
The GNU Compiler Collection on zSeries

Dr. Ulrich Weigand
Linux for zSeries Development, IBM Lab Böblingen
Ulrich.Weigand@de.ibm.com

GNU Compiler Collection
History and features
Architecture overview

GCC on zSeries
History and current status
zSeries specific features and challenges

Using GCC
GCC optimization settings
GCC inline assembly

Future of GCC

Agenda

GCC and Linux

Linux
Kernel

Samba

Unix - tools

GNU - essentials

gcc

binutils
gdb

glibc

Applications

Apache

DB2
UDB

SAP R/3

grep
ls

cvs

mount

GCC History

Timeline
January 1984: Start of the GNU project
May 1987: Release of GCC 1.0
February 1992: Release of GCC 2.0
August 1997: EGCS project announced
November 1997: Release of EGCS 1.0
April 1999: EGCS / GCC merge
July 1999: Release of GCC 2.95
June 2001: Release of GCC 3.0
May/August 2002: Release of GCC 3.1/3.2
March 2003: Release of GCC 3.3 (estimated)

GCC Features

Supported Languages
part of GCC distribution:

C, C++, Objective C
Fortran 77
Java
Ada

distributed separately:
Pascal
Modula-3

under development:
Fortran 95
Cobol

GCC Features (cont.)

Supported CPU targets
i386, ia64, rs6000, s390
sparc, alpha, mips, arm, pa-risc, m68k, m88k
many embedded targets

Supported OS bindings
Unix: Linux, *BSD, AIX, Solaris, HP/UX, Tru64, Irix, SCO
DOS/Windows, Darwin (MacOS X)
embedded targets and others

Supported modes of operation
native compiler
cross-compiler
'Canadian cross' builds

Optimizer

i386
back-end

rs6000
back-end

sparc
back-end

s390
back-end

C
front-end

C++
front-end

Fortran
front-end

Java
front-end

...

...

tree

rtx

GCC Architecture: Overview

Parsing

RTL generation
Tree optimization

Sibling call optimization
Common subexpression elimination

Loop optimization
Data flow analysis

Instruction combination
Instruction scheduling

Register allocation and reloading
Instruction scheduling (repeated)

Branch shortening

Assembly code generation
Peephole optimizations

GCC Architecture: Passes

Parsing

RTL generation
Tree optimization

Sibling call optimization
Common subexpression elimination

Loop optimization
Data flow analysis

Instruction combination
Instruction scheduling

Register allocation and reloading
Instruction scheduling (repeated)

Branch shortening

Assembly code generation
Peephole optimizations

GCC Architecture: Passes

insn splitters

target macros

insn definitions

expanders

function units

insn constraints

insn attributes

GCC for zSeries: History

Timeline
in 1998: Work on the S/390 backend started
in 1999: Linux for S/390 project started
December 1999: Code drop to developerWorks (gcc 2.95.1)
October 2000: Linux for S/390 GA distribution (gcc 2.95.2)
December 2000: Experimental 64-bit support (gcc 2.95.2)
April 2001: Merged 31-bit and 64-bit back-ends
June 2001: Improved back-end dropped (gcc 2.95.3)
July/August 2001: Integration into FSF CVS repository
August 2001: gcc 3.0.1 released
November 2002: gcc 3.2 based GA distribution

GCC for zSeries: Status

Supported environments
31-bit platform: ESA/390 + optional features

relative and immediate instructions (S/390 G2+)
IEEE floating point instructions (S/390 G5+)

64-bit platform: z/Architecture
Linux ELF Application Binary Interface

Performance
Competitive with other compilers on the platform
Many (but not all) GCC / platform features exploited
Still room for improvement

GCC for zSeries: Status

Versions
gcc 2.95.2: superseded 31-bit only compiler
gcc 2.95.3: stable 31-bit and 64-bit compiler

Largest installed base (SuSE, Red Hat, Millennux, Debian)
Used to build most middleware and ISV software

gcc 3.0.x: Never in wide-spread use
gcc 3.1.x: Superseded by gcc 3.2 (ABI issues)
gcc 3.2.x: current recommended compiler

Used with recent/upcoming distributions
C++ compatibility/transition issues

GCC for zSeries: Status

New features in gcc 3.2 vs. 2.95.3
Improved support for ISO C99 features
Improved ISO C++ standard conformance
Stable C++ ABI
Integrated C/C++ preprocessor
New optimization passes
Improved support for function inlining
Profile-directed optimizations
Internal infrastructure enhancements

GCC for zSeries: Challenges

'Unusual' architecture features
31-bit addressing mode
Instruction-dependent address formats
Limited address displacements and immediate literals
Condition code handling

GCC for zSeries: Optimization example

Source code
void f (long a)
{
 if ((a & 32) && !(a & 4))
 g ();
}

Optimal translation into zSeries assembler
TEST UNDER MASK instruction: TMLL %reg,36
Check for condition code 2: Selected bits mixed zeros and
ones, and leftmost is one

Non-optimized code
f: stmg %r11,%r15,88(%r15)
 larl %r13,.L3
 aghi %r15,-168
 lgr %r11,%r15
 stg %r2,160(%r11)
 lg %r1,160(%r11)
 ng %r1,.LC0-.L3(%r13) # .quad 32
 ltgr %r1,%r1
 je .L1
 lg %r1,160(%r11)
 ng %r1,.LC1-.L3(%r13) # .quad 4
 ltgr %r1,%r1
 jne .L1
 brasl %r14,g
.L1: lg %r4,280(%r11)
 lmg %r11,%r15,256(%r11)
 br %r4

GCC for zSeries: Optimization example

Optimized code (gcc 3.3 with -O1):
f:
 stmg %r14,%r15,112(%r15)
 aghi %r15,-160
 tmll %r2,36
 jnh .L1
 brasl %r14,g
.L1:
 lg %r4,272(%r15)
 lmg %r14,%r15,272(%r15)
 br %r4

GCC for zSeries: Optimization example

-O0 (default): no optimization
shortest compilation time, best results when debugging

-O1 (-O): default optimization
moderately increased compilation time

-O2: heavy optimization
significantly increased compilation time
no optimizations with potentially adverse effects

-O3: optimal execution time
may increase code size, may make debugging difficult

-Os: optimal code size
may imply slower execution time than -O3

Using GCC: Optimization

What is function inlining?
Incorporate the called function's body into the caller
Replace formal parameters with arguments

Benefits
Avoid function call overhead
Optimize combined function as a whole

Disadvantages
Increased code size
Increased compilation time

Using GCC: Function inlining

Using GCC: Function inlining (cont.)

Functions explicitly declared for inlining
Use inline keyword in function declaration
Define C++ member functions inside class body

Functions automatically chosen for inlining
Heuristics based on function size and 'complexity'
Activated via -finline-functions (part of -O3)

Inlining limits and overrides
Maximum size of inlined functions: -finline-limit=n
Warn if non-inlined: -Winline
Force inlined: __attribute__((always_inline))
Force non-inlined: __attribute__((noinline))

Using GCC: Profile-directed optimizations

Basic blocks
Block of code that is always executed sequentially
Bounded by branches or branch target labels

Program flow arcs
Potential transfers of control between basic blocks
Fall-through, branches, function call/return, exceptions

Branch probabilities
How often is any given branch taken vs. non-taken?
How often is any given basic block executed?

Using GCC: Profile-directed optimizations

Utilizing branch probability data
Profiling
Test coverage analysis
Profile-directed optimizations

Generating branch probability data
Build instrumented executable: -fprofile-arcs
Generate basic block graph: -ftest-coverage
Profile-directed optimizations: -fbranch-probabilities
GNU test coverage tool: gcov

source code
src.c

optimized
executable

instrumented
executable

basic blocks
src.bbg

profile data
src.da

gcc
-fbranch-probabilities

coverage
report

gcov

test run

gcc -fprofile-arcsgcc -ftest-coverage

Using GCC: Profile-directed optimizations

Using GCC: Static branch probabilities

Sources of branch probability data
Guessed by the compiler
Profile-directed feedback (-fbranch-probabilities)
Specified by the programmer (__builtin_expect)

Using __builtin_expect
Specification:
long __builtin_expect (long expression,
 long expected)
Example:
if (__builtin_expect (ptr == NULL, 0))
 error ();

Using GCC: Inline assembly

Why inline assembly?
Use low-level architecture features (CS, STCK, ...)
Optimize hot spots

GCC inline assembly features
Generate arbitrary assembler code
Access high-level data operands
Expose detailed semantics to the compiler
Fully participate in compiler optimizations

Syntax of "asm" construct
asm (assembler template
 : output operands [optional]
 : input operands [optional]
 : clobber statments [optional]);

Assembler template
String passed to assembler
May contain operand placeholders %0, %1, ...
Registers specified as %%r0, %%r1, ...

Clobber statements
Specify registers changed by template: "0", "1", ...
Special clobbers: "cc" (condition code), "memory"

Using GCC: Inline assembly

Using GCC: Inline assembly

Operand specification
Format: List of "constraint" (expression)
Constraint letters

"d" / "f" - general purpose / floating point register
"a" - address register (i.e. general purpose register except %r0)
"m" - general memory operand (base + index + displacement)
"Q" - S-operand (base + displacement) - gcc 3.3 only
"i" - immediate constant

Constraint modifier characters
"=" / "+" - write-only / read-write output operand
"&" - operand modified before all inputs are processed

Matching constraints
"0", "1", ... - operand must match specified operand number

Using GCC: Inline assembly examples

Simple register constraint
asm ("ear %0,%%a0" : "=d" (ar0_value));

Simple memory constraint
asm ("cvb %0,%1" : "=d" (bin) : "m" (dec));

Handling S-operands
asm ("stck %0" : "=Q" (time) : : "cc");
asm ("stck 0(%0)" : : "a" (&time)
 : "memory", "cc");
asm ("stck 0(%1)" : "=m" (time)
 : "a" (&time) : "cc");

Using GCC: Inline assembly examples

Compare and swap
asm ("cs %0,%3,0(%2)"
 : "=d" (old_val), "+m" (*loc)
 : "a" (loc), "d" (new_val),
 "0" (expected_val) : "cc");

Atomic add (using compare and swap)
asm ("0: lr %1,%0\n\t"
 " ar %1,%4\n\t"
 " cs %0,%1,0(%3)\n\t"
 " jl 0b"
 : "=&d" (old_val), "=&d" (new_val),
 "=m" (*counter)
 : "a" (counter), "d" (increment),
 "0" (*counter)
 : "cc");

Using GCC: Inline assembly examples

System call (using register asm variables)
int read(int fd, char *buf, off_t count) {
 register int __arg1 asm("2") = fd;
 register char *__arg2 asm("3") = buf;
 register off_t __arg3 asm("4") = count;
 register int __res asm("2");
 __asm__ __volatile__ (
 "svc %1"
 : "=d" (__res)
 : "i" (__NR_read),
 "0" (__arg1),
 "d" (__arg2),
 "d" (__arg3)
 : "cc", "memory");
 return __res;
}

Future of GCC

gcc 3.3 (scheduled for March 2003)
Improved profile-directed optimizations
Improved instruction scheduling
Type-based alias analysis for C++ aggregate types
Thread-local storage support
Enable full Java support on zSeries
Bi-arch compile support for zSeries
Miscellaneous zSeries back-end performance optimizations

Future of GCC (cont.)

gcc 3.4 (estimated Year End 2003)
Precompiled header support for C/C++/Objective-C
New C++ parser for full ISO C++ conformance
Improved loop optimizer (?)
Improved register allocator (?)
Tree-based optimization passes (?)
Compile-time speed enhancements (?)
More zSeries back-end improvements

Resources

GNU Compiler Collection home page
http://gcc.gnu.org

Linux for zSeries developerWorks page
http://www.software.ibm.com/
developerworks/opensource/linux390/index.html

Linux for zSeries technical contact address
linux390@de.ibm.com

