
What's new in Linux 2.6?

Dr. Ulrich Weigand
Linux for zSeries Development, IBM Lab Böblingen
Ulrich.Weigand@de.ibm.com

Timeline
New features overview
Scalability enhancements
Threading model and futexes
Device model and device configuration

Agenda

Linux 2.6

Timeline
January 1999: Linux 2.2.0 released
May 1999: Start of 2.3.x development (2.2.8)
January 2001: Linux 2.4.0 released
November 2001: Start of 2.5.x development (2.4.15)
October 2002: Feature freeze for 2.6
February 2003: Current version 2.5.61
Estimated release of Linux 2.6.0: mid-2003

Source: Guillaume Boissiere
http://www.kernelnewbies.org/status/

Linux 2.6: Overvie

New features
Platform and device support
File systems and volume managers
Network protocols
Eliminate system limits

Performance and scalability enhancements
Scheduler
Memory management
Block I/O layer
SMP scalability

Backports to 2.4 kernels

Linux 2.6: Overview

New architectures
PowerPC 64-bit (ppc64)
AMD 64-bit (x86_64)
ucLinux (MMU-less processors: v850, m68knommu)
User Mode Linux

New devices
New input device / frame buffer layers
ALSA (Advanced Linux Sound Architecture)
Video for Linux v2
New IDE layer, Serial ATA support

Platform and device support

Support for new file systems
IBM JFS
SGI XFS
NFS v4
Andrew File System (AFS)
ReiserFS v4 (planned)

Other enhancements
Device mapper infrastructure (LVM2, EVMS)
Extended Attribute / Access Control List (ACL) support
Large directory support for ext2/ext3
Zero-copy NFS

File systems

Networking enhancements
SCTP (Stream Control Transmission Protocol)
TCP segmentation offload
IPsec support and CryptoAPI
Improved IPv6 support
Bluetooth support

Networking

Removal of hard limits
Number of processes/threads: 64k -> 2G
Block device limit: 2TB -> 16TB / 8EB
Number of groups per process: 32 -> unlimited (planned)
Major/minor numbers: 256 -> 4k/1M (planned)

SMP scalability
Reduce use of Big Kernel Lock
Eliminate global locks (I/O request, IRQ, task list)
Per-CPU data structures

Scalability

O(1) scheduler

Authors: Ingo Molnar et al.
Design of old scheduler

Global run-queue holds all runnable processes
Reschedule scans full run-queue to find next process to run
Time-slice recalculation after all slices have been consumed

Problems
Reschedule slow when run-queue is long
Recalculation loop slow, trashes cache
SMP scalability issues

O(1) scheduler (cont.)

Design goals for new scheduler
O(1) algorithms: wakeup, schedule, timer interrupt
Scale to large number of processes/threads
Perfect SMP scalability
Processor affinity (incl. NUMA/SMT support)
Keep good interactive performance
Keep good performance with few runnable processes
Keep features: priorities, RT scheduling, CPU binding

Implementation
Active/expired per-CPU priority arrays as run-queue
Load balancing between CPUs done by migration threads

Process A
User

Process A
Kernel Handler Scheduler Process B

User

SVC IRQ Wakeup

Process A
Kernel

SVC Exit

Process A
User Handler Scheduler Process B

User

Latency

Resched

IRQ Wakeup Resched

Authors: Robert Love, Andrew Morton, et al.
Latency problem

Kernel preemption / low latency

Kernel preemption / low latency (cont.)

Proposed solutions
Kernel code yields voluntarily ('low latency patches')
Kernel code get preempted involuntarily
Currently implemented: both

Preemption blockers
Interrupts (hard and soft)
Kernel SMP critical section (spinlock, per-CPU data etc.)
Scheduler (and other core routines)

Design issues
Avoid large-scale code changes
Avoid throughput vs. latency trade-off

Memory management

Authors: Rik van Riel, Andrew Morton, et al.
Reverse mapping problem

Physical
Page

VM A VM B VM C

Reverse Mapping

Memory management (cont.)

Advantages of reverse mappings
Easy to unmap page from all address spaces
Page replacement scans based on physical pages
Less CPU spent inside memory manager
Less fragile behaviour under extreme load

Challenges with reverse mappings
Overhead to set up rmap structures
Out of memory while allocating rmap?

I/O scalability

Authors: Jens Axboe, Andrew Morton, et al.
Block I/O layer

Manages all access to block devices
Queues/merges/remaps block read/write requests
Implements 'buffer cache'

Problems in 2.4
Shortcomings of 'buffer head' data structure
Large I/O, vectored I/O, raw I/O, async I/O inefficient
Global I/O request lock contention
Bounce buffer bottleneck on high-memory systems

I/O scalability (cont.)

New BIO data structure
Efficiently unifies all types of I/O requests
Challenges

Rewrite much of the block I/O layer
Adapt all low-level drivers and remappers (MD, LVM)
Avoid deadlocks in out-of-memory situations

Other enhancements
Eliminate global I/O request lock
Improved I/O scheduler
Merged buffer cache with page cache

Asynchronous I/O

Authors: Ben LaHaise et al.
Asynchronous I/O

I/O requests executed while application continues to run
Completion of I/O signalled to application
Goal: higher throughput, esp. for data bases etc.

Implementation
Kernel provides async. I/O API (io_submit, io_getevents,...)
Synchronous kernel-internal interfaces switched to async.
Goal: everything in-kernel should be asynchronous
User space implements POSIX AIO on top

Networking scalability: epoll

Authors: Davide Libenzi et al.
Idle connection problem

Typical server load: many connections, few active
Event notification API (select, poll) performance degraded

epoll: New notification mechanism
API: epoll_create / epoll_ctl / epoll_wait
Idle connections do not affect performance
Better performance, more robust than RT signals

Threading model

Authors: Ulrich Drepper, Ingo Molnar
Problems with LinuxThreads

POSIX non-compliance
One PID per process
POSIX signal handling
Inter-process synchronization primitives

Limited number of threads
Performance issues
Manager thread / heavy-weight library

Threading model (cont.)

Design of new threading model
1-on-1 model
No manager thread
Light-weight user space wrapper library
O(1) scheduler for large number of threads
Kernel/toolchain support for thread-local storage
Kernel awareness of 'thread groups'
Kernel support for fast thread start-up/exit
In-kernel POSIX signal handling
Synchronization primitives via 'futex'

Threading model (cont.)

Thread-local storage support
New compiler feature (C/C++ language extension)

extern __thread int errno;
Compiler/Toolchain/Library support

Thread pointer via access register(s)
TLS relocations in assembler/linker
TLS support in dynamic linker and glibc
TLS access models to optimize performance

Kernel support
CLONE_TLS flag to clone()

Authors: Rusty Russell et al.
Design goals

Intra-process and inter-process synchronization
Implement all POSIX synchronization primitives
Allow blocking and non-blocking wait
Allow multiple strategies (wake-one vs. wake-all etc.)
No administrative overhead (setup/cleanup etc.)
No system calls in the uncontended case
No unnecessary context switches
No limits (e.g. number of futexes)

Fast user space synchronization (Futex)

Futex (cont.)

Implementation
User space atomic operations on shared memory word
'futex' system call to handle contention cases

Futex system call
sys_futex (addr_t addr, int op, int val, struct timespec
*timeout)
FUTEX_WAIT: If the lock word at 'addr' still contains 'val',
sleep until a futex wakeup on 'addr' is performed or timeout.
FUTEX_WAKE: Wake up to 'val' processes sleeping on the
futex 'addr'. Return number of processes actually woken.
FUTEX_FD: Return file descriptor usable for asynchronous
wait on futex 'addr'. Optionally set up SIGIO signal 'val'.

Device model

Authors: Patrick Mochel et al.
Design goals

Represent physical device tree
Enables power-save suspend/resume operations
Simplifies device reference counting and locking

Enable dynamic device attach/detach
Automatically probe for devices, manual online/offline overrides
Interface with /sbin/hotplug user mode helper

Unified user interface
New file system: sysfs
Multiple subsystems provide 'views' into device tree

Devices Subsystem
Physical device interconnection tree

Bus Subsystem
Top-level view of all device drivers by bus type
Links to connected devices

Block Subsystem
Top-level view of all block devices and partitions
Links to underlying devices

Net Subsystem
Top-level view of all network devices
Links to underlying devices

Device model (cont.)

Bus and device types on zSeries
Channel Subsystem Bus / I/O Subchannel Devices

Identifier: Subchannel Number
Attributes: Channel Paths, PIM/PAM/POM

CCW Device Bus / CCW Devices
Identifier: Device Number
Attributes: Control Unit Type, Device Type, Online Status

CCW Device Group Buses
Group device: Multiple CCW devices used as a unit
Required for QETH, LCS, and CTC devices
Obsoletes 2.4 Channel Device Configuration layer
Identifier: First device in group
Attributes: Shared Online Status

Device model (cont.)

User interface via sysfs: devices

/sys
 /devices
 /sys System Bus
 /channel_pathNN Channel Path
 /css0 Channel Subsystem Bus
 /0:NNNN Subchannel
 /0:NNNN CCW Device
 /qeth QETH Group Bus
 /0:NNNN CCW Device Group
 /bus
 /block
 /net

Device model (cont.)

User interface via sysfs: device drivers

/sys
 /bus
 /css/drivers
 /io_subchannel Subchannel Driver
 /0:NNNN Links to /devices
 /css/devices *All* devices
 /0:NNNN
 /ccw/drivers
 /dasd-eckd DASD Driver
 /0:NNNN Links to /devices
 /ccwgroup/drivers
 /qeth QETH Driver
 /group Group creation
 /0:NNNN Links to /devices

Device model (cont.)

User interface via sysfs: block devices

/sys
 /block
 /dasda DASD block device
 /device Link to /devices
 /dev Major/minor number
 ...
 /dasda1 1st partition
 /dev Major/minor
 /dasda2 2nd partition
 /dev Major/minor

Device model (cont.)

Example: Install new QETH device

Create QETH CCW group device
echo 0:5c00,0:5c01,0:5c02 \
 > /sys/bus/ccwgroup/qeth/group

Set up portname parameter
echo portname:OSAPORT \
 > /sys/bus/ccwgroup/qeth/0:5c00/parameters

Set device online
echo 1 \
 > /sys/bus/ccwgroup/qeth/0:5c00/online

Device model (cont.)

Resources

Linux for zSeries developerWorks page
http://www.software.ibm.com/
developerworks/opensource/linux390/index.html

Linux for zSeries technical contact address
linux390@de.ibm.com

Linux for zSeries mailing list at Marist College
http://www.marist.edu/htbin/wlvindex?LINUX-VM

