HiperSockets in the Round a z/OS, z/VM, zLinux Perspective

Frank J. De Gilio
IBM Design Centers
degilio@us.ibm.com
HiperSockets – Just The Facts

• HiperSockets = Internal Queued Direct IO
• Microcode maintained lookup table
• Three devices for each stack
 – Read Control
 – Write Control
 – Data Exchange
• 1024 Devices across all HiperSockets
• Supports Virtual IP Addressing and Dynamic Virtual IP Addressing
All The Pretty OSes In A Row

4 Virtual CHPIDs create 4 possible “virtual LANs”
Not bound to a Plex
Point to point routing
HiperSockets – a Network View

z/VM

Linux A
192.168.0.1

Linux B
192.168.0.2

192.168.0.3

zLinux

192.168.0.4
192.168.10.1

z/OS

192.168.10.2

HiperSocket FE

HiperSocket FF
<table>
<thead>
<tr>
<th>LPAR</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td>Linux A</td>
<td>Linux B</td>
<td>z/VM</td>
</tr>
<tr>
<td>CHPID</td>
<td>FE</td>
<td>FE</td>
<td>FE</td>
</tr>
<tr>
<td>Device</td>
<td>7000 – 02</td>
<td>7004 -06</td>
<td>7008 – 0A</td>
</tr>
<tr>
<td>Unit Address</td>
<td>00-02</td>
<td>04-06</td>
<td>08-0A</td>
</tr>
<tr>
<td>IP Address</td>
<td>192.168.0.1</td>
<td>192.168.0.2</td>
<td>192.168.0.3</td>
</tr>
</tbody>
</table>
Microcode at Work!!!
Hardware Setup for HiperSockets

- Define CHPIDs (You have to use real device addresses)
- In HCD define:
 - CHPID
 - Type IQD
 - Mode SHR
 - Frame size
 - Control unit number & address range
- Define devices for the control unit
 - Type IQD
- Select operating system for devices
Setting up HiperSockets in z/OS

• Define CHPIDs

CHPID PATH=(FF), SHARED, PARTITION=((A1,A2,A3),...),
CNTLUNIT CUNUMBR=7000, PATH=(FF), UNIT=IQD
IODEVICE=(7000,016), CUNUMBR=7000, UNIT=IQD

• Modify the TCPIP Profile:

DEVICE IUTIQDFF MPCIPA NONRouter AUTORESTART
LINK HIPER IPAQIDIO IUTIQDFF
HOME
192.168.10.2 HIPER

GATEWAY
192.168.10 = HIPER 24576 0
START IUTIQDFF
Setting Up HiperSockets in z/VM

- Set up CHPIDS
 - VARY ON CHPID FF
 - VARY ON 7000-704B
 - ATTACH 7000-7002 TO TCPIP AS 7000-7002
 - ATTACH 7004-7006 TO LINUXA AS 7004-7006

- Setup IP
 - DEVICE HIPERFF HIPERS 7000 PORTNAME HIPERFF
 - LINK HIPERFF QDIOIP HIPERFF
 - HOME
 - 192.168.10.1 HIPERFF
 - GATEWAY
 - 192 = HIPERFF 1500 0.255.255.0 0.168.10.0
 - START HIPERFF
• Set up Directory Information
• For User TCPIP
 DEDICATE 7000 7000
 DEDICATE 7001 7001
 DEDICATE 7002 7002

• For User LinuxA
 DEDICATE 7004 7004
 DEDICATE 7005 7005
 DEDICATE 7006 7006
Setting Up HiperSockets on Linux

- In modules.conf put:
 Alias hsi1 qeth

- In chandev put:
 qeth1,0x7004,0x7005,0x7006,4096

- In rc.config put:
 NETCONFIG="_0_1"
 IPADDR_1="192.168.10.3"
 NETDEV_1="hsi1"
 IFCONFIG_1="192.168.10.3 broadcast 192.168.10.3 netmask 255.255.255.0 mtu 4096 up"
VM Guest LAN Support

- Virtual HiperSockets (Virtual Virtual sockets?!?)
- Emulates HiperSockets within a VM image
- Maximum number of unused CHPIDs -1
- 3072 I/O devices per guest LAN
- 1024 guests (TCP/IP stacks)
- Faster communication between Linux images than HiperSockets
Wheels Within Wheels

z/VM

HiperSocket
FB

192.168.20.1
192.168.20.2

Linux A

192.168.30.1
192.168.0.2

HiperSocket
FE

zLinux

192.168.0.3
192.168.0.4
192.168.10.1

HiperSocket
FF

z/OS

192.168.10.2
HiperSocket Accelerator

- HiperSocket Accelerator Hardware
- QDIO Network
- IP
- TCP/UDP
- Socket

z/OS Application

- Socket
- TCP/UDP
- IP
- Network
- QDIO

Linux Application

- Socket
- TCP/UDP
- IP
- Network
- IQDIO

z/OS

- Application

zLinux

- Application

Hardware
Rsockets – Beyond the Hipe

- Fast – If you like that kind of thing
- VM Guest LANs faster for inter Linux communication
- Don’t expect IIOP flows to be faster…
- More secure communication
 - Unsniffable traffic between connections
 - Reduces the need for SSL
 - Lessens the dependency on encryption
 - Real performance benefits
- Less mercurial configuration than the wire stuff
Some Basic Performance Test Info

- HiperSockets consistently outperformed a single Gigabit Ethernet and provided reduced response times.
- For Streams traffic profiles, HiperSockets increased performance as the Message Frame Size (MFS or blocksize) was increased.
- MFS had minimal effect on interactive and Web-type traffic.
- Increasing the number of client-server sessions typically increased throughput.
- Changing the size of TCP/IP send and receive buffers could lead to increased throughput.
- Increasing the number of client sessions for Streams traffic typically increased the data transfer rate and CPU utilization.
- The difference in the number of memory busses in the zSeries models can impact performance.
- Adding CPUs to the client and server can increase performance, assuming the client can generate additional traffic load.
- Each operating system environment and its associated TCP/IP stack have particular parameter settings that can be used to optimize HiperSockets performance.
- Intermixing operating system environments requires attention to parameter tuning.
Factors Affecting HiperSocket Performance

- MTU Size (Depending on traffic)
- Number of CPUs
- CPU Speed
- TCP/IP stack of OS
- Number of clients
- Network load
- Real memory
- Application Characteristics
A Real World Use of HiperSockets

• Given:
A HiperSocket Implementation
HiperSockets Implementation is Cool

• “Look Ma No Wires”
 – No packets to sniff
 – No need to encrypt
• All management on the box
 – RACF (or similar) holds all the rules for all the servers
 – Definitions can be server exclusive
• Physically separate Internet flows and Intranet flows
• Missing firewalls can be Linux firewalls using virtual HiperSockets
HiperSockets and z/OS are Hipercool!!

- HiperSockets can be used to offload XCF traffic
- HiperSockets implementing Sysplex sockets…
 - Smaller stack in addition to faster routing…
- HiperSockets and Dynamic VIPA
- HiperSockets and Sysplex Distributor
 - Takes advantage of XCF and WLM
HiperSockets and Sysplex Distributor

Image 3 (Hidden VIPA 10.9.8.1)

Image 4 (Hidden VIPA 10.9.8.1)

Image 5 (Hidden VIPA 10.9.8.1)

Image 2 (Backup VIPA 10.9.8.1)

Image 1 (Primary VIPA 10.9.8.1)

Traditional Network
HiperSockets and Sysplex Distributor

Image 3 (Hidden VIPA 10.9.8.1)

Image 4 (Hidden VIPA 10.9.8.1)

Image 5 (Hidden VIPA 10.9.8.1)

Image 2 (Backup VIPA 10.9.8.1)

Image 1 (Primary VIPA 10.9.8.1)

Traditional Network
HiperSockets Sysplex Distributor WLM

Image 3 (Hidden VIPA 10.9.8.1)

Image 4 (Hidden VIPA 10.9.8.1)

Image 5 (Hidden VIPA 10.9.8.1)

Image 2 (Backup VIPA 10.9.8.1)

Image 1 (Primary VIPA 10.9.8.1)

Traditional Network
HiperSockets in the Round

- Simple to set up
- Can be tuned for OS and applications
 - Simple straightforward knobs
- Better Performance than the wire
- Secure data transfer
 - Added performance benefit by removing SSL layers
- Has some special advantages in z/OS
 - HiperSocket Accelerator
 - Dynamic XCF
 - Sysplex Sockets
 - Sysplex Distributor