Jump Starting Solution Deployments for Linux on z/Series

Jay Brenneman
rjbrenn@us.ibm.com
Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

DB2*
DB2 Connect
DB2 Universal Database
e-business logo*
e-business on demand
HiperSockets
IBM*
IBM eServer
IBM logo*
IMS

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

Resource Link
S/390*
Tivoli*
Tivoli Storage Manager
TotalStorage*
WebSphere*
z/OS*
z/VM*
zSeries*

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM’s future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.
Agenda

- Patterns for e-Business
- Things to consider when designing a J2EE application to deploy on z/Series
- Some generic resource requirements
- System topologies
- Configuration tips
IBM Patterns for e-business

• Business Patterns identify the interaction between users, businesses, and data. Business Patterns are used to create simple, end-to-end e-business applications.
 • Business Patterns: Self Service, Collaboration, Information Aggregation, Extended Enterprise

• Self Service (User to Business) Pattern: Provides for direct interaction between interested parties (users) and a business. Interested parties include customers, Business Partners, stakeholders, employees, and all other individuals with whom the business intends to interact.
Application Topology for Self-Service Business Pattern

Directly Integrated Self-Service Pattern: Topology 2
Things to think about...

<table>
<thead>
<tr>
<th>Solution Scope</th>
<th>Solution can be installed on a new z/Series or other existing system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution Environment</td>
<td>Solution workloads should be able to coexist on the same machine with existing legacy workloads and new Linux workloads for server consolidation</td>
</tr>
<tr>
<td>Scalability</td>
<td>Solution should be able to scale for e-business workload to utilize zSeries resources, such as number of IFL engines, and Solution in a basic topology should be able to scale horizontally by adding more virtual servers into a topology that supports Workload Management and High Availability.</td>
</tr>
<tr>
<td>Performance</td>
<td>Solution should utilize new zSeries technologies that provide high-performance networking among LPARs and virtual machines</td>
</tr>
<tr>
<td>Usability</td>
<td>Solution should help minimize deployment time, and provide help in sizing the environment</td>
</tr>
<tr>
<td>Integration</td>
<td>Solution should help to integrate the new J2EE application with any existing z/OS applications</td>
</tr>
</tbody>
</table>
MORE things to think about...

Topologies
- Internet and Intranet

Optional software
- DB2 Universal Database™
- DB2 and WebSphere MQ connectors to existing z/OS applications
- WebSphere MQ Server to communicate with MQ clients
- Tivoli Directory Server (LDAP)

Application server
- WebSphere Application Server or
- WebSphere Portal or
- both

Deployment platform
- New LPAR on zSeries
- 1 to 3 IFLs,
- 2 GB memory per IFL recommended

High security level
- Optional use of Tivoli Access Manager for e-Business

Inter-application communication
- High performance communication to existing applications or DBs in other LPAR or other zSeries
Memory and DASD Requirements

<table>
<thead>
<tr>
<th>Functional Node</th>
<th>SW Product</th>
<th>Required Memory (MB)</th>
<th>Recom. Memory (MB)</th>
<th>Recom. Memory (MB) - high load</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebServer Redirector</td>
<td>IBM HTTP Server</td>
<td>128</td>
<td>512</td>
<td>1024</td>
</tr>
<tr>
<td>Application Server</td>
<td>WAS 5.1</td>
<td>1024</td>
<td>1536</td>
<td>2048</td>
</tr>
<tr>
<td>LDAP</td>
<td>IBM Directory Server 5.1</td>
<td>256</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Total w/o DB2</td>
<td></td>
<td>1408</td>
<td>2560</td>
<td>3584</td>
</tr>
<tr>
<td>Database Server</td>
<td>IBM UDB Enterprise Server 8.1</td>
<td>256</td>
<td>512</td>
<td>1024</td>
</tr>
<tr>
<td>Total with DB2</td>
<td></td>
<td>1664</td>
<td>3072</td>
<td>4608</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Server Node</th>
<th>Installed Software (MB)</th>
<th>Temporary Files (GB)</th>
<th>User Application Data (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>50</td>
<td>1 - 6</td>
<td>1 - 7</td>
</tr>
<tr>
<td>WAS</td>
<td>350</td>
<td>1 - 6</td>
<td>1 - 7</td>
</tr>
<tr>
<td>LDAP</td>
<td>250</td>
<td>1 - 6</td>
<td>1 - 7</td>
</tr>
<tr>
<td>DB2</td>
<td>250</td>
<td>1 - 6</td>
<td>10 - 200</td>
</tr>
</tbody>
</table>
Intranet Topology on z/9xx

Note: Connections between servers in the different LPARs, marked as will be implemented as HiperSockets
Intranet Topology with TAMe on z/9xx

- Intranet DMZ
 - IBM HTTP server w. WAS Plug-in
 - WebSeal 5.1
 - IBM HTTP server w. WAS Plug-in

- Internal Network
 - z/VM
 - WAS 5.1, DB2 Connect 8.1, MQ client 5.3
 - IDS 5.2 (LDAP)
 - TAM Policy Server 5.1
 - MQ server 5.3
 - DB2 UDB 8.1
 - WS Portal 5.0.2, incl. WAS EE 5.0.2
 - DB2 Connect 8.1
 - MQ client 5.3

- Domain Firewall

- Legacy applications

- z/VM

- z/OS

- LPAR1 - Linux Workloads

- IFLs

- z900 Hardware

- LPAR2 - Legacy

- CPs

Note: Connections between servers in the different LPARs, marked as will be implemented as HiperSockets
Internet Topology with TAMe on IBM eServer z/9xx

Note: Connections between servers in the different LPARs, marked as will be implemented as HiperSockets.
Network Implementation of the Internet Topology on z/9xx
VLAN-based Network Implementation of the Internet Topology on z/9xx
LPAR Configuration

- Define 2 LPARs:
 - Development/Test
 - Production
- Share all IFLs / CPs between all LPARs
- Define Expanded Storage
 - VM pages better with it
 - Aim for a 75/25 ratio
- Use HiperSockets to get access to data on z/OS if you can
VM Configuration

• Overcommit memory at a 1.5 : 1 ratio when running WebSphere in Linux guests
 • Every 1000M virtual backed by 666M real

• Use VSWITCH for guest communication if you have z/VM 4.4
 • VSWITCH CONTROLLER ON
 • DEFINE VSWITCH 9DOTLAN RDEV 83C PORT PETLNX1B
 • MODIFY VSWITCH 9DOTLAN GRANT OSATEST1
 • NICDEF 0500 TYPE QDIO LAN SYSTEM 9DOTLAN

• Use VDISK for Linux swap devices
 • 15% of guest size is a good starting place for known stable workloads
 • 250% of guest size for new workloads, then monitor and reduce as possible

• NO minidisk cache if Linux is running on minidisks!

• Change the default SRM settings
 • STORBUFF = 300, 200, 200
 • LDUBUFF = 100, 100, 100
Linux Configuration

• CPUs:
 • Define guests with same numbers of CPs as available to VM
 • Or 4, if VM has more than that (2.6 kernel may change this rule)

• Memory:
 • Give Linux the bare minimum it needs to run WAS and the Application
 • Do not over allocate memory for Linux – it will just waste it
 • Linux should swap some as the application is starting to support users, then stabilize

• How Many guests?
 • 2 GB Linuxen filled with WAS apps run just fine
 • Don't run one app per Linux instance unless the isolation is absolutely necessary
WAS Configuration

Development

- App A
 - App Server
 - Linux D1

- App B
 - App Server
 - Linux D2

Test

- App A
 - App Server 1
 - Linux T1

- App B
 - App Server 2

- App C
 - App Server 3

Production

- App A
 - App Server 1
 - Linux T1

- App B
 - App Server 2

- App C
 - App Server 3

- App D
 - App Server 1

- App E
 - App Server 2

- App F
 - App Server 3

- App G
 - App Server 1

- App H
 - App Server 2

Application Isolation

Memory/CPU Efficiency
More WAS configuration

- Adjust size of JVM Heap
 - Monitor app's Heap usage while still in development and test – Use Tivoli Performance Viewer and a Verbose GC trace
 - Adjust Heap so it averages 30% free
- Adjust thread pool sizes
- Adjust Dynamic Cache settings
- Adjust EJB Cache settings
- Adjust Servlet Cache settings

Q: Adjust them how?
A: 'till it's fast enough.
DB2 Configuration

• DB2 Connect on WAS system talking to DB2 on z/OS:
 • This is where you want to use a HiperSocket
 • `db2 catalog tcpip node <shortname> remote <hostname> server <portnum>`
 • `db2 catalog database <dbname> as <dbnic> at node <shortname> authentication dcs`
 • `db2 catalog dcs database <dbname> as <ddf location>`

• DB2 running on Linux on z:
 • Place the database instance on a striped LVM group, using PAV if you have it
 • Or a software RAID 0 array, using PAV if you have it
 • Multipath SCSI is even better

• The Heavy Lifting should be done with DB2 on z/OS
HTTPs configuration

• In http.conf:
 • do not set MaxClients too large, it limits the number of incoming connections into WAS – this is a good thing
 • may want to increase MaxRequestsPerChild for better throughput
 • may want to decrease KeepAliveTimeout so that less time is spent waiting on idle clients
Application Configuration

- The application itself has the largest impact on performance
- Good Performance is designed into an application
 - It is painful to add on later
Related Web Pages

<table>
<thead>
<tr>
<th>Related Web Page</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Patterns for e-business</td>
<td>ibm.com/developerworks/patterns/</td>
</tr>
<tr>
<td>IBM Redpaper - 'z/VM Configuration for WebSphere Deployments'</td>
<td>ibm.com/redbooks/abstracts/redp3661.html</td>
</tr>
</tbody>
</table>
Summary

• Careful planning leads to a system that will grow as needed
• Consider your security and networking needs
• Take advantage of the features of the platform
• You still need Expanded Storage
• Do not over allocate the Linux systems
• Run DB2 on z/OS for high transaction rate applications
• Do not flood the WAS queues
• Work with the application developers to reach performance goals