

Since its debut in December 1999, Linux on S/390 and zSeries has evolved with great speed. Device support has been a major area of development. A major milestone for device support was reached with the addition of SCSI over fibre support.

This support was first demonstrated to the public with the almost bizarre exhibition at LinuxWorld 2002 in New York of a z900 burning CDs. Such an exhibition was good theatre as it generated great interest from the mainstream.

Software AG was approached to take part in an early field test of this support in July 2002. For this test, however, nothing as esoteric as CD burning would be done, just regular disk operations using our IBM Shark and EMC Symmetrix subsystems.

This report documents the experiences of installing, configuring and using this support. Before getting into the "guts" of the matter I'll get ahead of myself and state that it is a testament to the underling SCSI code and that developed by IBM that we were up and running on the first day.

Acknowledgements

- Uli Kuhna for SAN and Shark configuration
- Wolfgang Buettner for z/VM & IOCDS configuration
- Dr. Gerhard Banzhaf (IBM) material from his presentation "FCP Channel for z800 and z900"
- Material adapted from "Device Drivers and Installation Commands".
- Material sourced from "Getting Started with zSeries Fibre Channel Protocol".

Agenda• Background• Environment• Configuration• 31-bit Experiences• 64-bit Experiences• Further work

The zfcp driver is a low-level or host-bus adapter driver supplementing the Linux SCSI I/O subsystem (SCSI stack). Thus, Linux for zSeries and S/390 can make use of all SCSI device types currently supported by Linux on other platforms including SCSI disks, tapes, CD-ROMs, and DVDs. Both ESA (31 bit Linux) and ESAME (64 bit Linux) are supported.

Point-to-point: This is the simplest topology to configure. A point-to-point configuration is a direct connection between two endpoints. Typically, it consists of a host, a device (such as a disk controller), and a dedicated fibre link.

Arbitrated Loop: This is a ring topology that shares the fibre channel bandwidth among multiple endpoints. The loop is implemented within a hub that interconnects the endpoints.

An arbitrated scheme is used to determine which endpoint gets control of the loop. The maximum number of ports is 127.

This topology provides the most flexibility and makes the best use of the aggregated bandwidth by the use of switched connections between endpoints. One or more switches are interconnected to create a fabric, to which the endpoints are connected.

Environment

• Hardware

Component	Model	Microcode Level
IBM z900	2064-103	Level 8 (ML8)
McData SAN Switch	Connectrix ED-64M	01.04.002
Shark ESS	2105-F20	1.5.0.107
EMC	8730	
IBM Magstar	3590-Е	

Environment

• Software

Component	Function	Level
z/VM	Hypervisor	4.3 RSU 002
Linux for S/390	31-bit kernel	2.4.7+
Linux for zSeries	64-bit kernel	2.4.17+
ESM Manager	SAN Manager	2.0

Environment

- Linux details
 - CONFIG_MSDOS_PARTITION=y
 - CONFIG_ZFCP=m
 - New utils-linux fdisk required
 - Will (eventually) need new devs.rpm but not mandatory
 - Manuals geared towards devfs but we were using SLES7

DEDICATE D05 D05

DEDICATE D06 D06

required:

Note: The SCSI devices 'E000/E100'

FCP E000 ATTACHED TO DAEV006 E000 CHPID E0

were ATTACHed to each user as

LINK MAINT 190 190 RR

LINK MAINT 19D 19D RR

LINK MAINT 19E 19E RR

INCLUDE INXEST

DEDICATE D10 D10 DEDICATE D11 D11 DEDICATE D12 D12

USER DAEV005 ******* 256M 512M G

MDISK 0191 3390 2651 0025 VVSYS1 MR

MDISK 0192 3390 0001 2838 VVTL99 MR

MDISK 0193 3390 2839 0500 VVTL99 MR

ACCOUNT LINUX R.WAITE

SPECIAL E00A CTCA TCPIP SPECIAL E00B CTCA TCPIP * HyperSockets with MTU size of 8k

• IOCDS

```
CHPID PATH=(E0), SHARED,

PARTITION=((DAEV, DAEX, DALI), (DAEV, DAEX, DALI)), TYPE=FCP

CNTLUNIT CUNUMBR=EOFC, PATH=(E0), UNIT=FCP

IODEVICE ADDRESS=(E000, 016), CUNUMBR=(E0C), UNIT=FCP

CHPID PATH=(E1), SHARED,

PARTITION=((DAEV, DAEX, DALI), (DAEV, DAEX, DALI)), TYPE=FCP

CNTLUNIT CUNUMBR=E1FC, PATH=(E1), UNIT=FCP

IODEVICE ADDRESS=(E100, 016), CUNUMBR=(E1FC), UNIT=FCP
```


- CHPID/Device/SCSI Device
 - S390 device != SCSI device
 - S390 device is conduit to SCSI
 - May be 1,...,*n* SCSI devices at end of conduit
 - Each SCSI device may be partitioned to produce multiple targets

1. Device number

- This device number must be defined in the IOCDS and be assigned to the FCP channel attached to the FCP switch.
 - You can use the same device number for all your FCP connections (by a given Linux image), or,
 - You can elect to use multiple device numbers (all assigned to the FCP channel, of course).

2. Target number

- The standard Linux SCSI support understands traditional SCSI addressing, with adapter numbers, bus numbers, target ("SCSI address") numbers, and LUNs.
- You assign this number.
- Usable target addresses range from 1 to any positive 31-bit number.
- Traditional SCSI target addresses ranged from 0-7 or 0-15. More recent SCSI architecture allows a much larger number.

- 4. Linux LUN
 - The number to be used by Linux.
 - You assign this number.
 - Normal usage is to start with 0 and to increment by one for each LUN.
- 5. SAN Device LUN
 - The number used by the remote device.
 - You do not assign this number.
 - You must determine the number assigned by the node controller.

- There are different parameters that can or must be supplied by the user to allow for proper zfcp operation:
 - Address mappings between Linux SCSI and FCP schemes (optional for each SCSI target)
 - Logging level to determine the verbosity of the zfcp device driver (optional, default value is used if not supplied)

There are different parameters that can or must be supplied by the user to allow for proper zfcp operation:

•Address mappings between Linux SCSI and FCP schemes (optional for each SCSI target)

•Logging level to determine the verbosity of the zfcp device driver (optional, default value is used if not supplied)

For these purposes, the zfcp driver provides different means of configuration:

- •Kernel parameters
- •Module parameters (such as for use in modules.conf)
- •Various proc file system entries in /proc/scsi/zfcp

• Module Parameters and proc File System entries

Function	Module Parameter	Kernel Parameter	proc-fs entry
Set logging level	loglevel zfcp_	loglevel	/proc/scsi/zfcp/mod_parm
Get logging level (and other global module information)	N/A	N/A	/proc/scsi/zfcp/mod_parm
Add address mapping(s)	map	zfcp_map	/proc/scsi/zfcp/add_map
Get all existing address mappings	N/A	N/A	/proc/scsi/zfcp/map

The SLES7 Linux system we were using did not use the devfs file system nor did it have definitions in the /dev directory. To rectify this we used the commands found above. SLES8 has the nodes defined and does not require these commands to be issued.

• ESS Devices

Target	Logical Unit	Size	Device Name
	0	25GB	/dev/sda1
	1	50GB	/dev/sda2
	2	25GB	/dev/sda3
	3	25GB	/dev/sda4
	0	5GB	/dev/sdb1
	1	5GB	/dev/sdb2

Based on the example provided in the Redpaper "Getting Started with zSeries Fibre Channel Protocol" we created the above script to load the appropriate device drivers and provide the correct parameters for the ESS devices.

• Following scsi_load:

Module	Size	Use	d by
st	27696	0	(unused)
sd_mod	12048	0	(unused)
zfcp	345312	0	
scsi_mod	61344	3	[st sd_mod zfcp]
nfsd	69648	4	(autoclean)
qeth	153072	1	(autoclean)
qdio	33968	2	(autoclean) [zfcp qeth]
ipv6	247472	-1	(autoclean) [geth]
8021q	12928	0	(autoclean) [qeth]
ctc	49840	1	(autoclean)
fsm	1920	0	(autoclean) [ctc]

• Partitioning using fdisk:

Disk /dev/sda: 255 heads, 63 sectors, 12157 cylinders Units = cylinders of 16065 * 512 bytes Device Boot Start End Blocks Id System /dev/sda1 1 3188 25607578+ 83 Linux /dev/sda2 3189 6376 25607610 83 Linux /dev/sda3 6377 12157 46435882+ 83 Linux Command (m for help): w The partition table has been altered! Calling ioctl() to re-read partition table. Syncing disks.

Our SLES7 system did not have the fdisk utility. However, thanks to our excellent working relationship with SuSE (and Bernd Kaindl in particular), we were able to acquire a newly built utils-linux package containing the necessary command. We used this command to divide the area of the SCSI device into several partitions as shown above.

Linux provides a lot of data within the proc file system that allows you to inspect, monitor, and change the configuration and operation of the SCSI subsystem. Graphically, the sub-tree available looks like the above.

onfiguratio	n			
				SHAF Technology - Connections
Contents of	/proc	/scsi/zfcn/c	lev0xe000	dtatus.
	/ proc,		ievoneooo,	beacab.
FCP adapter				
FCP driver \$Revision:	3.60.4.1 \$ (or for cryptography's sake	0x0003003c)	
	0 0.0.0		00.01.2	
device number:	0xe000	registered on irq:	0x0013	
WWNN: 0x500507	64012006f6	S TD.	0x611413	
HW version:	0x0002	LIC version:	0x0000001a	
FC link speed:	1 Gb/s	EC service class:	3	
EC topology: fabric	1 02/0		5	
SCSI host number:	0x0000000			
Attached ports:	2	QTCB size (bytes):	1696	
Max SCSI ID of ports:	0x0000001	Max SCSI LUN of ports:	0x0000001	
FSF req seq. no:	0x003d03c8	FSF reqs active:	16	
Scatter-gather table-s	ize: 57	Max no of queued command	ls: 4096	
Uses clustering:	1	Uses New Error-Handling	Code: 1	
ERP counter:	0x00000000	Adapter Status:	0x5400006f	
Adapter Structure info	rmation:			
Common Magic:	0xfcfcfcfc	Specific Magic:	0xaaaaaaaa	
Adapter struct at:	0x0de25000	List head at:	0x0de25008	
Next list head:	0x109d82b0	Previous list head:	0x109d82b0	
Scsi_Host struct at:	0x0d868400			
Port list head at:	0x0de250a0			
Next list head:	0x0d869808	Previous list head:	0x0d868808	

onfiguratio	on			
				S H A F Technology - Connections
			(
/proc/scs	i/zfcp	/dev0xe000/	status (C	ont.):
O-FCP reg list head:	0x0de250d0			
Next list head:	0x0d89c608	Previous list head:	0x0d87a608	
List lock:	0x00000000	List lock owner PC:	0x0000000	
Request queue at:	0x0de250f8			
Free index:	002	Free count:	128	
List lock:	0x00000000	List lock owner PC:	0x0000000	
current TOD:	132638320126	77040160		
time lock held:	35007809781			
Response queue at:	0x0de25550			
Free index:	072	Free count:	000	
List lock:	0x0000000	List lock owner PC:	0x0000000	
DEVICE INFORMATION (devinfo):			
Status: "OK"				
Control Unit Type:	0x1731	Control Unit Model:	0x03	
Device Type:	0x1732	Device Model:	0x03	
CIWs: 0x4072003 0x441f000	80 0x41830004 00 0x00000000	0x42820040 0x43161000 0x00000000 0x00000000		
DEVICE INFORMATION (devstat):			
Interrupt Parameter:	0x0000002	Last path used mask:	0x00	
Channel Status:	0x80	Device Status:	0x00	
Flag:	0x00000204	CCW address (from irb):	0x0d863a40	
Response count:	0x0000000	Sense Count:	0x0000000	
IRB: 0x00c0c0	c9 0x0d863a40	0x00800000 0x0000000		
Sense Data: 0x000000	00 0*0000000	0x0000000 0x00000000		

• Contents of .../id0x01/lun0x0/status:

Configuration

SCSI lun: Handle:	0x00000000 0x0000001d	FCP lun:	0x520000000000000000
ERP counter:	0x0000000		
Unit Status:	0x54000000		
Unit Structure info	ormation:		
Common Magic:	0xfcfcfcfc	Specific Magic:	0xccccccc
Unit struct at:	0x0d869500	List head at:	0x0d869508
Next list head:	0x0d869208	Previous list h	nead: 0x0d869820
Parent port at:	0x0d869800	SCSI dev struct	at: 0x0e9f9e00

With the apparently successful partitioning of the device we attempted to use the mke2fs command to create an ext2fs on the various partitions. However, it was at this point we began running into trouble. The first partition appeared to work but the file system appeared to occupy the entire device not just the first partition (24414063 is the device size not the partition size):.

An attempt to make a file system on the second partition did not work at all:

```
daev005:/usr/src/linux/drivers/s390/scsi # mke2fs
/dev/sda2
mke2fs 1.19, 13-Jul-2000 for EXT2 FS 0.5b, 95/08/09
mke2fs: No such device or address while trying to
determine filesystem size
```

We then specified loglevel=3 on insmod zfcp command to log debugging information. The log shows no activity when references to sda2/sda3 are made but lots of activity for sda1.

In order to determine if the error was peculiar to the 100GB device, we arranged with Software AG IT services to define another small SCSI device. We again used fdisk to split this 10GB device into two 5GB partitions. However, the same errors were encountered. Indeed, we experienced errors during load of the device drivers.

Following advice from Stefan Bader of IBM, we updated the Linux kernel configuration to enable support for: File Systems->Partition Types->MSDOS. After rebooting to pick up this new kernel, all our partitions became accessible.

Initially my insmod parameter was as follows:

0x01:0x500604843e0c23eb

0xe100 0x00:0x0000000000000000000

After (apparently) successfully accessing the disk I attempted to partition it using fdisk. The utility reported success, but syslog messages were generated that indicated this was not the case.

I created a development environment for our Adabas and Adabas SQL Access (AQA) products, and proceeded to build them. The build involved significant amounts of compilation and linking that would allow me to exercise the disks. No problems were encountered during the build processes.

I created 2 Adabas databases on the Linux guest DAEV005 using the SCSI disks. One was for the normal installation verification databases and one for use by AQA and has sizes of:

- ASSO 100MB
- DATA 100MB
- WORK 60MB

I installed AQA on DAEV005, built our internal test suite, and ran the various test scripts. In addition I rebuilt the AQA package using the SCSI area as the build area. No problems experienced.

I performed simple experiments on the disks using the script found below to create a file half the size of the disk area. On DAEV005 I used the EMC devices, on DAEV006 I used the ESS devices. The testing was done in an uncontrolled environment: running on a lowly weighted LPAR sharing 1 of 3 processors with several other LPAR-based z/OS and VSE systems. #1/usr/bin/rexx

```
/* */
trace o
fs.1 = 'mke2fs'
fs.2 = 'mkreiserfs'
fs.3 = 'mke2fs -j'
fs.0 = 3
id.1 = 'ext2fs'
id.2 = 'reiserfs'
id.3 = 'ext3fs
op.1 = ''
op.2 = '<tstfs.in'
op.3 = '
bs.1 = 512; bs.2 = 1024; bs.3 = 4096; bs.4 = 8192; bs.5 = 16384; bs.0 = 5
Target = '/FS/scsi04' /* '/FS/tempfs' on DAEV005 */
FCPdev = '/dev/sdb1' /* '/dev/sda2' on DAEV005 */
'echo y >tstfs.in'
Capacity = 'df'(Target)
parse var Capacity 'Mounted on' . Capacity .
Capacity = Capacity % 2
do I_fs = 1 to fs.0
         'umount' Target
        fs.I_fs FCPdev '>/dev/null 2>&1' op.I_fs
'mount' FCPdev Target
        say COPIES('-',60)
        do I_bs = 1 to bs.0
                 say '=>' bs.I_bs
                 do I_Task = 1 to 4
                          'sleep 2s'
                           'time rm' Target'/dummy.file'
                           'sleep 2s'
                  end
         end
end
exit
```


The same process was carried out for our 64-bit Linux system. The kernel was rebuilt, device nodes created, and device driver loaded. The startup and shutdown scripts created for the 31-bit system were reused in the 64-bit system. The devices were successfully sensed, drivers loaded and file systems mounted.

I created 2 Adabas databases on the Linux guest DAEV006 using the SCSI disks. One was for the normal vehicles etc. db and one for use by AQA and has sizes of:

- ASSO 100MB
- DATA 100MB
- WORK 60MB

I installed AQA on DAEV006, built the internal test suite, and ran the test scripts. In addition I rebuilt the AQA package using the SCSI area as the build area. No problems experienced.

Activities included:

- § Generation of large databases;
- § Large tables and indexes were created, filled, interrogated and dropped;
- § Full logging was enabled to cause the production of large trace files (~2GB).
- § Natural was used to extract data from the Adabas database.

No problems were encountered.

The previous tests were repeated after a microcode fix was applied to the 2064 to support 2MB buffers within the FCP card. Note the greatly improved data rate for Ext2 and Ext3.

Tape – 3590E

- Loaned device
- Two new RPMs:
 - IBMTapeutil

A tape utility program that exercises or tests the functions of the Linux device driver, IBMtape. It performs tape and medium changer operations.

- IBMTapeconfig

A script which creates and destroys IBMtape device special files according to the information logged in /proc/scsi/IBMtape and /proc/scsi/IBMchanger files.

			SHA
			Technology - Connection
General	Comma	nds:	
1. Open a Device	7.	Request Sense	
Close a Device	8.	Log Sense Page	
3. Inquiry	9.	Mode Sense Page	
 Test Unit Ready 	10.	Switch Tape/Changer Device	
5. Reserve Device	11.	Create Special Files	
6. Release Device	12.	Query Driver Version	
Q. Quit IBMtapeutil			
Tape C	ommand	s:	
20. Rewind	33.	Set Block Size	
21. Forward Space Filemarks	34.	Retension Tape	
22. Backward Space Filemarks	35.	Query/Set Tape Position	
23. Forward Space Records	36.	Query Tape Status	
24. Backward Space Records	37.	Load Tape	
25. FSFM	38.	Unload Tape	
26. BSFM	39.	Lock Tape Drive Door	
27. Space to End of Data	40.	Unlock Tape Drive Door	
Read and Write Tests	41.	Take Tape Offline	
29. Write Filemarks	42.	Enable/Disable Compression	
30. Read or Write Files	43.	Flush Driver's Buffer	
31. Erase	44.	Self Test	
32. Reset Drive	45.	Display Message	
IBMtap	e Comm	ands:	
46. Query Sense	52.	Locate Tape Position	
47. Query Inquiry	53.	Read Tape Position	
48. Query/Set Tape Parameters	54.	Query Mtdevice Number	
49. Query/Set Tape Position	55.	Synchronize Buffers	
50. Query/Set MT/ST Mode	56.	List Tape Filemarks	
51. Report Density Support			
Servic	e Aid (Commands:	
70. Dump Device	72.	Load Ucode	
71. Force Dump	73.	Reset Drive	

IBM Tape Utility

Inquiry Data:
Peripheral Qualifer0x00
Peripheral Device Type0x01
Removal Medium Bit1
Device Type Modifier0x00
ISO version0x00
ECMA version0x00
ANSI version0x03
Asynchronous Event Notification Bit0
Terminate I/O Process Message Bit0
Response Data Format0x02
Additional Length0x33
Medium Changer Mode0x00
Belative Addressing Bit0
32 Bit Wide Data Transford Bit0
16 Dit Wide Data Transfers Dit
16 Bit wide Data Transfers Bit0
Synchronous Data Transfers Bit0
Linked Commands Bit0
Command Queueing Bit0
Soft Reset Bit0
Vendor IDIBM
Product ID03590E11
Product Revision LevelE350

