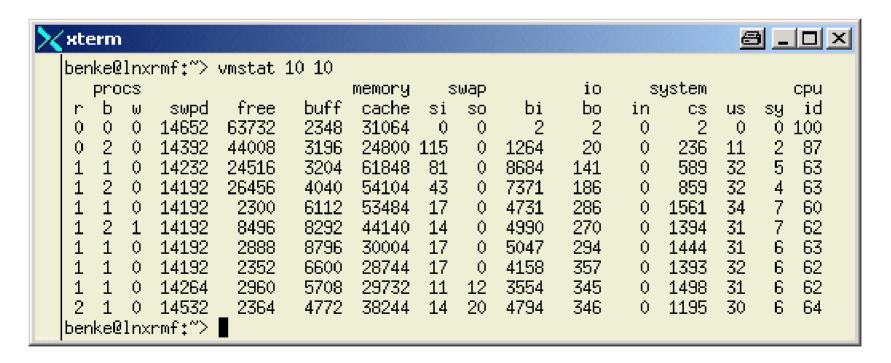
/proc/meminfo

- § MemShared: 0 (available for compatibility reasons only)
- § SwapCached: memory which is both in swap space (=on disk) as well as in main memory (=usable); it's easier to page memory from the SwapCache out, as there is already a copy in the swap file
- § Active: memory which was recently used
- § Buffers, Cached: memory in buffers and in cache
- § Mem, Swap: physical memory, swap space


```
xterm
 benke@lnxrmf:"> cat /proc/meminfo
        total:
                  used:
                           free: shared: buffers: cached:
 Mem: 126124032 119640064 6483968
                                          0 10465280 57475072
|Swap: 516075520 12390400 503685120
 MemTotal:
                123168 kB
                  6332 kB
 MemFree:
 MemShared:
                     0 kB
Buffers:
                 10220 kB
 Cached:
                 51448 kB
 SwapCached:
                  4680 kB
                 18064 kB
Active:
Inactive:
                 54368 kB
HighTotal:
                     0 kB
|HighFree:
                     0 kB
 LowTotal:
                123168 kB
                  6332 kB
 LowFree:
                503980 kB
 SwapTotal:
SwapFree:
                491880 kB
 benke@lnxrmf:~>
```


mpstat

- § mpstat is used to display CPU relatded statistics.
- § mpstat 0: display statistics since system startup (IPL)
- § mpstat N: display statistics with N second interval time


Btw the high %system values between 01:18:19 PM and 01:19:09 PM are no problem. I simply executed a file-system stress test, so there was lots of I/O and the operating system had lots to do...

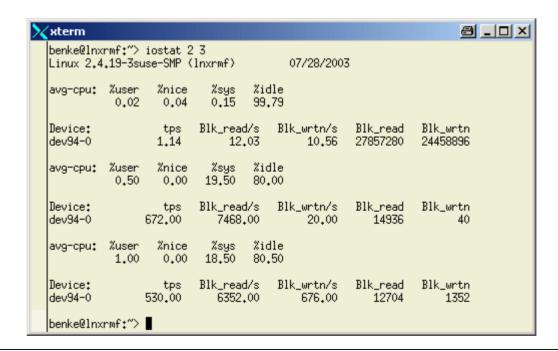
vmstat

- § Gives information about memory, swap usage, I/O activity and CPU usage. It really does a lot more than reporting virtual memory statistics ...
- § Please note that the first line contains a summary line since system start (IPL).
- § First parameter: interval time, second parameter: number of parameters.

vmstat fields explained

procs	r	Number of Processes waiting for CPU, Ready to run				
b		Number of Processes blocked in uninterruptable wait (usually for I/O)				
	W	Number of Processes swapped out but otherwise ready to run				
memory	swpd	Memory used in swap space, in KB				
	free	Real memory not used				
	buff	Memory used for Buffers				
	cache	Memory used for Cache				
swap si	si	Memory swapped in per second, in KB				
	so	Memory swapped out per second, in KB				
io	b	Blocks read from block devices per second				
bo	bo	Blocks written to block device per second				
system	in	Number of interrupts per second				
	cs	Number of context switches per second				
cpu	us	User time percentage of total CPU				
	sy	System time percentage of total CPU				
	id	Idle time percentage of total CPU				

iostat


33

- § *iostat* is used to report CPU statistics and disk I/O statistics. The first parameter is the interval time in seconds, the second is the number of intervals to run, so "iostat 2 3" gives 3 samples with 2 seconds interval.
- § As for vmstat, the first line reflects the summary of statistics since system IPL.

tps: number of I/O requests to the device per seconds

Blk_read/s: number of blocks (of indeterminate size) read per second

Blk_wrtn/s: number of blocks written per second

/proc/dasd/statistics

34

- § Only available in Linux for zSeries, kernel version 2.4
- § Gathering of this information can be switched on and of, as it causes some overhead:

echo set on > /proc/dasd/statistics echo set off > /proc/dasd/statistics

§ Used in rmfpms to calculate the following metrics:

dasd io average response time per request (in msec)

dasd io average response time per sector (in msec)

dasd io requests per second

Displaying Network Interface Statistics Overview

Example use of the *netstat* command line tool:

```
benke@lnxrmf:"> netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Fl9
ethO 1492 O 1311984 O O O 684851 O O O MRU
lo 16436 O 1224 O O O 1224 O O O LRU
benke@lnxrmf:"> ■
```

- § RX-OK, TX-OK: number of packets received/ transmitted without error
- § RX-ERR, TX-ERR: transfer with error
- § RX-DRP, TX-DRP: dropped packets
- § RX-OVR, TX-OVR: packets dropped because of overrun conditions
- § MTU, Met field: current MTU and Metric settings for this interface (Metric is used by the Routing Information Protocol RIP; MTU, Maximum Transmission Unit: max number of bytes transferred in one packet)
- § Flg: status, properties of the interface (R: running, U: up, ...)
- § Iface: Name of the interface

35

Display Network Protocol Statistics

- § In contrast to "netstat –i", which reports on network device level, "netstat –s" reports on network protocol level
- § One advantage of this performance report is that it is less cryptic;-) although there is a whole bunch on conditions gathered especially for the very important TCP protocol (not displayed here)

36

```
benke@lnxrmf:"> netstat -sImore
Ip:
    1314451 total packets received
    0 forwarded
    0 incoming packets discarded
    1205598 incoming packets delivered
    686873 requests sent out
    1867 reassemblies required
    805 packets reassembled ok
    108 fragments created
Icmp:
    3853 ICMP messages received
    O input ICMP message failed.
    ICMP input histogram:
        destination unreachable: 32
        echo requests: 3821
    3856 ICMP messages sent
    0 ICMP messages failed
    ICMP output histogram:
        destination unreachable: 35
        echo replies: 3821
Tcp:
    52 active connections openings
    2404 passive connection openings
    O failed connection attempts
    0 connection resets received
    3 connections established
    16493 segments received
    17316 segments send out
    4 segments retransmited
    0 bad segments received.
    229 resets sent
Udp:
    665606 packets received
    35 packets to unknown port received.
    0 packet receive errors
    BBBBZZ mackata sant
```


ICMP Exploiter Applications

- § ICMP: Internet Control Message Protocol
- § *ping* and *traceroute* are making use of the ICMP protocol in order to identify network problems.
- § ping measures round-trip times between two hosts.
- § traceroute although a widely used UNIX command is a hack, and so it does not always tell the truth. It tries to trace the way of packets through the network by sending around messages with short time to live (TTL) values.
- § use "traceroute –q N" with N about 10 or higher if you want traceroute to sent more packets, in order to enhance precision of the reported numbers

ping and traceroute examples

38

```
benke@lnxrmf:"> ping www.uni-karlsruhe.de
PING www-uka.rz.uni-karlsruhe.de (129.13.64.69) from 9.152.81.228 : 56(84) bytes of data.
64 bytes from www-uka.rz.uni-karlsruhe.de (129.13.64.69): icmp_seq=1 ttl=234 time=15.1 ms
64 bytes from www-uka.rz.uni-karlsruhe.de (129.13.64.69): icmp_seq=2 ttl=234 time=14.0 ms
64 bytes from www-uka.rz.uni-karlsruhe.de (129.13.64.69): icmp_seq=3 ttl=234 time=14.5 ms
--- www-uka.rz.uni-karlsruhe.de ping statistics ---
3 packets transmitted, 3 received, 0% loss, time 2034ms
rtt min/avg/max/mdev = 14.083/14.602/15.161/0.462 ms
benke@lnxrmf:"> /usr/sbin/traceroute www.uni-karlsruhe.de
traceroute to www.uni-karlsruhe.de (129,13,64,69), 30 hops max, 40 byte packets
1 bp180002.boeblingen.de.ibm.com (9.152.80.2) 0.622 ms 0.583 ms 0.545 ms
 2 s2-60.boeblingen.de.ibm.com (9.152.94.9) 0.733 ms 1.135 ms 1.104 ms
 3 c1-16.boeblingen.de.ibm.com (9.152.120.41) 1.171 ms 1.145 ms 1.117 ms
 4 r2-18.boeblingen.de.ibm.com (9.152.120.58) 1.082 ms
                                                      1.055 ms
5 9.152.121.62 1.248 ms 0.976 ms 0.962 ms
6 dei-bc6509-r-b-v113.megacenter.de.ibm.com (9.149.250.13) 1.048 ms dei-bc6509-r-a-v111.megacenter.de.ibm.
com (9.149.250.5) 1.029 ms dei-bc6509-r-b-vl13.megacenter.de.ibm.com (9.149.250.13) 1.228 ms
7 9.149.250.50 0.900 ms 9.149.250.58 0.864 ms 9.149.250.50 0.811 ms
8 9.64.130.40 1.255 ms 1.216 ms 1.180 ms
9 194.196.100.91 1.595 ms 1.581 ms 2.082 ms
10 ehni1br2-2-0-1-1.eh.de.prserv.net (152.158.3.138) 2.006 ms 2.410 ms 2.384 ms
11 fran2br2.fr.de.prserv.net (152.158.92.2) 17.437 ms 17.940 ms 18.072 ms
12 dcix1nap-1-0-0.de.ip.att.net (152.158.93.237) 8.271 ms 8.210 ms 8.178 ms
13 decix.Frankfurt1.belwue.de (80,81,192,175) 9,342 ms 9,305 ms 9,260 ms
14 Stuttgart2, BelWue, DE (129,143,1,25) 14,016 ms 13,969 ms
15 Stuttgart1.belwue.de (129.143.1.33) 13.873 ms 13.845 ms
16 Karlsruhe1.BelWue.DE (129.143.1.4) 15.466 ms 15.438 ms 15.412 ms
17 BelWue-GW,Uni-Karlsruhe,de (129,143,166,130) 14,446 ms 14,408 ms 14,910 ms
18 www-uka.rz.uni-karlsruhe.de (129.13.64.69) 14.114 ms 14.274 ms 14.234 ms
```


Filesystem Usage

```
benke@lnxrmf:/usr> df -h
Filesystem
                            Used Avail Use% Mounted on
                            4.2G
/dev/dasdb1
                      6.8G
                                  2.3G
                                       65% /
shmfs
                       61M
                                         0% /dev/shm
benke@lnxrmf:/usr> du -h
120M
        ./bin
68K
        ./share/doc/packages/aide
20K
        ./share/doc/packages/words
24K
        ./share/doc/packages/man-pages
4.0K
        ./share/doc/packages/aaa_base
20K
        ./share/doc/packages/intlfnt
64K
        ./share/doc/packages/gnome-mime-data
36K
        ./share/doc/packages/libaio
60K
        ./share/doc/packages/perl-DateManip
16K
        ./share/doc/packages/perl-HTML-Tagset
```

- § The "-h" option stands for human readable. Without "-h", reported numbers are bytes ...
- § The "df" command gives you a list of all mounted filesystems, corresponding to /dev/dasdxx devices.
- § Using "du" you can see the amount of disk storage used in various directories. If you want a sum, use "-s" option.

Inode Utilization

- § In UNIX, an inode is a structure containing meta data about files and directories.
- § The number of inodes is limited, can be changed at filesystem creation time.
- § If you are running out of inodes, you can not store anything more on this filesystem.
- § Check with "df -i" command:

```
benke@tux390:/projects/home/benke > df -i
Filesystem Inodes IUsed IFree IUse% Mounted on
/dev/dasdb1 601312 59034 542278 10% /
/dev/dasdc1 300960 63886 237074 21% /projects
```


time

41

§ Find out how many CPU resources a command is using.

```
Example:
```

\$ > time make dep

...

72.52user 8.87system 2:03.72elapsed 65%CPU (0avgtext+0avgdata 0maxresident)k 0inputs+0outputs (131158major+106391minor) pagefaults 0swaps \$ >

elapsed: real time elapse

user: time this command (and its children) have spent in

user space

sys: time spent in kernel space

System Call Trace

- § One of the commands more powerful than what we have for traditional mainframe operating systems, comes in very handy ...
- § strace allows to see the system calls a process is currently executing, so for example if you have the gut feeling a process with process ID PID 4711 is looping, you can execute strace –p 4711
 - in one terminal window; if it is a server process and it is not using any system calls but runs the CPU to 100% utilization, this is very suspicious, so you may think about killing this process
- § strace is also useful as it can show you the sequence of system calls your favorite application is executing, so it may help you finding out how to tune the application. For example, good old UNIX philosophy is to search for files in various places if they are not where expected. This is goodness as it works, but badness as it costs some performance, so it is better to provide links to the files if this happens over and over again.

strace Example

```
benke@lnxrmf:"> strace rmfpms/bin/rmfpms restart 2> straceoutput
Stopping performance gatherer backends ...
done!
Starting performance gatherer backends ...
DDSRV: RMF-DDS-Server/Linux-Beta (Jul 28 2003) started.
DDSRV: Functionality Level=1.950
DDSRV: Reading exceptions from gpmexsys.ini and gpmexusr.ini.
DDSRV: Server will now run as a daemon process.
done!
benke@lnxrmf:"> more straceoutput
execve("rmfpms/bin/rmfpms", ["rmfpms/bin/rmfpms", "restart"], [/* 49 vars */]) = 0
uname({sys="Linux", node="lnxrmf", ...}) = 0
hrk(0)
                                        = 0x8009afc8
mmap(NULL, 4096, PROT_READIPROT_WRITE, MAP_PRIVATEIMAP_ANONYMOUS, -1, 0) = 0x10000018000
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O RDONLY)
fstat(3, {st mode=S IFREG|0644, st size=86342, ...}) = 0
mmap(NULL, 86342, PROT_READ, MAP_PRIVATE, 3, 0) = 0x10000019000
close(3)
open("/lib64/libreadline.so.4", O_RDONLY) = 3
read(3, "\177ELF\2\2\1\0\0\0\0\0\0\0\0\0\0\0\10\0\0\1\0\0\0"..., 1024) = 1024
fstat(3, {st_mode=S_IFREG10755, st_size=860670, ...}) = 0
mmap(NULL, 267440, PROT_READIPROT_EXEC, MAP_PRIVATE, 3, 0) = 0x1000002f000
```


List open files (Isof)

```
xterm
|benke@lnxrmf:~> lsof -c qpmddsrv | more
ICOMMAND.
            PID USER
                        FD
                             TYPE
                                              DEVICE
                                                        SIZE
                                                                NODE NAME
gpmddsrv 29791 benke
                                                94,5
                                                                   2 /
                                                         4096
                       cwd
                              DIR
                                                94.5
                                                        4096
lapmddsrv 29791 benke
                              DIR
apmddsrv 29791 benke
                              REG
                                                94,5 3901056
                                                              412063 /home/benke/rmfpms/bin/gpmddsrv
                                                94.5
                                                      104611
lapmddsrv 29791 benke
                              REG
                                                               16287 /lib64/ld-2.2.5.so
                       mem
opmodsrv 29791 benke
                              REG
                                                94.5
                                                       20425
                                                               16301 /lib64/libnss dns.so.2
apmddsrv 29791 benke
                              REG
                                                94.5
                                                      141963
                                                               16308 /lib64/libpthread.so.0
                       mem
                              REG
                                                94.5
                                                       90264
                                                               16309 /lib64/libresolv.so.2
opmodsrv 29791 benke
                       mem
gpmddsrv 29791 benke
                              REG
                                                94.5 1201943
                                                              646126 /usr/lib64/libstdc++.so.5.0.0
apmddsrv 29791 benke
                              REG
                                                94.5
                                                      512359
                                                               16297 /lib64/libm.so.6
                       mem
                                                94.5
                                                               16351 /lib64/libgcc_s.so.1
gpmddsrv 29791 benke
                              REG
                                                       53628
                       mem
                                                94.5 1506104
                                                               16292 /lib64/libc.so.6
                              REG
lapmddsrv 29791 benke
                       mem
apmddsrv 29791 benke
                              REG
                                                94,5
                                                       60576
                                                               16303 /lib64/libnss_files.so.2
                       mem
                              CHR
                                                 1.3
apmddsrv 29791 benke
                                                               65089 /dev/null
                              REG
                                                94,5
                                                         958 406186 /home/benke/rmfpms/.rmfpms/logs/ddsrv_log.txt
gpmddsrv 29791 benke
                             REG
                                                94.5
lapmddsrv 29791 benke
                                                          55 406187 /home/benke/rmfpms/.rmfpms/logs/ddsrv_trc.txt
                         3r FIFO
                                                 0,6
apmddsrv 29791 benke
                                                             6061871 pipe
gpmddsrv 29791 benke
                                                             6061871 pipe
                         4ω FIF0
                                                 0,6
apmddsrv 29791 benke
                             IPv4
                                                                 TCP *:8803 (LISTEN)
                                             6061877
apmddsrv 29791 benke
                             unix 0x0000000000c4cd00
                                                             6061876 socket
                                                        4096
gpmddsrv 29792 benke
                       cwd
                              DIR
                                                94,5
                                                                   2 /
gpmddsrv 29792 benke
                                                94.5
                                                        4096
                                                                   2 /
                              DIR
apmddsrv 29792 benke
                              REG
                                                94,5 3901056 412063 /home/benke/rmfpms/bin/gpmddsrv
apmddsrv 29792 benke
                              REG
                                                94,5
                                                      104611
                                                               16287 /lib64/ld-2.2.5.so
apmddsrv 29792 benke
                                                94.5
                                                       20425
                              REG
                                                               16301 /lib64/libnss dns.so.2
 --More--
```


Isof explained

- § For UNIX, everything is a file. Directories, inter-process communication structures (like pipes), network sockets and regular files are all files. "Isof" can list all file usages.
- § Some useful usage examples of lsof:

List all files by processes with name "gpmddsrv":

Isof -c gpmddsrv

List all TCP/IP v4 network connections to host "tux390.boeblingen.de.ibm.com":

Isof -<u>i4tcp@tux390.boeblingen.de.ibm.com</u>

List all files using /var/log:

Isof -t /var/log

Lock Contention

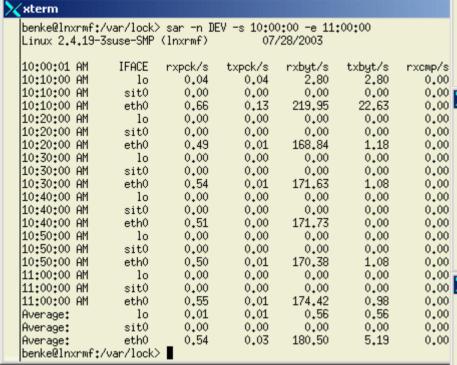
- § /var/lock is the standard location to place lock files, so have a look what's in it
- § The "ipcs" gives a summary on shared memory segments, semaphores and message queues the calling user has read access to. As "ipcs" only displays locks the calling user has read access to, you may run it as user root.
- § You may also check "/proc/locks" if you suspect there is some locking problem. Unfortunately, Linux supports several ways of locking, and I don't know a single place where all locks and lock contentions are displayed.

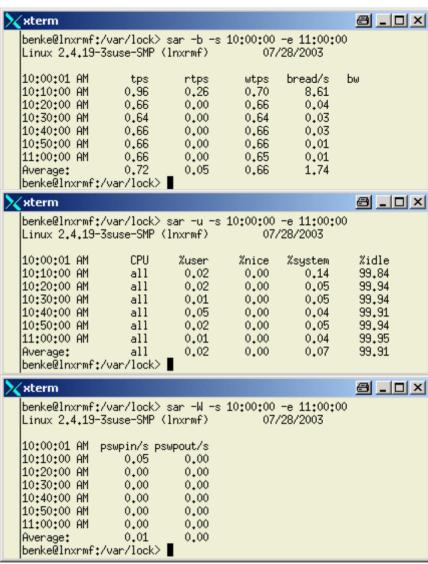
BSD Accounting

- § Writes one accounting record per terminated process or thread (as threads are something like processes in Linux...)
- § Information provided:
 - user ID, group ID, process name
 - CPU resource consumption
 - average memory usage, page faults, swap activity
- § An alternative to accounting Linux "from the inside" is accounting it "from the outside", with the aid of z/VM or z/OS performance tools

"sysstat" package

- § Contains sar and sadc, long term data collector
- § Normally, it collects data about overall system activity like CPU usage, swapping; no data about processes
- § start with
 - \$ > sadc 60 /var/log/sa/sa25 &
- § to let it generate one report every 60 seconds and write it in binary format to /var/log/sa/sa25
- § http://freshmeat.net/projects/sysstat/




sar. some options

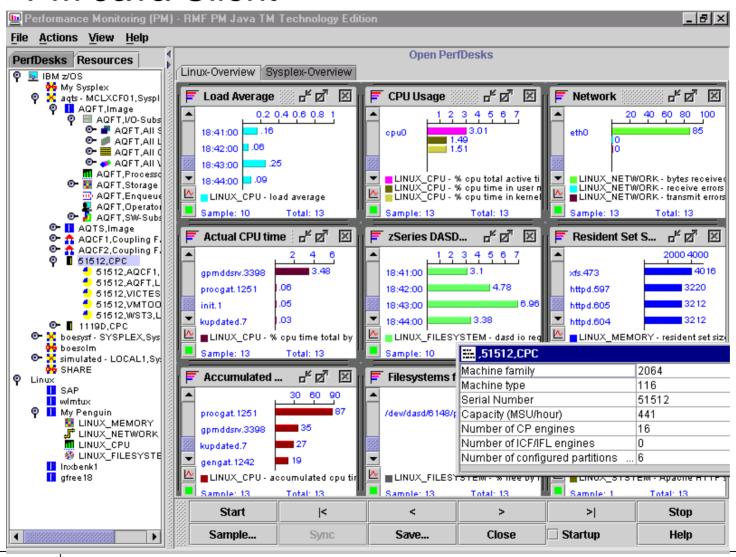
CPU	sar -u	CPU Utilization Data: %user, %nice, %system, %idle						
	sar -U <n></n>	_ike "sar –u", but only for CPU number <n></n>						
	sar -c	Process creation rate						
	sar -w	Context switch rate						
Mem	sar -r	Memory and swap space utilization						
	sar -R	Memory usage statistics (buffer growth,)						
	sar -B	Paging statistics						
	sar -w	Swapping activity						
I/O	sar -b	I/O and transfer rate statistics						
	sar -d	Block device statistics						
	sar -n DEV	Network device statistics						
	sar -n EDEV	Network device error rates						
	sar -n SOCK	Socket statistics						

sar. some examples

RMFPMS

- § Long term data gathering
- § XML over HTTP interface
- § independent from z/OS; with z/OS, you can also have an LDAP interface to Linux performance data
- § Modular architecture
- § zSeries specific information (like LPAR data) can be obtained using existing z/VM or z/OS code
- § Integrated with z/OS RMF PM and z/VM FCON
 - If you have a mixed environment with z/OS and Linux or z/VM and FCON, you can have all relevant performance metrics in one application
 - Data reported by host tools like RMF (LPAR CPU performance data, iQDIO channel utilization, etc.) is very relevant for Linux; unfortunately, we cannot make all this data available for Linux currently
- § see

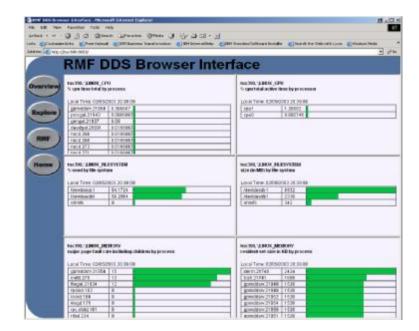
http://www.ibm.com/eserver/zseries/zos/rmf/rmfhtmls/pmweb/pmlin.htm


§ If running Linux kernel 2.6, you currently need to download the *rmfpms*.tgz* file via anonymous ftp from

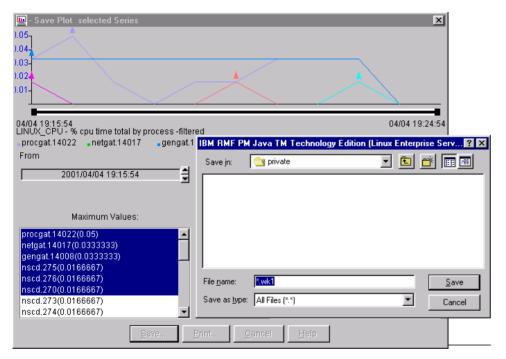
ftp://testcase.boulder.ibm.com/mvs/fromibm/RmfTools/

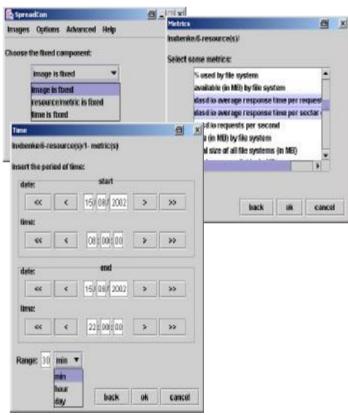
RMF PM Java Client

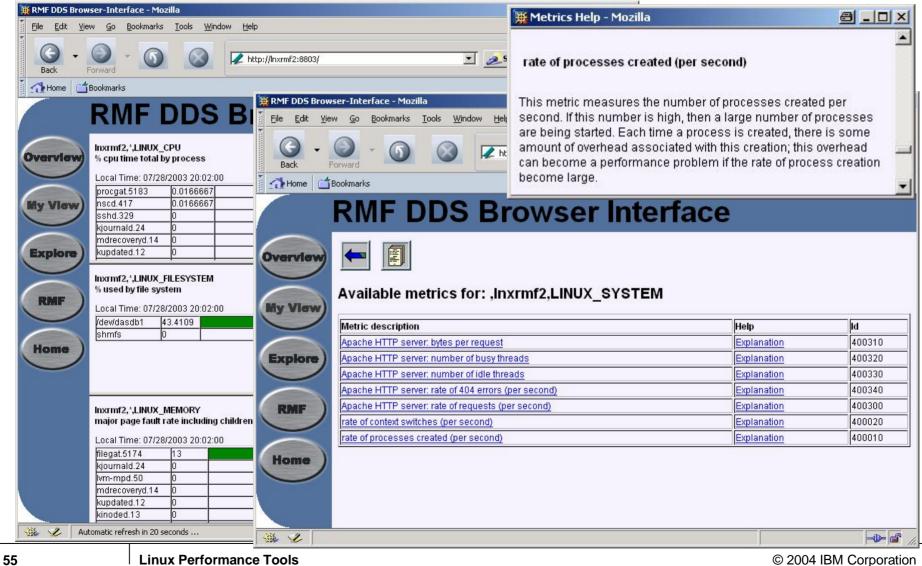
52

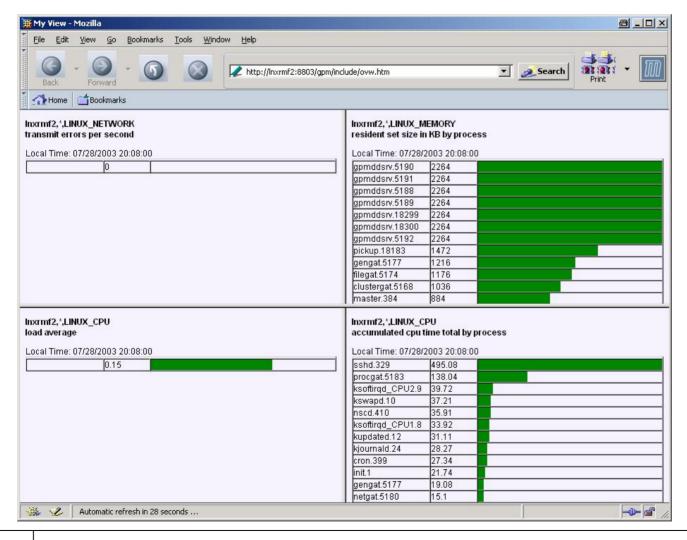


RMF PM Java Client: Features


- § Positioned for online performance analysis and problem drill-down
- § Can monitor multiple Linux server and multiple z/OS or OS/390 Sysplexes at the same time, in one application
- § The performance analysis scenario can be saved
- § Alternatively, you may use the web browser interface of the Distributed Data Server (DDS)


53


RMF PM: Spreadsheet Data


Enhanced RMFPMS Web Browser Interface

© 2004 IBM Corporation **Linux Performance Tools**

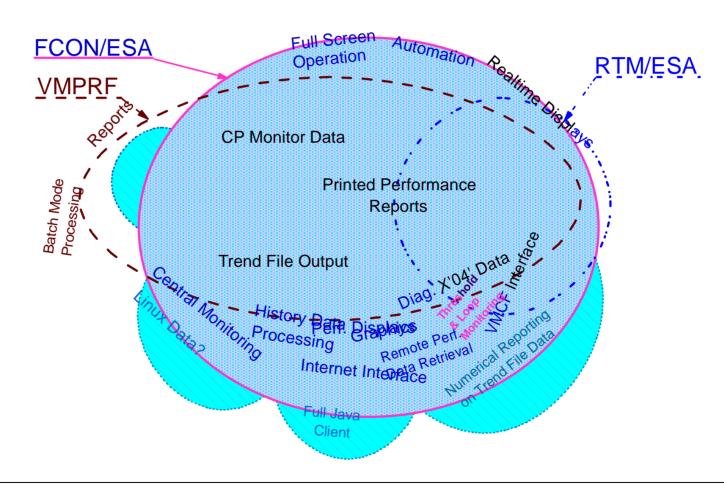
... you can now create your own customizable view even in a Web browser like Mozilla, Explorer, Netscape

Linux monitor stream support for z/VM

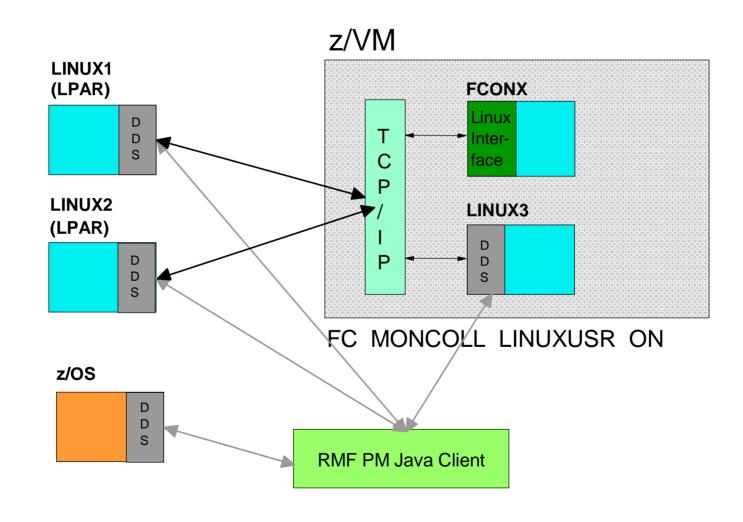
§ Based on virtual CPU timer

This timer only ticks if the Linux image consumes CPU resources

Advantage: you consume a given percentage of a virtual server's CPU resources for monitoring, not a given percentage of the physical box (this way, reducing scalability by doing performance monitoring)


Expect more like this to come

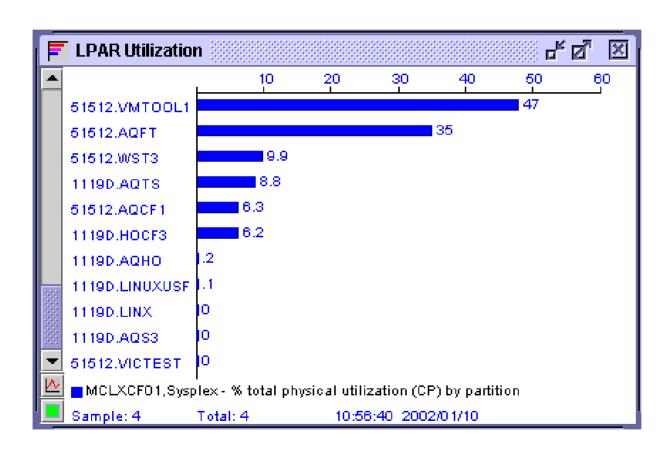
§ Feed Linux performance data into normal z/VM performance monitoring infrastructure (APPLDATA interface)


z/VM FCON

Linux patch for z/VM Performance Toolkit: http://oss.software.ibm.com/developerworks/opensource/linux390/index.shtml

Accessing Linux Performance Data: Concept

FCON configuration


File FCONX LINUXUSR

Defines IP addresses of Linux systems from which performance data may have to be retrieved.

You can only monitor systems defined in this file!

LPAR partition data from z/OS RMF

HiperSockets display in z/VM FCON

FCX231	CE	2064	SER 51524	Interval	06:55:22	- 06:56:2	2 Perf.	Monitor						
	-		·	-		_								
Channel	nnel < Total for System					<>								
Path		<-Trans	ferred>	Failed	<-Trans	ferred>	< Fail	< Failed>						
ID	Shrd	T_Msgs	$\mathtt{T}_{\mathtt{DUnits}}$	T_NoBuff	L_Msgs	${\tt L_DUnits}$	L_NoBuff	L_Other						
FB	No	_ 0	_ 0	_ 0	_ 0	_ 0	_ 0	_ 0						
FC	No	0	0	0	0	0	0	0						
FD	No	0	0	0	0	0	0	0						
FE	No	0	0	0	0	0	0	0						

... and in z/OS RMF

63

CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) WRITE	z/OS V1R2		s R	SYSTEM ID CB88 RPT VERSION V1R2 RMF				DATE 07/22/2001 TIME 15.37.05			INTERVAL 22.54.336 CYCLE 1.000 SECONDS				PA			
CHANNEL PATH UTILIZATION(*) READ(MB/SEC) WRITE(MB/SEC) CHANNEL BUS PART TOTAL BUS PART TOTAL DETAILS FOR ALL CHANNELS CHANNEL PATH UTILIZATION(*) READ(MB/SEC) WRITE(MB/SEC) CHANNEL PATH UTILIZATION(*) READ(MB/SEC) CHANNEL PATH UTILIZAT	- 01	CR-	DATE: 0	5/10/200	00 CR	-TIME:	21.00.0	1 ACT	: POR		MODE	: LPA	R	CPMF:	EXTEND	ED MODE	:	
GROUP G NO PART TOTAL BUS PART TOTAL PART TOTAL FC_SM 1 8 15.36 55.86 6.00 15.36 60.00 15.36 60.36 FCV_M 12 30.00 45.00 5.00 45.00 50.00 45.00 50.00 CNC_M 1 17.23 34.45 DETAILS FOR ALL CHANNELS CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) WRITE(MB/SEC) WRITE(MB/S							OVE	RVIEW F	OR DCM-M	ANAGED	CHAN	NELS						
FC_SM 1 8 15.36 55.86 6.00 15.36 60.00 15.36 60.36 FCV_M 12 30.00 45.00 5.00 45.00 50.00 45.00 50.00 CNC_M 1 17.23 34.45 DETAILS FOR ALL CHANNELS CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WR D TYPE G SHR PART TOTAL BUS PART TOTAL PART TOTAL ID TYPE G SHR PART TOTAL BUS PART TOTAL 8 CVC_P OFFLINE 80 CTC_S OFFLINE 9 CNC_S OFFLINE 81 CNC_S 0.04 0.04 A FC 1 Y 20.00 30.00 5.00 20.00 30.00 20.00 50.00 82 FC Y 20.00 30.00 6.00 20.00 30.00 2 B FC_SM Y 15.36 55.86 6.00 15.36 60.00 15.36 60.36 83 FC 1 Y 15.36 55.66 7.00 15.36 60.00 1 C FCV Y 10.00 30.00 5.00 10.00 50.00 10.00 50.00 84 FCV Y 10.00 30.00 5.00 10.00 50.00 5 D FCV_M Y 30.00 45.00 5.00 45.00 50.00 45.00 50.00 85 FCV Y 30.00 45.00 6.00 45.00 50.00 4 E CNC_M 17.23 34.45 86 CNC_S 0.00 0.00 CHANNEL PATH WRITE(B/SEC) MESSAGE RATE MESSAGE SIZE SEND FAIL RECEIVE FAIL	CHANNE	:L	UT	ILIZATIO	ON(%)	READ(1	MB/SEC)	WRITE(MB/SEC)									
FCV_M 12 30.00 45.00 5.00 45.00 50.00 45.00 50.00 50.00 CNC_M 1 17.23 34.45 DETAILS FOR ALL CHANNELS CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(D TYPE G SHR PART TOTAL BUS PART TOTAL ID TYPE G SHR PART TOTAL BUS PART TOTAL SUS P	ROUP	G NO	PART	TOTAL	BUS	PART	TOTAL	PART	TOTAL									
DETAILS FOR ALL CHANNELS CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) TYPE G SHR PART TOTAL BUS PART TOTAL BUS PART TOTAL 8 CVC_P OFFLINE 9 CNC_S OFFLINE 19 CNC_S OFFLINE 19 FC_SM Y 15.36 55.86 6.00 15.36 60.00 15.36 60.36 83 FC Y 20.00 30.00 6.00 20.00 30.00 20.00 15.36 60.36 83 FC Y 15.36 55.66 7.00 15.36 60.00 1 10.00 50.00 84 FCV Y 10.00 30.00 5.00 10.00 50.00 10.00 50.00 85 FCV Y 30.00 45.00 50.00 10.00 50.00 40.00 50.00 40.00 50.00 45.00 50.00 45.00 50.00 45.00 50.00 45.00 50.00 45.00 50.00 45.00 50.00 45.00 50.00 45.00 50.00 6.00 45.00 50.00 45.00 50.00 6.00 45.00 50.00 45.00 50.00 6.00 45.00 50.00 45.00 50.00 6.00 45.00 50.00 45.00 50.00 6.00 45.00 50.00 6.00 45.00 50.00 45.00 50.00 6.00 45.00 50.00 45.00 50.00 6.00 45.00 50.00 6.00 45.00 50.00 6.00 45.00 50.00 6.00 45.00 50.00 6.00 45.00 50.00 6.00 45.00 50.00 6.00 45.00 50.00 6.00 45.00 50.00 6.00 6.00 45.00 50.00 6.00 45.00 50.00 6.00 45.00 50.00 6.00 45.00 50.00 6.00 6.00 45.00 50.00 6.00 45.00 50.00 6.00 45.00 50.00 6.00 45.00 50.00 6.00 6.00 45.00 50.00 6.00 6.00 45.00 50.00 6.00 6.00 45.00 50.00 6.00 6.00 45.00 50.00 6.00 6.00 6.00 45.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	CV_W	12	30.00	45.00														
CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) WRITE								DETAILS	FOR ALL	CHANN								
79 CNC_S OFFLINE 81 CNC_S 0.04 0.04 79 CNC_S OFFLINE 81 CNC_S 0.04 0.04 78 FC 1 Y 20.00 30.00 5.00 20.00 30.00 20.00 50.00 82 FC Y 20.00 30.00 6.00 20.00 30.00 20.00 70.00 70.00 Y 15.36 55.86 6.00 15.36 60.00 15.36 60.00 17.00 Y 10.00 30.00 5.00 10.00 50.00 10.00 50.00 84 FCV Y 10.00 30.00 5.00 10.00 50.00 50.00 70.00 Y 10.00 30.00 45.00 50.00 45.00	ANNEL	PATH	UTI	LIZATION	1(%)	READ(M	B/SEC)	WRITE(M	B/SEC)	CHA	NEL I	PATH	UTI	LIZATIO	N(%)	READ(M		
79 CNC_S OFFLINE 81 CNC_S 0.04 0.04 79 CNC_S OFFLINE 81 CNC_S 0.04 0.04 78 FC 1 Y 20.00 30.00 5.00 20.00 30.00 20.00 50.00 82 FC Y 20.00 30.00 6.00 20.00 30.00 20.00 70.00 70.00 Y 15.36 55.86 6.00 15.36 60.00 15.36 60.00 17.00 Y 10.00 30.00 5.00 10.00 50.00 10.00 50.00 84 FCV Y 10.00 30.00 5.00 10.00 50.00 50.00 70.00 Y 10.00 30.00 45.00 50.00 45.00	VC P		OFFLIN	Е						80 CT	. s		OFFLIN	Е				
7B FC_SM																		
C FCV Y 10.00 30.00 5.00 10.00 50.00 10.00 50.00 84 FCV Y 10.00 30.00 5.00 10.00 50.00 5 D FCV_M Y 30.00 45.00 5.00 45.00 50.00 45.00 50.00 85 FCV Y 30.00 45.00 6.00 45.00 50.00 4 DE CNC_M 17.23 34.45 86 CNC_S 0.00 0.00 FF CNC_S OFFLINE 8C CNC_S 0.00 0.00 CHANNEL PATH WRITE(B/SEC) MESSAGE RATE MESSAGE SIZE SEND FAIL RECEIVE FAIL																		
TO FCV_M Y 30.00 45.00 5.00 45.00 50.00 45.00 50.00 85 FCV Y 30.00 45.00 6.00 45.00 50.00 4 TE CNC_M 17.23 34.45 86 CNC_S 0.00 0.00 TF CNC_S OFFLINE 8C CNC_S 0.00 0.00 CHANNEL PATH WRITE(B/SEC) MESSAGE RATE MESSAGE SIZE SEND FAIL RECEIVE FAIL	_																	
ZE CNC_M 17.23 34.45 86 CNC_S 0.00 0.00 ZF CNC_S OFFLINE 8C CNC_S 0.00 0.00 CHANNEL PATH WRITE(B/SEC) MESSAGE RATE MESSAGE SIZE SEND FAIL RECEIVE FAIL																		
7F CNC_S OFFLINE 8C CNC_S 0.00 0.00 CHANNEL PATH WRITE(B/SEC) MESSAGE RATE MESSAGE SIZE SEND FAIL RECEIVE FAIL	_				5.00	45.00	50.00	45.00	50.00						6.00	45.00	50.00	45.00
ID TYPE G SHR PART TOTAL PART TOTAL PART TOTAL PART PART TOTAL	CHANNE	L PAT	'H W	RITE(B/S	SEC)	MESSA	GE RATE	ME	SSAGE SI	ZE SI	END F	AIL	RECEI	VE FAIL				
	TYPE	G S	HR	PART I	TOTAL	PART	TOTA	L P	ART TO	TAL	PAR'	T	PART	TOTA	<u> </u>			
AB IQD Y 645.12M 2500.2G 850.23K 4.2K 760.12 779.56 12 85 120	IQD		У 64	5.12M 25	500.2G	850.2	3K 4.2K	760	.12 77	9.56	12		85	120				

CP IND interface in Linux

- § Interface between Linux kernel and z/VM CP
- § CP device driver, developed by Neale Ferguson; interface between Linux and z/VM
- § http://penguinvm.princeton.edu/programs (cpint.tar.gz)
- § "#cp ind user" in Linux console:

CP IND

64

AVGPROC-069% 07

XSTORE-000037/SEC MIGRATE-0000/SEC

MDC READS-000001/SEC WRITES-000000/SEC HIT RATIO-094%

STORAGE-024% PAGING-0000/SEC STEAL-000%

Q0-00071 Q1-00000 Q2-00000 EXPAN-001 Q3-00000 EXPAN-001

Example scenario

§ The following Linux image may be completely idle:

```
$ > top 12:30pm
up 4 min, 2 users, load average: 0.02, 0.07, 0.03
24 processes: 23 sleeping, 1 running, 0 zombie, 0 stopped
CPU0 states: 0.1% user, 19.1% system, 0.0% nice, 80.8% idle
CPU1 states: 0.0% user, 23.2% system, 0.0% nice, 76.8% idle
```

§ ... as z/VM is heavily loaded and does not give Linux many resources, so even for simple tasks, Linux needs about 20% of its CPU resources just to do almost nothing:

```
$ > #CP IND
AVGPROC-099% 07
```

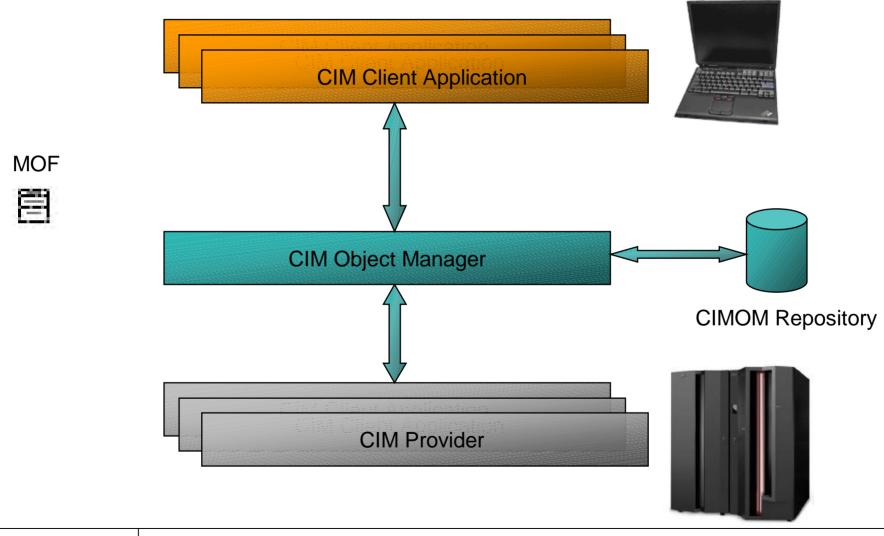

The NET-SNMP Project

66

- § SNMP (Simple Network Management Protocol) is a standard for performance data interchange. It is especially strong in TCP/IP network management. It is standardized by the IETF (Internet Engineering Task Force).
- § SNMP has a simple Manager-Agent architecture. Standard protocol used is UDP (connectionless, delivery not guaranteed)
- § NET-SNMP provides a free SNMP implementation, also usable for Linux for zSeries. The OSA adapter provides some performance information using SNMP.
- § See http://net-snmp.sourceforge.net/

What is CIM?

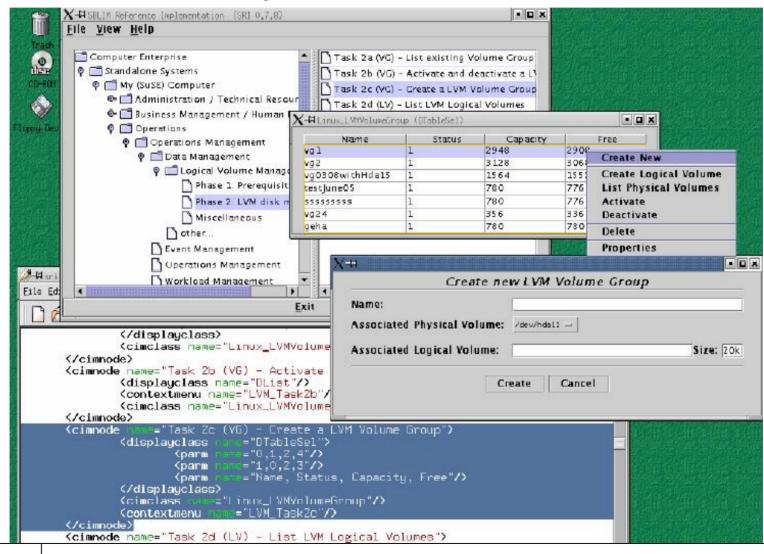
67



- § CIM is a systems management standard provided by the DMTF (Distributed Management Task Force), a sub group of The Open Group. It is the dominant standard in SAN management, but also applicable to all other areas of systems management. It provides bridges to SNMP, e.g. for TCP/IP network management.
- § One of the strength of CIM is the rich conceptual data model with about 1000 classes for major resources needed in the management of heterogeneous, distributed servers
- § OpenPegasus, "C++ CIM/WBEM Manageability Services Broker", is the DMTF reference implementation of a CIMOM. It is published under the liberal MIT license in open source. See http://www.openpegasus.org/

CIM Provider, Object Manager, and Client

SBLIM

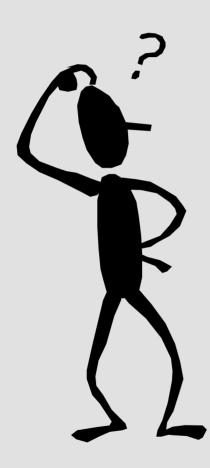


- § The goal of WBEM (Web-based Enterprise Management) is to provide interoperable technology based on the CIM standard. This standard is also driven by the DMTF.
- § SBLIM is an Open-Source WBEM instrumentation project; see http://oss.software.ibm.com/developerworks/oss/sblim/
- § It currently uses XML over HTTP protocol, but this may change into ASN.1 over HTTP for performance reasons
- § CMPI (Common Manageability Programming Interface) instrumentation interface (standardized API with CIM compliant semantics and operations) to make provider independent from CIMOM technology

SBLIM Reference Implementation


70

References


- § "Linux on IBM eServer zSeries and S/390: Performance Toolkit for z/VM" Redbook, SG24-6059
- § Redbook Paper "Accounting and monitoring for z/VM Linux guest machines" by Erich Amrehn et al
- § "Linux on IBM eServer zSeries and S/390: Performance Measurement and Tuning" Redbook, SG24-6926
- § "Linux on zSeries and S/390: Systems Management Redbook, SG24-6820
- § "Linux for IBM eServer zSeries and S/390: ISP/ASP Solutions" Redbook, SG24-6299
- § Jason R Fink & Matthew D Sherer: "Linux Performance Tuning and Capacity Planning", SAMS 2001, ISBN 0-672-32081-9
- § <u>http://www.vm.ibm.com/perf/</u>
- § http://www.ibm.com/servers/eserver/zseries/zos/rmf/rmfht mls/pmweb/pmlin.htm

Questions?

72

Email:

benke@de.ibm.com