
Configuring BIND

Session 9261
SHARE 102

Long Beach, CA

Abstract

If the Domain Name Server is the glue which
holds the internet together, then the
Berkeley Internet Name Domain (BIND)
server is the brand of glue used by the
majority of its users. Join us and find out
how to configure your BIND server. We'll
look into the types of records, and when to
use them as well as a quick look into
DNSSEC.

The Speaker

Harold Pritchett
Patricia Egen Consulting

(706) 546-0692
harold@uga.edu

Disclaimer
Everybody has lawyers:
The ideas and concepts set forth in this

presentation are solely those of the respective
authors, and not of the companies and or
vendors referenced within and these
organizations do not endorse, guarantee, or
otherwise certify any such ideas or concepts in
application or usage. This material should be
verified for applicability and correctness in each
user environment. No warranty of any kind
available.

Presentation Protocol

Ask Questions for Understanding
For clarification on the current topic:
STICK YOUR HAND UP NOW -

Save Questions on related issues
Hold for Q&A at end of session

The only dumb question is:

the one you didn't ask

BIND

!Berkeley Internet Name Domain (BIND)
software. BIND is a client/server software
system. The Client side of BIND is called the
resolver. It generates the queries for
domain name information that are sent to
the server. The DNS server software
answers the resolver’s queries. The server
side of BIND is a daemon.

!It is called ‘named’ (pronounced “name” “d”)

History of BIND

!The architect of the Domain Name System
was Paul Mockapetris of USC’s Information
Sciences Institute in 1983.

!Paul then proceeded to write the first
implementation of this architecture which he
called “jeeves”

!Jeeves was implemented in July, 1984 on a
DEC PDP-10 running TOPS-20

!Jeeves would continue to run as the “root”
name servers until approximately 1988

History of BIND (Cont.)

!BIND was written at the University of
California at Berkeley for the 4.3 BSD Unix
operating system.

!BIND version 4 was released in April, 1985
!Versions of BIND through 4.8.3 were

maintained by Berkeley
!Versions 4.9 and 4.9.1 were released by

Digital Equipment Company. Paul Vixie, a
Digital employee became BIND’s maintainer

History of BIND (Cont.)

!BIND 4.9.2 was released by Vixie
Enterprises. Paul Vixie became BIND’s
principal architect/programmer

!BIND 4.9.3 and all later releases were
developed and maintained by the Internet
Software Consortium (www.isc.org). Paul
Vixie remained as the BIND guru.

!BIND was feature frozen at version 4.9.5 in
1995. Only Security and Bug fixes released

History of BIND (Cont.)

!BIND 8 – Initially released in May, 1997
!BIND 8 was a major rewrite of the BIND 4

code, but shared the same code base.
!BIND 8 had a new configuration file,

named.conf
!BIND 8 added an impresive list of new

features to BIND

New Features in BIND 8.1
! DNS Dynamic Updates (RFC 2136)
! DNS Change Notification (RFC 1996)
! Completely new configuration syntax
! Flexible, categorized logging system
! IP-address-based access control for queries, zone

transfers, and updates that may be specified on a zone-by-
zone basis

! More efficient zone transfers
! Improved performance for servers with thousands of zones
! The server no longer forks for outbound zone transfers
! Many bug fixes

History of BIND (Cont.)

! BIND 9 - Initially released in September,
2000

!A complete, from scratch, rewrite of the
BIND program

!Why?
!One reason was to “clean up” the BIND

code.
!Paul Vixie was busy maintaining BIND 8

and took no part in the creation of BIND 9.

Some Features of BIND Version 9
! DNS Security

! DNSSEC (signed zones)
! TSIG (signed DNS requests)

! IP version 6
! Answers DNS queries on IPv6 sockets
! IPv6 resource records (A6, DNAME, etc.)
! Bitstring Labels
! Experimental IPv6 Resolver Library

! DNS Protocol Enhancements
! IXFR, DDNS, Notify, EDNS0
! Improved standards conformance

! Views
! One server process can provide multiple "views" of the DNS namespace,

e.g. an "inside" view to certain clients, and an "outside" view to others.
! Multiprocessor Support
! Improved Portability Architecture

Disclaimer found in BIND 4 release

The official version of ISC BIND is now
9.1.0, or failing that, 8.2.3.
This is ISC BIND 4.9.11, hoped to be the
last of 4.*, which we are releasing since it
has an important security bug fixed. Other
less important security bugs in BIND4
remain *unfixed*. You should not be
running it. You have been warned.

Network access to BIND

!The BIND server is accessed via the
network on port 53.

!Both TCP and UPD are used.
!Queries are made via UDP
!Responses are made via UDP unless the

response is to large to fit in a single packet
!If the response won’t fit in a single UDP

packet, then the response is returned via TCP
!MS Exchange has been reported to use TCP

for queries

A little review

!Delegation
!Zones vs Domains
!Types of Name Servers
!Zone Transfers

Delegation

! Administrators can create subdomains to group
hosts:
! According to geography, organizational affiliation or

any other criterion
! An administrator of a domain can delegate

responsibility for managing a subdomain to
someone else

! The parent domain retains links to the delegated
subdomain:
! The parent domain “remembers” who it delegated the

subdomain to

Delegation creates zones

!Each time an administrator delegates a
subdomain to someone else, a new unit of
administration is created
!The subdomain and its parent domain can

now be administered independently
!These units are called zones
!The boundary between zones is a point of

delegation in the name space

What’s in a zone?

!Like a domain, a zone is named after its
apex node

!Unlike a domain, a zone contains only
descendants of the zone’s apex node that
have not been delegated
!Nodes below a delegation point are in another

zone

Zones vs Domains

! A zone (of a given name) contains the same
nodes as a domain (of the same name), minus
those nodes that are delegated away to other
zones

! For example, the zone uga.edu contains the
same nodes as the domain uga.edu, minus those
nodes in zones beneath uga.edu

! When do a zone and a domain (with the same
name) contain the same nodes?

Name Servers

!Name servers store information about the
name space in units of zones
!The name servers that load a complete zone

are said to “have authority for” or “be
authoritative for” the zone

!Usually, more than one name server is
authoritative for the same zone
!This ensures redundancy and spreads the load

!Also, a single name server may be
authoritative for many zones

Name Servers (Cont)

!A name server which has been delegated
authority for a zone but does not have
data for that zone is referred to as a

Lame Server

!This is a very bad thing, and occurs much
too often

Types of Name Servers

!The master name server for a zone loads
the zone’s data from a file on disk

!A slave name server for a zone loads the
zone’s data from another authoritative
name server (often the primary master)
!An older term for slave was “secondary master”
!The server the slave gets its zone data from is

called its master server
!A Caching only name server has no local

data files

Types of Name Servers

!A single name server can be the master for
some zones and a slave for other zones
!The relationship is defined zone-by-zone
!So, strictly speaking, you shouldn’t refer to a

computer as “the master name server” unless
you also specify which zone you’re talking
about

Zone Transfers

!Slave servers retrieve zone data from
other authoritative name servers using a
zone transfer

!The zone transfer is initiated by the slave
!By initiating a TCP connection to the master

name server

!The master server may notify the slave
server that new zone data is available

Defining the Zone Data

Zone files

!The files which contain the data being
served by the DNS system are called “Zone
Files”

!They are made up of a series of “Resource
Records”

!A Zone File will always contain an SOA
record as well as additional records

Resource Records

Resource records have as many as five
fields, most of which are optional:
!Owner: the domain name of the node to

which the record is attached
!Time to live (TTL): more on this later
!Class: the kind of network this record

describes
!Only class we need is the internet class “in”

!Type: the function of this record
!RDATA: record-specific data

!The RDATA can be further subdivided into type-
specific fields

Types of Resource Records
! SOA - start of authority, for a given zone
! NS - name server
! A - name-to-address mapping
! PTR - address-to-name mapping
! CNAME - canonical name (for aliases)
! MX – mail exchanger (host to receive mail for this name)
! TXT - textual info
! RP - contact person for this zone
! WKS - well known services
! HINFO - host information
! Comments start with ; continue to end of line

SOA Record

! A start of authority (type SOA) record specifies
zone-specific values

! Each zone has one SOA record
! The owner is the domain name of the zone
! The RDATA is, to say the least, complicated

halshome.net. IN SOA rottweiler.halshome.net. harold.halshome.net. (
2008071301 ; serial
3h ; refresh
1h ; retry
1w ; expire
10m) ; negative caching TTL

SOA fields

!The fields in the SOA RDATA are, in order:
!The MNAME field, by convention the domain

name of the master name server,
!The email address of the technical contact for

the zone, with a dot replacing the “@”,
!The zone’s “serial number”
!The zone’s “refresh interval”
!The zone’s “retry interval”
!The zone’s “expiration interval”
!The “negative caching time to live (TTL)” for

records in the zone

SOA fields

!All of the times default to seconds
!This was all that was allowed in BIND 4
!In BIND 8 and BIND 9, times may be suffixed

with a unit
!s for seconds (259200 seconds)
!m for minutes (4320 minutes)
!h for hours (72 hours)
!d for days (3 days)

NS records

! A name server (type “NS”) record lists an
authoritative name server for a zone

! The owner is the domain name of the zone
! The RDATA is a single domain name (not an IP

address) of a name server authoritative for the
zone

halshome.net. IN NS ns1.granitecanyon.com.
halshome.net. IN NS ns2.granitecanyon.com.

A records
! An address (type “A”) record specifies an IP

address of a host
!More generally, it specifies the IP address of a domain

name
! The owner is the domain name of the host
! The RDATA is the dotted-octet format of a single

IP address
! Multihomed hosts and routers can have multiple

A records, one for each network interface

www.halshome.net. IN A 192.168.1.3

PTR records

! A PTR or “Pointer Record” is the “reverse lookup”
record for a host

! The owner field of the record contains the IP
address of the host in reverse order with the
domain name “in-addr.arpa” appended to it

! The RDATA of the record is the fully qualified
Domain Name (FQDN) of the host

3.1.168.192.in-addr.arpa. IN PTR www.halshome.net.

CNAME records

!A CNAME or “Canonical Name” record is an
Internet Alias. The name in the owner field
is equated as an alias to the FQDN found in
the RDATA field.

!A name which appears in the owner field of
a CNAME record can not appear in the
owner field of any other record.

www.halshome.net. IN CNAME halshome.net.

MX records

! A MX or “Mail Exchanger” record is used to
assign e-mail delivery information for a host.
The mail address in the owner field is assigned
to the host in the RDATA field.

! The RDATA field contains two sub-fields, an
assignment priority and host name. Multiple
records are tried in priority order, lowest first

halshome.net. in mx 0 mail1.halshome.net.
halshome.net. in mx 1 mail2.halshome.net.

TXT records

!Text (TXT) records contain data which is
associated with the name in the owner
field.

!The RDATA field consists of multiple
strings, enclosed in quotes (“)

dawg IN TXT “Location:” “Room 608”

RP records

!The Responsible Person (RP) record can be
used to provide contact information about
the name in the owner field

!The RDATA consists of two fields
!The e-mail address of the person, in DNS

format (@ replaced with .)
!The name of a TXT record to be associated

with this person

RP and TXT records

!It looks something like this

dawg IN RP harold.dawg.halshome.net hp
hp IN TXT “Harold Pritchett – 706-546-0692”

HINFO and WKS records

!These records were created to provide
information which previously occurred in
the old arpanet HOSTS.TXT file. They are
rarely used today.

!Most people don’t want to provide details
about the hardware and software they are
running

Zone file conventions
!The domain specified in the zone files is

known as the origin
!It is initially set to the value from the zone

statement in named.conf
!It can be represented by the @ symbol
!Origin will be appended to all hostnames

that do not end with a dot

Zone file conventions
!Comments in zone files start with a semi-

colon and end at the end of line
!The parentheses “()” are used to group

data that crosses a line boundary. In
effect, line terminations are not recognized
within parentheses.

Zone name

! In configuration file “named.conf”:
zone “halshome.net" in {
type master;
file “halshome.db”; };

! In Zone File “halshome.db”:
@ IN SOA rottweiler harold (

2000071200 ; serial
3h ; refresh
1h ; retry
1w ; expire
10m) ; negative caching TTL

Zone file conventions
!Repeat last name

!If a resource record starts with a space or tab
it assumes the same name as the previous
resource record

Zone files

!Created by the domain administrator for
each zone for which this server is
authoritative

!There are two zone files created for each
zone
!One for the forward lookup (lookup by

hostname – contains “A” records)
!One for the reverse lookup (lookup by IP

address – contains “PTR” records)

Examples of zone files

localhost file
$ORIGIN localhost.
$TTL 86400
@ IN SOA localhost. root.localhost. (

1 ; serial
1800 ; refresh
900 ; retry

86400 ; expire
1200) ; negative cache ttl

NS localhost.
A 127.0.0.1

localhost.rev file
$ORIGIN 0.0.127.in-addr.arpa.
$TTL 86400
@ IN SOA localhost. root.localhost. (

1 ; serial
30m ; refresh
15m ; retry

1d ; expire
20m) ; negative cache ttl

NS localhost.
1 PTR localhost.

halshome file
$TTL 86400
@ IN SOA mickey harold.mickey (

2004022201 ; serial
1800 ; refresh
900 ; retry

69120 ; expire
1080) ; negative cache ttl

NS ns1.granitecanyon.com.
NS ns2.granitecanyon.com.
A 192.168.1.1

rottweiler A 192.168.1.1
mickey A 192.168.1.3
stitch A 192.168.1.6
jr A 192.168.1.11

Halshome.rev file
$TTL 86400
@ IN SOA mickey.halshome.net. harold.mickey.halshome.net. (

2004022201 ; serial
1800 ; refresh
900 ; retry

69120 ; expire
1080) ; negative cache ttl

1 ptr rottweiler.halshome.net.
3 ptr mickey.halshome.net.
6 ptr stitch.halshome.net.
11 ptr jr.halshome.net.

Configuring your Name Server

Configuring DNS Name Service

!Configuring the BIND resolver

!Configuring the BIND name server (named)
!The name server configuration file

(named.conf)
!The name server database files, (called the

zone files)

BIND Configurations

!There are four levels of service which can
be defined in a BIND configuration
!Resolver-only
!Caching-only servers
!Master servers
!Slave servers

Resolver configuration

!The resolver is the code that makes
requests to name servers for domain
information

!On UNIX systems, it is implemented as a
library (libresolv.a, libresolv.so)

!Single configuration file
/etc/resolv.conf

Configuring the Resolver

!The resolver is configured in the
/etc/resolv.conf file
!It allows you to identify up to three name

servers, the default domain name, and various
other processing options

Resolver statements

!nameserver address
!domain name
!search domain …
!sortlist network …
!options option …

Example of /etc/resolv.conf

*Resolver configuration file
domain halshome.net
nameserver 192.168.1.3
nameserver 128.192.1.9
nameserver 128.192.1.193

Configuring named

!Several files are used to configure named
!Only one is hard coded

/etc/named.conf

!All other files are defined in this one
!File names are completely arbitrary
!The name named.conf can be changed on

the command line when named is started
named -c /my/config/file

Configuration Files

!named.boot
!named.conf
!root.hints
! localhost
! localhost.rev
!Other zone files

!Remember, File names are arbitrary

named.boot

!If you find this file, you have a real
problem

!named.boot is the configuration file for
BIND 4 which is completely deprecated

!You MUST de-install BIND 4 and install
either BIND 8 or BIND 9!

!This is NOT optional!

named.conf

!Comments: /* */ , // , #
!Each statement begins with a keyword
!An address match list can include:

IP/IP with netmask/acl name/key/!
e.g. { ! 1.2.3.13; 1.2.3.24; };

{ 140.113/16; 127.0.0.1; };
!Uses a “first match” algorithm
!All statements end with a semicolon (;)

Some statement types

include inserts an external file
options Sets global name server

configuration
acl Defines access control lists
logging Specifies logging categories and

destinations
zone Define a zone of resource records

The include statement

! include “path”;

!Put different portion of the configuration in
separate files

!The path is relative…
!To the directory listed in the “options”

statement

!Protect cryptographic keys by making
included files not world-readable

The options statement

!options {
option;
option;
…

};
!BIND 8 had 30
!BIND 9 has over 50

The options statement

!version “string”; [actual version of server]
!directory “path”; [where server started]
!notify yes | no; [yes]
!also-notify svrs_ips; [empty]
!recursion yes | no; [yes]
!allow-recursion { add_list }; [all hosts]
!Many others - see references

The acl statement

!Acl acl_name {
address_match_list

};
!Must be defined before it is used (one pass

processing of the config file)
!Predefined lists:

any, localnets, localhost, none

The logging statement
! Logging {

channel_def;
channel_def;
…
category category_name {

channel_name;
channel_name;
…

};

The zone statement

!zone “domain_name” {
type master|slave|stub|hint|forward;
file “path”;
allow-query {address_match_list; };
allow-transfer {address_match_list; };
allow-update {address_match_list; };

};

root.hints

!This file is used to find the root name
servers.

!The current version is always available for
ftp from ftp.rs.internic.net in the /domain
directory. It is named named.root

!Rename it to root.hints or to whatever
name you call it in your named.conf file

!It only has to be reasonably current

Configuring a caching-only server

!Why?
!Resolvers are dumb
!They don’t remember anything!

!Well, the WinDoze one does, but that’s a
different problem

!If we could remember previously
requested addresses we could speed up
internet access

Configuring a caching-only server

!A caching-only name server
!Is authoritative for no domain or zone
!Provides DNS services for users, and

remembers the results.
!Only configuration files are

!named.conf
!localhost
!localhost.rev
!root.hints

Configuring a caching-only server
named.conf for caching-only server

options { directory "/var/named"; };
zone “localhost" {

type master;
file “localhost"; };

zone "0.0.127.IN-ADDR.ARPA" {
type master;
file “localhost.rev"; };

zone "." {
type hint;
file “root.hints"; };

Master and Slave servers

!Both are authoritative for the zones they
serve. This means that they have the data
for the zones locally and don’t have to
query other servers for the data.

!Master servers actually contain zone data
in local files

!Slave servers get their data from the
master server

SOA Fields and Zone Transfers
! Most of the SOA fields are related to zone

transfers
! A slave server for a zone checks with its master

server once during each refresh interval to see if
the zone’s serial number has gone up (not just
changed)
! If the master has a higher serial number than the

slave for the zone, the slave transfers the zone
! If the serial number is the same, the slave resets its

refresh timer
! If the serial number on the master is lower, the slave

complains

SOA Fields and Zone Transfers

!If the slave’s check of the master’s serial
number fails, it tries again within the retry
interval until it gets the serial number

!If the slave still can’t get the serial number
within the expire interval, it stops giving
out answers about the zone
!Queries for data in the zone return an error

(SERVFAIL)

Notify

!Allows the master name server for a zone
to notify the slave servers of changes to
the zone by sending them specially
formatted messages

!Upon receipt of these messages, NOTIFY-
capable slaves
!Verify that the message came from one of

their master servers
!Immediately check the zone’s SOA record on

their configured master server(s)

DNS Security

TSIG

!Transaction Signatures
!Introduced in BIND 8.2
!Codified in RFC 2845
!Uses shared secret keys to sign

transactions
!Uses a special MD5 hash which includes a

secret key (HMAC-MD5)
!Main problem is the shared secret keys

DNSSEC

!The DNS Security Extensions
!Defined in RFC 2535
!Still under development by the DNSEXT

working group of the IETF. They may
change before the final standard is defined

!Uses public key cryptography to digitally
sign data, thereby proving it’s authenticity

!Current implementation is BIND 9

DNSSEC

!Private key is kept secret
!Usually in a file on the server somewhere
!Included into the named.conf file
!File access can be limited

!Public key is published to the world
!It is kept in a new dns record type called a

“key” record
!This “key” record is attached to the domain

name of the zone

Key signing

!Keys can be signed by a “higher authority”
to guarantee their authenticity
!The uga.edu key would be signed by the .edu

zone key
!The .edu key would be signed by the root

zone key
!None of this is currently in place, but will be

when DNSSEC becomes more widely used

!Signatures are stored in “sig” records

Signing of Data

!Data is signed at the RRset level
!An RRset consists of all the resource

records with:
!The same owner
!The same class
!The same type

!They are always returned together when a
query is made to the name server

DNSSEC

!There are many more details than I have
shown here. For more information about
DNSSEC, see Albitz and Liu, Chapter 11, or
read the applicable RFCs

!Also please note that the DNS security
implemented with MS W2K DNS products
is NOT compatible with the DNS security
implemented in BIND

Tools for troubleshooting

!nslookup
!Deprecated and may be removed from the

bind distribution at some date
!dig

!Domain Information Groper
!General purpose DNS lookup tool

!Performs lookups and returns results
!Very flexible (lots of options)

!host
!Another general purpose DNS lookup tool

Primary Reference Materials

www.oreilly.com

Other References

Internet Security Consortium
www.isc.org

Internet RFC Archives
www.faqs.org/rfcs

ICANN Home Page
www.icann.org

DNS Resource Directory
www.dns.net/dnsrd

Other References

Men and Mice DNS Glossary
www.menandmice.com/online_docs_and_faq/glossary/glossarytoc.htm

Rob Thomas’ secure bind template
www.cymru.com/Documents/secure-bind-template.html

DNS Security Extensions
www.dnssec.net

BIND 9 Administrator Reference Manual
www.nominum.com/content/documents/bind9arm.pdf

Mailing Lists

!bind-announce
!bind-users
!bind9-users

!All lists are hosted at isc.org along with their
archives

!To subscribe go to
www.isc.org/services/public/lists/bind-lists.html

Always check the archives BEFORE asking
for help

Tools to maintain your domain

!DNS Builder
www.ewas.net/tools/dnsbuilder

!WEBMIN
www.webmin.com

!Lots of others
!Some free
!Some not

Session 9261
Th-th-th-that’s all folks

Questions?

