
Linux Basics

An Introductory Exploration for those wishing to
understand the Linux Operating System

Neale Ferguson
R&D Fellow

2SHARE 102 - Session 9241/2/3

Disclaimer

References in this manual to Software AG products, programs, or services do not imply that Software AG, Inc. intends to
make these available in all countries in which Software AG, Inc. operates.

Use, duplication, or disclosure by the Government of this commercial software as defined I clause 252.227-70414(a)(1) of
the DFARS is subject to restriction and shall be deemed restricted computer software as defined in clause 52.227-19
of the FAR.

Copyright c 2001 by Software AG, Inc. All rights reserved, including the right to reproduce this document or any portion
thereof in any form.

Printed in the United States of America.

The status symbols r and ?, as used to identify Software AG trademarks herein, refer to the status of Software AG
trademarks as pending or registered in the U.S. Patent and Trademark Office. Software AG and/or its subsidiaries
have applied for and have been granted registrations for their trademarks throughout the world.
Software AG will act to enforce its trademark rights worldwide.

IBM is a registered trademark of International Business Machines Corporation.

Linux is a registered trademark of Linus Torvalds.

ADABAS, Natural, Tamino, Bolero, and EntireX are trademarks of Sterling Software, Inc., and/or its subsidiaries.

3SHARE 102 - Session 9241/2/3

Class Agenda…

• Two parts of class
– Part 1

Linux Concepts

Getting Started

Daemons

File Systems

4SHARE 102 - Session 9241/2/3

Class Agenda

– Part 2
Accessing Your Data

vi – The System Editor

Self-study

o bash – The Scripting Language

The Linux Kernel

A quick look under the covers

6SHARE 102 - Session 9241/2/3

The Linux System

User commands

Shell

File SystemsKernel

Device Drivers

Hardware

User commands includes executable
programs and scripts

The shell interprets user commands. It
is responsible for finding the
commands and starting their

execution. Several different shells are
available. Bash is popular.

The kernel manages the hardware
resources for the rest of the system.

7SHARE 102 - Session 9241/2/3

The Kernel Layer

• Basic Operating System

• Device support

• Memory Management

• Process Management

• Interface to the hardware

• A set of APIs

• TCP/IP integrated into kernel

8SHARE 102 - Session 9241/2/3

Device Layer

• Exploits API from kernel

• Register driver with kernel

• Handle I/O requests for “type” of device

• Examples:
– DASD

– VDU

– Tape

9SHARE 102 - Session 9241/2/3

File Systems

• An layer of abstraction between underlying file scheme
and device(s)

• VFS provides a single API between user and file system

• Handles “mounting”, I/O requests that get implemented
(eventually) by a device driver

10SHARE 102 - Session 9241/2/3

Shells

• Interface between user and kernel

• Can be more than one

• User can swap between them

• Command line and GUI

• More later…

11SHARE 102 - Session 9241/2/3

Booting the Operating System

• Bootstrap read from initial medium

• Loads kernel

• Passes control to initialization

• Memory and I/O setup

• 1st process “init” started: all other processes are
descendants of this one

• Invokes a shell

• Begins startup processes

12SHARE 102 - Session 9241/2/3

IPL 192 CLEAR
Linux version 2.4.3-0.4.25vrdr (root@z02.millenux.com) (gcc
version 2.95.2 19991
024 (release)) #1 SMP Wed Jun 6 21:15:45 CEST 2001
Command line is: root=/dev/dasda1 ro dasd=192-193 noinitrd

We are running under VM
On node 0 totalpages: 65536
zone(0): 65536 pages.
zone(1): 0 pages.
zone(2): 0 pages.
Kernel command line: root=/dev/dasda1 ro dasd=192-193
noinitrd

Highest subchannel number detected (hex) : 000C
Calibrating delay loop... 851.96 BogoMIPS
Memory: 241528k/262144k available (1399k kernel code, 20616k

reserved, 652k data, 60k init)

13SHARE 102 - Session 9241/2/3

Detected 1 CPU's
Boot cpu address 0
cpu 0 phys_idx=0 vers=FF ident=087100 machine=2064 unused=0000
init_mach : starting machine check handler
init_mach : machine check buffer : head = 001F7850
init_mach : machine check buffer : tail = 001F7858
init_mach : machine check buffer : free = 001F7860
init_mach : CRW entry buffer anchor = 001F7868
init_mach : machine check handler ready
dasd: Registered successfully to major no 94
dasd(eckd): ECKD discipline initializing
dasd(eckd): We are interested in: CU 3990/00
dasd(eckd): We are interested in: CU 2105/00
dasd(eckd): We are interested in: CU 9343/00
dasd: Registered ECKD discipline successfully
dasd(fba):FBA discipline initializing
dasd(fba):We are interested in: CU 6310/00
dasd(fba):We are interested in: CU 3880/00
dasd: Registered FBA discipline successfully
dasd(eckd): 0192 on sch 1: 3390/0A(CU:3990/01) Cyl:2838
Head:15 Sec:224

14SHARE 102 - Session 9241/2/3

INIT: version 2.78 booting

Welcome to Think Blue Linux
Mounting proc filesystem: [OK]
Configuring kernel parameters: [OK]
Setting clock : Mon Jul 9 16:20:12 EDT 2001 [OK]
Activating swap partitions: [OK]
Setting hostname dali008.software-ag.de: [OK]
Checking root filesystem
/: clean, 40490/255488 files, 174547/510837 blocks

[/sbin/fsck.ext2 -- /] fsck.ext2 -a /dev/dasda1
Starting sendmail: [OK]
Starting console mouse services: (no mouse is configured)
Starting crond: [OK]
Starting xfs: [OK]
Starting anacron: [OK]
Think Blue Linux release 7.1 (verdigris)
Kernel 2.4.3-0.4.25vrdr on a s390x

dali008 login:

Introduction to Linux

Basic Concepts

16SHARE 102 - Session 9241/2/3

Users and Groups

Users are identified by user identifications (UIDs), each of which
is associated with an integer in the range of 0 to 4 294 967 295
(X’FFFFFFFF’). Users with UID=0 are given superuser
privileges.
Users are placed in groups, identified by group identifications
(GIDs). Each GID is associated with an integer in the range from
0 to 4 294 967 295
Let the system assign UID to avoid duplicates
Use id to display your user and group information

uid=500(neale) gid=500(neale) groups=500(neale),3(sys),4(adm)

17SHARE 102 - Session 9241/2/3

Users and Groups

• Groups define functional areas/responsibilities

• They allow a collection of users to share files

• A user can belong to multiple groups

• You can see what groups you belong to using the
groups command:

neale sys adm

18SHARE 102 - Session 9241/2/3

Group Setup

• Typical
– sys

– bin

– adm

– staff

– users

• Software AG
– odessy

– adabasd

– peport

– pcc

– intprod

– network

19SHARE 102 - Session 9241/2/3

Logging In

• Connect to the Linux system using telnet:
– vt100, vt220, vt320

– ansi

– xterm

– X-windows

• Able to login more than once with same user

• No ‘MW’ problems!

20SHARE 102 - Session 9241/2/3

Logging In

• Before you can use it you must login by specifying your
account and password:

Linux 2.2.13 (penguinvm.princeton.edu) (ttyp1)

penguinvm login: neale
Password:
Last login: Tue Jan 4 10:13:13 from
linuxtcp.princeton.edu
[neale@penguinvm neale]$

21SHARE 102 - Session 9241/2/3

Rule Number 1

• Do not login as root unless you have to
• root is the superuser

– Protection mechanisms can be overridden
– Careless use can cause damage
– Has access to everything by default

• root is only user defined when you install
– First thing is to change root’s password
– The second job is to define “normal” users for everyday use

• Use the su command to switch users to root
• Use sudo command to issue privileged commands

22SHARE 102 - Session 9241/2/3

Creating a new user

• Use the useradd/adduser command

• Use the passwd command to set password

[root@penguinvm]# useradd scully
[root@penguinvm]# passwd scully
Changing password for user scully
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated
successfully
[root@penguinvm]#

23SHARE 102 - Session 9241/2/3

Adding a new user

• Limits on users can be controlled by
– Quotas

– ulimit command

• Authority levels for a user controlled by
group membership

24SHARE 102 - Session 9241/2/3

Adding a New User

• Writes a new entry in /etc/passwd

• Also in /etc/shadow

• Why?
– For security reasons

– Explanation when we get to the section on files

25SHARE 102 - Session 9241/2/3

Lab One

• Use telnet to connect to the lab machine

• Login using ID supplied
– Userid studentnn where nn = 01-15

– Password: linx101 -- PLEASE DO NOT CHANGE IT!

• Logout using the exit or logout command

Introduction to Linux

Command Basics

27SHARE 102 - Session 9241/2/3

Linux Command Basics

• To execute a command, type its name
and arguments at the command line

ls -l /etc

Command name
Options
(flags)

Arguments

28SHARE 102 - Session 9241/2/3

Standard Files

• UNIX concept of “standard files”
– standard input (where a command gets its input) -

default is the terminal

– standard output (where a command writes it output) -
default is the terminal

– standard error (where a command writes error
messages) - default is the terminal

29SHARE 102 - Session 9241/2/3

Redirecting Output

• The output of a command may be sent to a
file:

ls -l >output

“>” is used to specify
the output file

30SHARE 102 - Session 9241/2/3

Redirecting Input

• The input of a command may come from a
file:

wc <input

“<” is used to specify
the input file

31SHARE 102 - Session 9241/2/3

Connecting commands with Pipes

• Not as powerful as CMS/TSO Pipes but the same
principle

• The output of one command can become the input
of another:

ps aux | grep netscape | wc -l

The output of the ps
command is sent to
grep

grep takes input and searches for
“netscape” passing these lines to wc

wc takes this input and
counts the lines its
output going to the
console

Like CMS Pipes, “|” is
used to separate stages

32SHARE 102 - Session 9241/2/3

Command Options

• Command options allow you to control a command to a
certain degree

• Conventions:
– Usually being with a single dash and are a single letter (“-l”)

– Sometimes have double dashes followed by a keyword (“--help”)

– Sometimes follow no pattern at all

33SHARE 102 - Session 9241/2/3

You need help?

• The Linux equivalent of HELP is man
(manual)
– Use man -k <keyword> to find all commands with that

keyword

– Use man <command> to display help for that command
Output is presented a page at a time. Use b for to scroll backward, f or
a space to scroll forward and q to quit

34SHARE 102 - Session 9241/2/3

Common Commands

• pwd - print (display) the working directory

• cd <dir> - change the current working directory to dir

• ls - list the files in the current working directory

• ls -l - list the files in the current working directory in
long format

• shutdown –[hr] [now|time] [message]
– Shutdown or restart the system

35SHARE 102 - Session 9241/2/3

More Commands

• who or w
– List who is currently logged on to the system

• whoami
– Report what user you are logged on as

• ps
– List your processes on the system

• ps aux
– List all the processes on the system

• echo “A string to be echoed”
– Echo a string (or list of arguments) to the terminal

36SHARE 102 - Session 9241/2/3

Who’s Logged On Right Now?

• The w command lists all users logged on right now

5:16pm up 2 days, 8:46, 1 user, load average: 0.00, 0.00, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
neale ttyp0 websurfer.reston 4:28pm 1.00s 0.52s 0.18s w

37SHARE 102 - Session 9241/2/3

Lab Two

• Logon to your test machine
– Get help on the ls command

– Find out who else is on the system

– What is your current directory
– Redirect the output of the ls –l / command to ls.output and

see what you get

– Logout

Introduction to Linux

Daemons

39SHARE 102 - Session 9241/2/3

Agenda

• What are Daemons?

• Common Daemons

• Additional Daemons

40SHARE 102 - Session 9241/2/3

The Daemon Concept

• Daemons provide functions that are not available in the
base operating system

• Comparable to
– Services in NT

– Service Virtual Machines in VM

– Started tasks and built-in subsystems in OS/390

• Listen for work requests

• Perform service then disconnect

41SHARE 102 - Session 9241/2/3

Common Daemons

• Apache - httpd

• LDAP - sldapd

• DNS - bind

• sendmail

• Samba - smbd/nmbd

• FTP - ftpd

• Usenet - innd

• Superdaemon - inetd

42SHARE 102 - Session 9241/2/3

Apache

• World’s most popular web server

• Version 1.3.14 most current

• Version 2.0 Alpha just released

43SHARE 102 - Session 9241/2/3

LDAP

• Lightweight Directory Access Protocol

• Based on entries which are collections of attributes
that have a name (a distinguished name)

• Entries are arranged in a hierarchical tree-like
structure

• LDAP defines operations for interrogating and
updating the directory

44SHARE 102 - Session 9241/2/3

DNS

• Domain Name Server

• Resolves IP names to IP addresses (and vice
versa)

• Forwards on requests it cannot resolve

• Fields requests from within and without host

45SHARE 102 - Session 9241/2/3

Samba

• A collection of programs that implement the
Server Message Block (SMB) protocol for UNIX
systems

• File and print serving

• NetBIOS name serving and browser support

• Support utilities

46SHARE 102 - Session 9241/2/3

Samba

• Why?
– Integrate Microsoft or IBM style desktop machines with

Enterprise servers

– Integrate Microsoft servers with Enterprise servers

– Replace multiple protocols (e.g. DecNet, Novell NCP)

47SHARE 102 - Session 9241/2/3

Samba

• What can it do?
– Windows NT and LAN manager style file and print

services to clients

– A NetBIOS nameserver which provides browsing
support (Samba can be the master browser)

– FTP-like SMB client so you can access PC resources
from VM

– A limited command-line tool that supports some NT
administrative functions

48SHARE 102 - Session 9241/2/3

INND - Usenet

• A highly used and highly visible feature of the
Internet

• Conduct discussions and disseminate them to
interested parties

• Ported and configured INND-1.5.1 as part of the
Residency

49SHARE 102 - Session 9241/2/3

INETD

• INETD
– Internet Super Daemon

– Automatically starts other daemons upon request from client

– Can be used to start Samba, Apache, Daytime

– Can have multiple INET daemons

– Also has internal services
chargen

discard

echo

50SHARE 102 - Session 9241/2/3

Lab Three

• Telnet and Login to ID

• ps -ef | more -- Do you see any of the
daemons we’ve talked about?
– httpd

– inetd

• Logout

Introduction to Linux

The Linux File Systems

52SHARE 102 - Session 9241/2/3

About the Linux File Systems

• Linux files reside on:
– Fullpack DASD

– Minidisks

– SCSI!

– Partitions of any of the above

• Linux supports multiple file systems:
– extfs2

– fat/vfat

– hpfs

– jfs

53SHARE 102 - Session 9241/2/3

Linux Device Handling

• Devices are the way Linux talks to the world

• Devices are special files in the /dev directory
(try ls /dev)

/dev/ttyx TTY devices

/dev/hdb IDE hard drive

/dev/hdb1 Partition 1 on the IDE hard drive

/dev/dasda ECKD/CKD/FBA DASD

/dev/dasda1 Partition 1 on DASD

/dev/null The null device (“hole”)

/dev/zero An endless stream of zeroes

/dev/mouse Mouse (not /390)

54SHARE 102 - Session 9241/2/3

Devices and Drivers

• Each /dev file has a major and minor
number
– Major defines the device type
– Minor defines device within that type
– Drivers register a device type

brw-r--r-- 1 root root 64, 0 Jun 1 1999 /dev/mnda
crw-r--r-- 1 root root 5, 0 Jan 5 09:18 /dev/tty

Major no. Minor no.
Device Type:
b - block
c - character

55SHARE 102 - Session 9241/2/3

Special Files - /proc

• Information about internal Linux processes are
accessible to users via the /proc file system
(in memory)

/proc/cpuinfo CPU Information
/proc/interrupts Interrupt usage
/proc/version Kernel version
/proc/modules Active modules

cat /proc/cpuinfo
vendor_id : IBM/S390
processors : 1
bogomips per cpu: 86.83
processor 0: version = FF, identification = 045226, machine = 9672

56SHARE 102 - Session 9241/2/3

File Systems

• Linux supports many different types

• Most commonly, ext2fs
– Filenames of 255 characters

– File sizes up to 2GB

– Theoretical limit 4TB

• Derived from extfs

• Highly reliable and high performer

57SHARE 102 - Session 9241/2/3

File Systems

• Other File systems:
– iso9660 (CD-ROM)

– nfs - NFS

– coda - NFS-like

– ncp - Novell

– smb - LANManager

– afs - Andrew File System

• Other file systems:
– sysv - SCO/Xenix

– ufs - SunOS/BSD

– vfat - Win9x

– msdos - MS-DOS/Win

– umsdos - Linux/DOS

– ntfs - WinNT (r/o)

– hpfs - OS/2

– cms - CMS (r/o)

58SHARE 102 - Session 9241/2/3

File Systems

• mount
– Mounts a file system that lives on a device to the main file tree
– Start at Root file system

Mount to root
Mount to points currently defined to root

– /etc/fstab used to establish boot time mounting

/dev/dasda1 / ext2 defaults,errors=remount-ro 0 1
/dev/dasdb1 /bin ext2 defaults,errors=remount-ro 0 1
/dev/dasdc1 /usr ext2 defaults,errors=remount-ro 0 1
/dev/dasdd1 /usr/local ext2 defaults,errors=remount-ro 0 1
/dev/dasde1 /usr/man ext2 defaults,errors=remount-ro 0 1
/dev/dasdf1 /home ext2 defaults,errors=remount-ro 0 1
/dev/dasdg1 swap swap defaults 0 0
none /proc proc defaults 0 0

59SHARE 102 - Session 9241/2/3

File Systems

• You can view what file systems are mounted using either:
– mount

– df

60SHARE 102 - Session 9241/2/3

Virtual File System

• VFS is designed to present a consistent view of data
as stored on hardware

• Almost all hardware devices are represented using a
generic interface

• VFS goes further, allowing the sysadmin to mount any
of a set of logical file systems on any physical device

61SHARE 102 - Session 9241/2/3

Virtual File System

• Analogous to CMS:
– SFS

– Minidisks

• Two different designs

• Common/transparent access

63SHARE 102 - Session 9241/2/3

Lab Four

• Telnet and login to ID

• Find out what devices are mounted and what file systems
are in use

• Examine a couple of the /proc files using the more
command

• Logout

64SHARE 102 - Session 9241/2/3

Linux File System Basics

• Linux files are stored in a
single rooted, hierarchical
file system

– Data files are stored in
directories (folders)

– Directories may be nested as
deep as needed

Directories

User home
directories

Data files

root

65SHARE 102 - Session 9241/2/3

Naming Files

• Files are named by
– naming each containing

directory

– starting at the root

• This is known as the
pathname

/etc/passwd

/home/neale/b

66SHARE 102 - Session 9241/2/3

The Current Directory

• One directory is designated
the current working directory

– if you omit the leading / then path
name is relative to the current
working directory

– Use pwd to find out where you are

Current working
directory

doc/letter
./doc/letter
/home/neale/doc/letter

67SHARE 102 - Session 9241/2/3

Some Special File Names

• Some file names are special:
– / The root directory (don’t confuse with the root user)

– . The current directory

– .. The parent (previous) directory

– ~ My home directory

– ~jane Jane’s home directory

• Examples:
– ./a same as a

– ../jane/x go up one level then look in directory jane for x

68SHARE 102 - Session 9241/2/3

Special Files

• /home - all users’ home directories are stored here

• /bin, /usr/bin - system commands

• /sbin, /usr/sbin - commands used by sysadmins

• /etc - all sorts of configuration files

• /var - logs, spool directories etc.

• /dev - device files

• /proc - special system files

69SHARE 102 - Session 9241/2/3

Lab Five

• Explore the file system
– Use the cd command to go the “root” of the file system

– Use ls to list the files and directories

– Use the cd command to go to your home directory

– Use the pwd command to display the name of the present working
directory

70SHARE 102 - Session 9241/2/3

Creating Files and Directories

• Files can be created in a number of ways
– The output of a command

– Being edited using vi or your favorite editor

– By using the touch command which creates an empty file or updates the
modification and access time information of an existing file

• Directories are created using the mkdir command

71SHARE 102 - Session 9241/2/3

File Permissions

• Every file:
– Is owned by someone

– Belongs to a group

– Has certain access permissions for owner, group, and
others

– Default permissions determined by umask

72SHARE 102 - Session 9241/2/3

File Permissions

• Every user:
– Has a uid (login name), gid (login group) and

membership of a "groups" list:
The uid is who you are (name and number)

The gid is your initial “login group” you normally belong to

The groups list is the file groups you can access via group permissions

73SHARE 102 - Session 9241/2/3

File Permissions

• Linux provides three kinds of
permissions:
– Read - users with read permission may read the

file or list the directory

– Write - users with write permission may write to
the file or new files to the directory

– Execute - users with execute permission may
execute the file or lookup a specific file within a
directory

74SHARE 102 - Session 9241/2/3

File Permissions

• Under MS-DOS, Windows, OS/2
– File extensions determine if a file is “executable”

– Uses .EXE .CMD .BAT

• UNIX/Linux
– File privileges determine if a file should be executed

– Contents of header or 1st line of file tell system how to execute

75SHARE 102 - Session 9241/2/3

File Permissions

• The long version of a file listing (ls -l) will
display the file permissions:

-rwxrwxr-x 1 rvdheij rvdheij 5224 Dec 30 03:22 hello
-rw-rw-r-- 1 rvdheij rvdheij 221 Dec 30 03:59 hello.c
-rw-rw-r-- 1 rvdheij rvdheij 1514 Dec 30 03:59 hello.s
drwxrwxr-x 7 rvdheij rvdheij 1024 Dec 31 14:52 posixuft

Permissions

Owner

Group

76SHARE 102 - Session 9241/2/3

Interpreting File Permissions

-rwxrwxrwx
Other permissions

Group permissions

Owner permissions

Directory flag (d=directory; l=link)

77SHARE 102 - Session 9241/2/3

Changing File Permissions

• Use the chmod command to change file permissions
– The permissions are encoded as an octal number

chmod 0755 file # Owner=rwx Group=r-x Other=r-x

chmod 0500 file2 # Owner=r-x Group=--- Other=---

chmod 0644 file3 # Owner=rw- Group=r-- Other=r--

chmod +x file # Add execute permission to file for all

chmod o-r file # Remove read permission for others

chmod a+w file # Add write permission for everyone

User Group Other
Read

r
Write

w
Execute

x
Read

r
Write

w
Execute

x
Read

r
Write

w
Execute

x

400 200 100 40 20 10 4 2 1

78SHARE 102 - Session 9241/2/3

Remember /etc/passwd?

• Originally file permissions allowed “world read”

• Weakly encrypted passwords could be read by anyone!!

• /etc/shadow implemented with stricter permissions
and stronger encrypting

[usanefe@dali157 - usanefe] ls -l /etc/passwd /etc/shadow
-rw-r--r-- 1 root root 2985 Jul 6 18:16 /etc/passwd
-rw-r----- 1 root shadow 1468 Jul 7 13:32 /etc/shadow

79SHARE 102 - Session 9241/2/3

Links?

• Links are references to files (aliases)
• Two forms:

– Hard
– Symbolic

Can point to files on different physical devices
Delete of original leaves link / Delete of link leaves original
Can be created for directories

• Create using ln or ln -s command
• The ls –l command will show you the links:

train01@reslx390:~ > ls -l /lib
total 10780
-rwxr-xr-x 1 root root 367598 Nov 3 2000 ld-2.1.3.so
lrwxrwxrwx 1 root root 11 Nov 29 2000 ld.so.1 -> ld-2.1.3.so
-rwxr-xr-x 1 root root 21498 Nov 3 2000 libBrokenLocale.so.1

80SHARE 102 - Session 9241/2/3

Lab Six

• Explore your filesystem:
– Identify 1st level directories
– Locate a symbolic link
– Use the umask command to display current default

• Create 3 files (‘all’, ‘group’, ‘owner’) & assign
permissions:
– all - r/w to owner, group, and others
– group - r/w to owner and group, r/o to others
– owner - r/w to owner, r/o to group, none to others

• Create a directory ‘test’ under your home directory
– Create a file ‘real.file’
– Create a symbolic link in your home directory to ‘real.file’ called

‘symbolic.link’

81SHARE 102 - Session 9241/2/3

Questions and Answers

82SHARE 102 - Session 9241/2/3

Class Agenda -- Part 2

• Accessing Your Data

• vi – The System Editor

• the – XEDIT/ISPF clone

• bash – The Scripting Language

83SHARE 102 - Session 9241/2/3

Shells

• An interface between the Linux system and
the user

• Used to call commands and programs

• An interpreter

• Powerful programming language
– “Shell scripts” = .bat .cmd EXEC REXX

84SHARE 102 - Session 9241/2/3

Shells

• sh Bourne shell - the original

• csh C shell - compatible with Bourne shell

• bash Bourne again shell - most common on Linux

• tcsh The enhanced C shell

• zsh Z shell - newest, compatible with Bourne shell

• ksh Korn shell - most popular UNIX shell

85SHARE 102 - Session 9241/2/3

Another definition of a Shell

• A shell is any program that takes input from the user,
translates it into instructions that the operating system
can understand, and conveys the operating system's
output back to the user.

• i.e. Any User Interface

• Character Based v Graphics Based

86SHARE 102 - Session 9241/2/3

Why Do I Care About The Shell?

• Shell is Not an Integral Part of O/S
– UNIX Among First to Separate

– Compare to MS-DOS, Mac, Win95, VM/CMS

– GUI is NOT Required

– Default Shell Can Be Configured
chsh -s /bin/bash

/etc/passwd

– Helps To Customize Environment

87SHARE 102 - Session 9241/2/3

Using the Shell

• Useful keys:
– Cursor arrows:

Up/down - scroll through previous commands

Left/right - move over characters within the command line

Backspace/Delete - delete character

– Control characters
CTRL-C - Abort command

CTRL-U- Delete the whole line

CTRL-Z - Suspend current process

CTRL-T - Swap current and next characters in command line

• Shortcuts
– Word completion: Press TAB key to have Shell complete the line

for you

88SHARE 102 - Session 9241/2/3

Lab Seven

• Using the Shell
– What shell are you using:

– Editing the command line:
Scrolling through past commands

Inserting/deleting characters on command line

Using editing key: CTRL-T

Try command completion. What happens when:
ls /etc/pro<TAB>

– Invoke the C shell

89SHARE 102 - Session 9241/2/3

Shell Scripts

#!/bin/bash
while
true
do

cat somefile > /dev/null
echo .

done

/* */
do forever

‘PIPE < SOME FILE | hole’
say ‘.’

end

90SHARE 102 - Session 9241/2/3

Filename Expansion

• Shell will scan for special characters
• Process called “globbing”
• Not the same as regular expressions
• Performs expansion:

– ls *.c List all files with extension of ‘c’
– ls *.[ch] List all files with extension of ‘c’ or ‘h’
– ls *[0-9]*.c List all files with extension of ‘c’ with a

name consisting of 0 or more numeric
characters

– ls ab?de.c List all files with extension of ‘c’ whose
first two letter of the file name are “ab”
and last two letters are “de”

91SHARE 102 - Session 9241/2/3

Switching Users

• su <accountname>

– switch user accounts. You will be prompted for a password. When this
command completes, you will be logged into the new account. Type exit to
return to the previous account

• su

– Switch to the root user account. Do not do this lightly

 Note: The root user does not need to enter a password when switching
users. It may become any user desired. This is part of the power of the root
account.

92SHARE 102 - Session 9241/2/3

Environment Variables

• Environment variables are global settings that control
the function of the shell and other Linux programs. They
are sometimes referred to global shell variables.

• Setting:
– VAR=/home/fred/doc

– export TERM=ansi

– SYSTEMNAME=`uname -n`

• Similar to GLOBALV SET … in CMS

93SHARE 102 - Session 9241/2/3

Environment Variables

• Using Environment Variables:
– echo $VAR

– cd $VAR

– cd $HOME

– echo “You are running on $SYSTEMNAME”

• Displaying - use the following commands:
– set (displays local & environment variables)

– export

• Variables can be retrieved by a script or a program

94SHARE 102 - Session 9241/2/3

Some Important Environment Variables

• HOME
– Your home directory (often be abbreviated as “~”)

• TERM
– The type of terminal you are running (for example vt100, xterm, and

ansi)

• PWD
– Current working directory

• PATH
– List of directories to search for commands

95SHARE 102 - Session 9241/2/3

PATH Environment Variable

• Controls where commands are found
– PATH is a list of directory pathnames separated by colons. For example:
 PATH=/bin:/usr/bin:/usr/X11R6/bin:/usr/local/bin:/home/scully/b

in

– If a command does not contain a slash, the shell tries finding the command
in each directory in PATH. The first match is the command that will run

96SHARE 102 - Session 9241/2/3

PATH Environment Variable

• Similar to setting the CMS search order

• Usually set in /etc/profile (like the SYSPROF
EXEC)

• Often modified in ~/.profile or ~/.bashrc or
~/.login (like the PROFILE EXEC)

97SHARE 102 - Session 9241/2/3

File Commands

• cp <fromfile> <tofile>

– Copy from the <fromfile> to the <tofile>

• mv <fromfile> <tofile>

– Move/rename the <fromfile> to the <tofile>

• rm <file>

– Remove the file named <file>

• mkdir <newdir>

– Make a new directory called <newdir>

• rmdir <dir>

– Remove an (empty) directory

98SHARE 102 - Session 9241/2/3

More Commands

• alias - used to tailor commands:
– alias erase=rm

– alias grep=”grep -i”

• ar - Maintain archive libraries: a
collection of files (usually object files
which may be linked to a program, like a
CMS TXTLIB)

ar -t libgdbm.a
__.SYMDEF
dbmopen.o

99SHARE 102 - Session 9241/2/3

More Commands

• awk - a file processing language that is
well suited to data manipulation and
retrieval of information from text files

• chown - sets the user ID (UID) to owner
for the files and directories named by
pathname arguments. This command is
useful when from test to production

 chown -R apache:httpd /usr/local/apache

100SHARE 102 - Session 9241/2/3

More Commands

• diff - attempts to determine the minimal
set of changes needed to convert a file
specified by the first argument into the file
specified by the second argument

• find - Searches a given file hierarchy
specified by path, finding files that match
the criteria given by expression

101SHARE 102 - Session 9241/2/3

More Commands

• grep - Searches files for one or more pattern
arguments. It does plain string, basic regular
expression, and extended regular expression
searching

 find ./ -name "*.c" | xargs grep -i "fork"

In this example, we look for files with an extension “c” (that is, C source files). The filenames
we find are passed to the xargs command which takes these names and constructs a
command line of the form: grep -i fork <file.1>…<file.n>. This command will search
the files for the occurrence of the string “fork”. The “-i” flag makes the search case
insensitve.

102SHARE 102 - Session 9241/2/3

More Commands

• kill - sends a signal to a process or process
group

• You can only kill your own processes unless you
are root

UID PID PPID C STIME TTY TIME CMD
root 6715 6692 2 14:34 ttyp0 00:00:00 sleep 10h
root 6716 6692 0 14:34 ttyp0 00:00:00 ps -ef
[root@penguinvm log]# kill 6715
[1]+ Terminated sleep 10h

103SHARE 102 - Session 9241/2/3

More Commands

• make - helps you manage projects containing a
set of interdependent files (e.g. a program with
many source and object files; a document built
from source files; macro files)

• make keeps all such files up to date with one
another: If one file changes, make updates all
the other files that depend on the changed file

• Roughly the equivalent of VMFBLD

104SHARE 102 - Session 9241/2/3

More Commands

• sed - applies a set of editing
subcommands contained in a script to
each argument input file

 find ./ -name "*.c,v" | sed ’s/,v//g’ | xargs grep "PATH"

This finds all files in the current and subsequent directories with an extension
of c,v. sed then strips the ,v off the results of the find command. xargs then
uses the results of sed and builds a grep command which searches for
occurrences of the word PATH in the C source files.

105SHARE 102 - Session 9241/2/3

More Commands

• tar - manipulates archives
– An archive is a single file that contains the complete contents of a

set of other files; an archive preserves the directory hierarchy
that contained the original files.

tar -tzf imap-4.7.tar.gz
imap-4.7/
imap-4.7/src/
imap-4.7/src/c-client/
imap-4.7/src/c-client/env.h
imap-4.7/src/c-client/fs.h

Introduction to Linux

Accessing Your Data

107SHARE 102 - Session 9241/2/3

Accessing Your Data

• Data files are accessed by pathname (relative or
absolute)

• Command files are accessed via PATH environment
variable

• System wide PATH set in /etc/profile

• User specific PATH may be set in ~/.profile
~/.bashrc ~/.login

108SHARE 102 - Session 9241/2/3

Listing Your Files

• The ls command is used for listing files and their
attributes:
– ls <pathname>

– ls -l <pathname>

– ls -la <pathname>

109SHARE 102 - Session 9241/2/3

ls

[neale@penguinvm neale]$ ls /etc
DIR_COLORS ftpusers login.defs quota.conf
DOMAINNAME gettydefs logrotate.d rc.d
HOSTNAME group mail.rc resolv.conf
HOSTNAME.orig group- man.config resolv.old
X11 group.OLD mime-magic rpc
adjtime group~ mime-magic.dat security
aliases host.conf mime.types sendmail.cf
aliases.db hosts motd sendmail.st
aliases~ hosts.allow mtab services
bashrc hosts.allow~ named.conf shells
conf.linuxconf hosts.deny named.conf~ ssh_config
cron.d hosts~ nscd.conf ssh_host_key
cron.daily httpd nsswitch.conf ssh_host_key.pub
cron.weekly inetd.conf nsswitch.conf~ ssh_random_seed
csh.login inetd.conf~ pam.d sshd_config
default info-dir passwd sysconfig
exports initlog.conf passwd- syslog.conf
fdprm inittab ppp termcap
fstab inputrc printcap zlogin
ftpaccess ioctl.save profile zlogout
ftpconversions ld.so.cache profile.d zprofile
ftpgroups ld.so.conf protocols zshenv
ftphosts localtime pwdb.conf zshrc

110SHARE 102 - Session 9241/2/3

ls

• Color output?
– /etc/DIR_COLORS

COLOR tty
Below, there should be one TERM entry for each termtype that is colorizable
TERM linux
EIGHTBIT 1
00=none 01=bold 04=underscore 05=blink 07=reverse 08=concealed
Text color codes:
30=black 31=red 32=green 33=yellow 34=blue 35=magenta 36=cyan 37=white
Background color codes:
40=black 41=red 42=green 43=yellow 44=blue 45=magenta 46=cyan 47=white
NORMAL 00 # global default, although everything should be something.
FILE 00 # normal file
DIR 01;34 # directory

111SHARE 102 - Session 9241/2/3

ls -l

• “DIR” like output:
[neale@penguinvm neale]$ ls -l
total 1612
-rw-r--r-- 1 neale neale 148119 Jan 14 10:12 %backup%~
-rw------- 1 neale neale 511 Jan 18 10:58 Linux
drwxrwxr-x 7 neale neale 1024 Mar 17 12:47 ORBit-0.5.1
drwxr-xr-x 7 neale neale 1024 Mar 13 09:08 apache_2.0
-rw-rw-r-- 1 neale neale 1476724 Mar 11 22:18 apache_2.0a1.tar.gz
drwxrwxr-x 9 neale neale 1024 Feb 14 20:58 classpath-0.00
-rw-rw-r-- 1 neale neale 1215 Jan 12 15:54 config.patch
drwxrwxr-x 2 neale neale 1024 Mar 20 19:12 cpint
drwxrwxrwx 2 neale develope 1024 Feb 9 11:26 html
-rw-r--r-- 1 neale neale 994 Feb 24 22:05 ip.num
-rw-rw-r-- 1 neale neale 1344 Feb 24 22:06 ip.num.sh
drwxrwxr-x 11 neale neale 1024 Feb 25 21:08 japhar-0.08
drwxrwxr-x 5 neale neale 1024 Jan 17 09:42 ltxml-1.1
-rw-rw-r-- 1 neale neale 81 Mar 7 17:57 test.c
-rwxrwxr-x 1 neale neale 790 Mar 7 17:59 test.s
drwxrwxr-x 2 neale neale 1024 Feb 29 15:13 tmp

112SHARE 102 - Session 9241/2/3

ls -la

• List “hidden” files:
[neale@penguinvm neale]$ ls -la .*[a-zA-Z]
-rw------- 1 neale neale 985 Mar 20 10:52 .Xauthority
-rw------- 1 neale neale 15044 Mar 22 12:49 .bash_history
-rw-r--r-- 1 neale neale 6 Jan 18 10:58 .mailboxlist
-rw-rw-r-- 1 neale neale 153 Feb 23 14:17 .profile
-rw-rw-r-- 1 neale neale 250 Dec 31 12:04 .therc

113SHARE 102 - Session 9241/2/3

Viewing Files

• cat “Concatenate”
• more Display one page at a time
• less Variant of more

• Editors
– vi Visual editor, the default
– the XEDIT/KEDIT/ISPF clone
– xedit X windows text editor
– emacs Extensible, Customizable Self-

Documenting Display Editor
– pico Simple display-oriented text editor
– nedit X windows Motif text editor

114SHARE 102 - Session 9241/2/3

cat

• Concatenate files and print on the standard output

[neale@penguinvm neale]$ cat .profile
alias dir="ls --color -laA"
alias ls="ls --color"
export PATH=./:/sbin:/usr/sbin:$PATH:/usr/local/japhar/bin
export JAPHAR_LOG="ALL,999,/tmp/japhar.log"

115SHARE 102 - Session 9241/2/3

more

• File perusal filter for page-at-a-time viewing

[neale@penguinvm neale]$ more test.s
.file "test.c"
.version "01.01"

gcc2_compiled.:
.text
:
:
.L$CO1: AHI 13,.L$PG1-.L$CO1

ST 0,0(15)
LR 11,15
LR 9,7
ST 2,96(11)

--More--(71%)

116SHARE 102 - Session 9241/2/3

Lab Eight

• Listing and displaying files
– Use the ls -a command to display directories (where did all those files

come from??)

– Use the -R option of ls to display down file tree

– Use cat to display a file

– Use more to display a file one page at a time

– Erase the link ‘symbolic.link’, erase the ‘test’ directory and its
contents, then erase the ‘all’, ‘group’, and ‘owner’ files.

Introduction to Linux

Editors

118SHARE 102 - Session 9241/2/3

vi Basics...

‘Editors are like religion; the one you grew up with is the only “true”
one’

• vi was the first real screen-based editor for UNIX
• vi comes with every UNIX system
• vi may be invoked from the command line by typing

the command followed by the file identifier of the file to
be edited

vi <pathname>

119SHARE 102 - Session 9241/2/3

vi Basics

• Pronounced: vee-eye
• When using vi you are in one of three modes:

– Command mode: the mode you start in

– Edit mode: allows you to do “editing”

– Ex mode: where you communicate with vi to do things with the file

• Only a few things you need to know, lots of things you
could know

• Best way to learn is by doing...

120SHARE 102 - Session 9241/2/3

Lab Nine

• Use “vi Primer”

• Perform actions according to the guide

121SHARE 102 - Session 9241/2/3

THE Basics

• The THE environment provides an additional set of
commands oriented toward editing a file
– An input area (command line) is provided for the entry of commands

– Linux commands may be executed by prefacing them with DOS

122SHARE 102 - Session 9241/2/3

Default Look of a THE Session

123SHARE 102 - Session 9241/2/3

THE Commands: Things of Note

• The screen is considered a “window” on the file

• Movement commands (UP, DOWN, LEFT, RIGHT)
describe movement of the window relative to the file
– The command “down 6” moved the window down -- or forward -- 6 lines in

the file

• Additional movement commands are available
– TOP and BOTTOM move the window to the top or bottom of the file

– Use ‘:n’ to request a particular line

– The requested line is positioned on the “current line”

124SHARE 102 - Session 9241/2/3

THE Prefix Commands

• In addition to the command line, you can also enter
commands in the prefix area of a line

• Some common prefix commands include:
– I - insert

– si - insert a series of lines

– / - make this the current line

– M or MM - move a line, M, or a group of lines, MM

– C or CC - copy a line, C, or a group of lines, CC

– P - execute move or copy Preceding this line

– F - execute more of copy Following this line

125SHARE 102 - Session 9241/2/3

THE Input Area Commands

• SET

– Change characteristics of your default view
– Change characteristics of your file

• Input - Creates an input area for free form typing

• Scrolling and positioning commands
• LOCATE - find strings in the file
• CHANGE command - change commands in the file
• SAVE and FILE

126SHARE 102 - Session 9241/2/3

THE Macros

• Create your own .therc to customize your view of the
– Color (if available)

– Placement of items discussed
scale

messages

command line, etc.

– Autosave frequency

• the macros are REXX (Regina) programs that run in the
the environment to perform specific tasks

127SHARE 102 - Session 9241/2/3

This Looks Like the ISPF Editor

• The editors do share many characteristics

• There’s just enough similarity to lull you into a false
sense that you know what you’re doing. E.g.
– The biggest area of conflict/confusion is prefix commands

‘A’ in THE is “add a line following this one”

‘A’ in ISPF is a target for moving or copying lines (“move/copy the lines after this one”)

The THE equivalent of ISPF’s ‘A’ prefix command is the ‘F’ prefix command (“move or
copy following this line”)

– “Insert mode” (for adding multiple lines to a file) works very differently
in the two environments

128SHARE 102 - Session 9241/2/3

THE Exercises…

• Edit the file the.sample

• Insert a line at the top of the file and type your name

• Copy that line to the bottom of the file

• Move the 2nd paragraph behind the 3rd paragraph

• Split the first line of the first paragraph before the word ‘honorably,’

• Join the 4th line to the new 3rd line new text after the word on that
line

• Duplicate the 2nd line with your name 8 times

• File the file when you are done

129SHARE 102 - Session 9241/2/3

…THE Exercises

• Edit the file ~/.therc

• Change the prefix area to numbers with no leading zeros

• Move the scale to line 3

• Move the command line to line 22

• Allow mixed case input

• Move the current line to line 4

• File the file, then the it again. Are you happy with the
changes?

Introduction to Linux

Writing and Using Shell Scripts

131SHARE 102 - Session 9241/2/3

Agenda

• Terms and concepts
• Statement types
• Invoking a shell program
• System commands
• Logic constructs
• Arithmetic and logic operators
• Functions and subroutines
• Debugging

132SHARE 102 - Session 9241/2/3

Terms and Concepts

• BASH = “Bourne Again SHell”

• A shell script is an ordinary text file containing commands that will
eventually be read by the shell

• Generally used to startup, control and/or terminate application
programs and system daemons

• An interpreted language

• The first line of the program identifies the interpreter: Using
#!/bin/<shell> (“shbang”) -
– #!/bin/bash2

– #!/bin/sh

– If file does not have “x” privileges then: sh <pathname>

133SHARE 102 - Session 9241/2/3

Comments

• A comment begins with the string # and ends with
the end of the line

• A comment cannot span multiple lines

• It can appear on the same line as an executable
statement

J=$(($J+1)) # Increment secondary counter

• It cannot be embedded in the middle of an executable
statement

134SHARE 102 - Session 9241/2/3

Simple Variables

• Symbols when first defined must begin with an
alphabetic or special character “_”
– Symbols may contain alphabetic, special, and numeric

• Symbols referred to by $<symbol name>:
X=1

echo $X

• Symbols are case-sensitive
– $fred is not the same symbol as $Fred is not the same symbol as

$FRED

• Symbols that have never been assigned a value have
a default of “”

135SHARE 102 - Session 9241/2/3

Assignment

• The equal sign = is used as the assignment operator
i=3

j=“A string”

k_q=`expr $i + 2` or k_q=$(($i+2))

• It is also used as the comparison operator for numeric
equality

if [$i = 4]…

_equal =`expr $i = 4` or _equal=$(($i==4))

– Usage is determined from context
The last statement above sets the variable _equal to ‘true’ or ‘false’ (1 or 0) depending on
whether $i equals 4

136SHARE 102 - Session 9241/2/3

Array Variables

• Arrays of values are implemented using:

#!/bin/bash2
Y=0
X[$Y]="Q"
echo ${X[$Y]}

Q

137SHARE 102 - Session 9241/2/3

Syntax

• A script may have parameters and options using the
same syntax as normal commands

foo -anycase .therc

– might perform the foo function on file .therc, ignoring case

• We must be able to perform the usual functions of a
program:
– access the parameter string

– produce output

– exit the program when done

138SHARE 102 - Session 9241/2/3

Accessing Parameters

• Parameters are identified by $0, $1, $2…

• $0 returns the name of the script

• $# returns number of arguments

• $* returns all arguments

• The set function can assign values to $0 etc.

• The shift function makes $0=$1, $1=$2 etc.

139SHARE 102 - Session 9241/2/3

Accessing Parameters

• Use getopt function to resolve flags and operands:
getopt <flags> <result>

while getopts pu opt
do

case "$opt" in
p) _autoload_dump printable; return 0;;
u) _autoload_unset=y ;;
*) echo "autoload: usage: autoload [-pu] [function ...]" >&2
return 1 ;;

esac
done

140SHARE 102 - Session 9241/2/3

The echo Instruction

• One way to produce output from a program is simply to display it
on the terminal or monitor

• The echo instruction does this
echo expression

– evaluates the expression and displays its value

• For example

echo “Hello World!”
X=“XYZ”
echo $X

Hello World!
XYZ

141SHARE 102 - Session 9241/2/3

Tracing the Program

• Prior to executing:

set –x

• Option of sh command:

sh –x <shellscript>

• Within a script:
#!/bin/sh
set –x
echo $0

142SHARE 102 - Session 9241/2/3

Terminating the Program...

• The exit instruction terminates the program immediately.

• It takes an optional parameter of a return code
– The return code must be an integer

– It may be positive, negative, or zero

echo “File not found”
exit 28

143SHARE 102 - Session 9241/2/3

Structure and Logic

• Several programming constructs are available in the shell
language
– The if/then/fi and if/then/else/fi constructs

The else clause is optional

The forms may be nested to execute complex logical operations

– The loop constructs
At least five unique forms exist

They can be combined to produce interesting results

– The case … esac construct
Used to execute one of a set of mutually exclusive code fragments

144SHARE 102 - Session 9241/2/3

The Simple do…done Group

• A group of statements may be preceded by a do
statement and followed by an done statement
– This allows the group of statements to be treated as a unit

– No change in the execution of the statements is produced

• The entire set of statements between the do and done is
executed if condition is true

145SHARE 102 - Session 9241/2/3

While 1 -- an Unending Loop

• The while 1 or until 0 construct will loop forever

• Used when the termination condition is not known

• The termination condition (if any) is found inside the group

while [1];
do

….
if [condition]; then

break
fi

done

146SHARE 102 - Session 9241/2/3

The break Instruction

• The break instruction is used to exit an iterative loop

• By default, it exits the innermost loop if it is executed
inside nested loops then break n will exit out of n
levels of loops

• If n is greater than the level of nesting then all levels are
exited

147SHARE 102 - Session 9241/2/3

Looping Through a List

• There are several forms of a Do loop controlled by a
counter
for variable in list

do

statement Execute statement on each loop.

done Close the do with done.

148SHARE 102 - Session 9241/2/3

…Looping Conditionally

• An until loop always executes at least once

• A while loop will not execute at all if condition is false at
initial entry to the while statement

while list do statements done

until list do statements done

149SHARE 102 - Session 9241/2/3

Conditional Execution (If/Then/Else)

• Uses the traditional form of the conditional execution statements
if [test]

then

command

else Else is optional.

command

fi if always finishes with fi.

150SHARE 102 - Session 9241/2/3

Tests

• The test may deal with file characteristics or
numerical/string comparisons.

• Although the left bracket here appears to be part of the
structure, it is actually another name for the Unix test
command (located in /bin/[).

• Since [is the name of a file, there must be spaces before
and after it as well as before the closing bracket.

151SHARE 102 - Session 9241/2/3

Tests

• Examples:
if [$# -ne 1]
then

echo "This script needs one argument."
exit -1

fi
input="$1"
if [! -f "$input"]
then

echo "Input file does not exist."
exit -1

else
echo "Running program bigmat with input $input."
bigmat < $input

fi

152SHARE 102 - Session 9241/2/3

The Case Construct…

• Many programming languages have a construct that
allow you to test a series of conditions and execute an
expression when a true condition is found

case $key in Match the variable $key.
pattern1) Test match to pattern1.

statement If $key matches pattern1, then
execute statement

;; Each pattern ends with ;;.
pattern2) Test match to pattern2

statement If match, then execute
statement

;;

esac Close the case with esac.

153SHARE 102 - Session 9241/2/3

The Case Construct

• The first condition that evaluates as “true” causes its
corresponding expression to be executed
– Control then transfers to the end of the case group

– No other conditions are tested

• The same rules apply here for expressions as apply with
the if/then/else construct

154SHARE 102 - Session 9241/2/3

Arithmetic Functions…

• - + unary minus and plus

• ! ~ logical and bitwise negation

• ** exponentiation

• * / % multiplication, division, remainder

• + - addition, subtraction

• << >> left and right bitwise shifts

• <= >= < > comparison

• == != equality and inequality

155SHARE 102 - Session 9241/2/3

Arithmetic Expressions

• & bitwise AND

• ^ bitwise exclusive OR

• | bitwise OR

• && logical AND

• || logical OR

• expr?expr:expr conditional evaluation

• = *= /= %= += -= <<= >>= &= ^= |=
assignment

156SHARE 102 - Session 9241/2/3

Comparison Functions

• TEST OPTIONS - FILE TESTS
– -sfile Test if file exists and is not empty.

– -ffile Test if file is an ordinary file, not a
directory.

– -dfile Test if file is a directory.

– -wfile Test if file has write permission.

– -rfile Test if file has read permission.

– -xfile Test if file is executable.

– ! Not operation for test.

157SHARE 102 - Session 9241/2/3

Comparison Functions

• TEST OPTIONS - STRING COMPARISONS
– $X -eq $Y $X is equal to $Y.

– $X -ne $Y $X is not equal to $Y.

– $X -gt $Y $X is greater than $Y.

– $X -lt $Y $X is less than $Y.

– $X -ge $Y $X is greater than or equal to $Y.

– $X -le $Y $X is less than or equal to $Y.

– "$A" = "$B” String $A is equal to string $B.

158SHARE 102 - Session 9241/2/3

Comparison Functions

• TEST OPTIONS - NOT (!)
– "$A" != "$B” String $A is not equal to string $B.

– $X ! -gt $Y $X is not greater than $Y.

#!/bin/bash2
if [$# -ne 1]
then

echo "This script needs one argument."
exit -1

fi
input="$1"
if [! -f "$input"]
then

echo "Input file does not exist."
exit -1

else
echo "Running program bigmat with input $input."
bigmat < $input

fi

exit

159SHARE 102 - Session 9241/2/3

Debugging Shell Scripts

• The set instruction is your primary debugging tool
– set -a

– set -n

– set -u

– set -v

– set -x

	Linux Basics
	Disclaimer
	Class Agenda…
	Class Agenda
	The Linux Kernel
	The Linux System
	The Kernel Layer
	Device Layer
	File Systems
	Shells
	Booting the Operating System
	Introduction to Linux
	Users and Groups
	Users and Groups
	Group Setup
	Logging In
	Logging In
	Rule Number 1
	Creating a new user
	Adding a new user
	Adding a New User
	Lab One
	Introduction to Linux
	Linux Command Basics
	Standard Files
	Redirecting Output
	Redirecting Input
	Connecting commands with Pipes
	Command Options
	You need help?
	Common Commands
	More Commands
	Who’s Logged On Right Now?
	Lab Two
	Introduction to Linux
	Agenda
	The Daemon Concept
	Common Daemons
	Apache
	LDAP
	DNS
	Samba
	Samba
	Samba
	INND - Usenet
	INETD
	Lab Three
	Introduction to Linux
	About the Linux File Systems
	Linux Device Handling
	Devices and Drivers
	Special Files - /proc
	File Systems
	File Systems
	File Systems
	File Systems
	Virtual File System
	Virtual File System
	Lab Four
	Linux File System Basics
	Naming Files
	The Current Directory
	Some Special File Names
	Special Files
	Lab Five
	Creating Files and Directories
	File Permissions
	File Permissions
	File Permissions
	File Permissions
	File Permissions
	Interpreting File Permissions
	Changing File Permissions
	Remember /etc/passwd?
	Links?
	Lab Six
	Class Agenda -- Part 2
	Shells
	Shells
	Another definition of a Shell
	Why Do I Care About The Shell?
	Using the Shell
	Lab Seven
	Shell Scripts
	Filename Expansion
	Switching Users
	Environment Variables
	Environment Variables
	Some Important Environment Variables
	PATH Environment Variable
	PATH Environment Variable
	File Commands
	More Commands
	More Commands
	More Commands
	More Commands
	More Commands
	More Commands
	More Commands
	More Commands
	Introduction to Linux
	Accessing Your Data
	Listing Your Files
	ls
	ls
	ls -l
	ls -la
	Viewing Files
	cat
	more
	Lab Eight
	Introduction to Linux
	vi Basics...
	vi Basics
	Lab Nine
	THE Basics
	Default Look of a THE Session
	THE Commands: Things of Note
	THE Prefix Commands
	THE Input Area Commands
	THE Macros
	This Looks Like the ISPF Editor
	THE Exercises…
	…THE Exercises
	Introduction to Linux
	Agenda
	Terms and Concepts
	Comments
	Simple Variables
	Assignment
	Array Variables
	Syntax
	Accessing Parameters
	Accessing Parameters
	The echo Instruction
	Tracing the Program
	Terminating the Program...
	Structure and Logic
	The Simple do…done Group
	While 1 -- an Unending Loop
	The break Instruction
	Looping Through a List
	…Looping Conditionally
	Conditional Execution (If/Then/Else)
	Tests
	Tests
	The Case Construct…
	The Case Construct
	Arithmetic Functions…
	Arithmetic Expressions
	Comparison Functions
	Comparison Functions
	Comparison Functions
	Debugging Shell Scripts

