
Copyright 2007 Velocity Software, Inc. All Rights Reserved.
Other products and company names mentioned herein may be
trademarks of their respective owners.

How To Turn a
Penguin

Into a Dog
…or…

Things To Do
That Will Avoid

Linux on z Success

Phil Smith III
SHARE 109
August 2007
Session 9284

Goals

Examine Linux on z historical roadmap

Learn from others’ hard-won experiences

Understand some things not to do—and why

Linux on z: Ancient History

1999: Linux released for (then) System/390
 IBM “skunkworks” effort
 Works, but not a “real” IBM product

2000: “41,000 Linux guests on a VM system”
 Proof-of-concept, no relation to reality
 Garnered tremendous press attention
 Vendors jump in: Linuxcare, Aduva, BMC…

Linux on z: Where We’ve Been

2001–2006: z/Linux growth slow
 IBM pushes Linux on z hard (IFL loaners, etc.)
 Many failed pilots, ROI not realized in many cases
 zSeries CPUs not fast enough to compete with Intel
 Levanta (Linuxcare), BMC, Aduva(?) quit market
 Rocket enters with Linux Provisioning Expert
 IBM adds Director for z

The Dirty Little Secret:
An untuned penguin can be a dog!
 But they’re easily trained, with some tools and effort

Linux on z: Where We Are

2006–present: z/Linux starts to grow up
 New, faster processors (z9) make z competitive
 Nationwide, Wells Fargo, Citi, other “poster children”

validate ROI

“Now it gets real…”
 …and now performance must be tamed!

Important History

Mainframes have been around for a while…
 z/OS (OS/390, MVS/ESA, MVS/XA, MVS, MVT, MFT):

43 years (OS/360, 1964)
 z/VM (VM/ESA, VM/XA, VM/SP, VM/370, CP/67):

43 years (CP/40, 1964)
 z/TPF (TPF, ACP): 43 years (PARS, 1964)
 z/VSE (VSE/ESA, VSE/SP, DOS/VSE, DOS/VS):

the youngster, 42 years (DOS/360, 1965)

We’re spoiled by decades of experience
 We expect that someone, somewhere has done it all

The New Kid on the Block

Linux is just sixteen years old
 Elderly in penguin years…
 …still immature as an OS

Only seven years of mainframe Linux
 Adult in dog or penguin years…
 Progress made, but many apps still not well-behaved!

z/Linux tuning and capacity planning still
largely unknown territory to many
 Each new kernel level offers new opportunities

(and old opportunities return with kernel changes!)

Still a Brave New World

Nobody really knows all the answers yet
 This is like tuning MVS circa 1980
 …or maybe more like tuning

VM/370 circa 1975

Not a reason to avoid Linux!
 Just something to keep awareness of
 You cannot believe everything you hear, good or bad

Linux Success Requirements

Management buy-in and distributed support
group support
 Without both of these, either:

• Management won’t care about success
• Distributed folks will protect their turf and torpedo you

 Management can force distributed folks’ support

Appropriate application choices
 No fractal reductions, SETI@home
 Java OK in moderation (many apps are evil, though)
 VMware has similar constraints (plus no memory

overcommitment)

More Success Requirements

A willingness to say “I was wrong”
 Some applications may turn out to be poor choices
 Some tuning choices will have the opposite effect
 Requires a political climate that lets you say so

Monitoring, tuning, and capacity planning
 IYDMIYWGS*
 Many Linux apps are not well-behaved, mature!
 Must make correct tuning choices

* If You Don’t Measure It You Will Get Screwed

Reasons Linux POCs Fail

Lack of management buy-in leading to
distributed group non-support
 “They just didn’t show up for the meetings”

Inappropriate application choices
 “The application we chose just didn’t perform”
 “Management lost patience”

Disappointed by performance
 Without tools, no way to understand
 “There is no think, only do” — Master Yoda

The Real Cause

Inappropriate expectations
 Running thousands of Linuxen on one system
 “Just port it and it will run”
 “Mainframes are large and fast”

The reality
 Plan dozens or hundreds of Linuxen per system, tops
 Porting requires understanding, (maybe) rearchitecting
 Mainframes are fairly large and fairly fast—now (z9)

Copyright 2007 Velocity Software, Inc. All Rights Reserved.
Other products and company names mentioned herein may be
trademarks of their respective owners.

How To
Guarantee

Failure

Unmeasured Equals Unsuccessful

Make unjustified assumptions
 “Tune it like MVS” (aka “Linux apps are well-behaved”)
 “The app needs 4GB on Intel, so we’ll give it 4 on z”
 “More CPUs are good”
 “Swapping is bad”
 “z/VM is 64-bit, so we should run 64-bit Linux”

Critical requirement: You must measure it!
 I’ve believed this since long before joining Velocity

Performance Tuning “Back in the day”

VM in days of old
 Hundreds (or thousands!) of CMS users
 Relatively small, well-behaved applications
 Performance degradation was typically gradual

Performance tuning was easier and harder
 Easier: smaller problems, smaller changes
 Harder: smaller changes, smaller effects

Why Linux is Different

z/VM today
 Tens (or hundreds) of z/Linux guests
 Very large, often poorly behaved Linux applications
 Performance degradation can be precipitous

Performance tuning is harder and easier
 Harder: bigger problems, bigger changes
 Easier: bigger changes, bigger effects

Copyright 2007 Velocity Software, Inc. All Rights Reserved.
Other products and company names mentioned herein may be
trademarks of their respective owners.

Herding
Penguins

The single
most important

lesson in
this presentation

(but easier
than

herding cats)

Your Penguins Must Sleep!*

Your idle Linux guests must go truly idle
 This is a memory (storage) management issue,

not a CPU usage issue

What does “idle” mean?
 Means “transaction” complete, guest drops from

queue
 CP defines 300ms of idle time = end of transaction
 Theoretically represents interactive user “think time”
 Less meaningful for servers, but what better metric?

* Thanks to Rob van der Heij for this line!

What’s a “Transaction”?

Anatomy of the average transaction
 Periods of activity with short idle time between them
 Starts with a timer interrupt (or perhaps I/O interrupt)
 Longer idle period at end is followed by queue drop

Example:

Time (s)

 run

0 1.4

 test idle

Queue
drop
Dormant idle run idle run

T T T

Queue time = 180
Trans time = 9

87%

Scheduler and Dispatcher 101

Some critical concepts
 Guests must be runnable to do work
 CP must be willing to schedule the guest
 CP must be willing to dispatch the guest

A guest is always in one of three lists:
 Dormant list: guest has no work to do
 Dispatch list: guest is active, CP is allowing it to run
 Eligible list: guest is active, CP is not allowing it to run
 (Can also be running…special case of Dispatch list!)

Scheduler and Dispatcher 101

CP scheduler analyzes resources, decides
whether enough to give guest service
 Entirely storage-related (memory)
 If not enough available, guests get put on the E-list

CP dispatcher gives guests access to CPUs
 If multiple guests are active, they take turns
 VM is very good at this — supports tens of thousands

of active users with excellent response time

Dispatch Classes – Class 1

When first dispatched, guest is Class 1 (“Q1”)
 CP waits one Class 1 Elapsed Timeslice (C1ETS) to see

if it goes idle voluntarily
 Guests that do not go idle within that timeslice are

preemptively stopped from execution— sent back to the
scheduler

 C1ETS is dynamically calculated to keep a fixed % of
guests in class 1

 C1ETS should be enough for short, interactive
transactions (minor CMS commands)

Dispatch Classes – Class 2

If guest does not go idle in one C1ETS, it
enters Class 2 (“Q2”)
 Next time CP runs it, given 8x C1ETS
 Guests that do not go idle within that amount of time

are rescheduled
 Such guests are presumed to be running a command,

but not necessarily doing something “major”

Dispatch Classes – Class 3

If guest does not go idle within class 2
C1ETS multiple, it enters Class 3 (“Q3”)
 Next time CP runs it, given 6x Class 2 = 48x C1ETS
 Guests that do not go idle within that amount of time

are rescheduled
 Such users are presumed to be running a long-running

command

Dispatch Classes – Class 0

QUICKDSP ON bypasses some rules
 Still get rescheduled, but never held in eligible list

Interactive guests (on terminals, hitting keys)
also get Q0 stays (“hotshot” stays)
 Still get rescheduled, but “go to head of line” briefly
 Return to their previous queue level after Q0 stay
 Virtual machines holding certain short-term system

locks are also considered to be in Q0

Leaving the Dispatch List

Guests leave dispatch list because they:
 Use up their current CnETS multiple
 Go idle voluntarily (load a wait PSW)—see below

300ms test idle timer set when guest loads
wait PSW
 Guest resuming activity within that period are

reinserted into previous place in queue
 Guests that don’t go idle never get queue dropped!

How This Plays Out…

CP scheduling is based on storage analysis
 If not enough, guests are held in Eligible list (E-list)
 Assumption: other guests will go idle, storage will

become available soon
 If not, E-listed guests never get scheduled

Why This Goes Wrong

Linux real storage requirements higher than
CMS guests because Linux guests:
 Are quite large (virtual storage size)
 Use all storage (working set = virtual storage size)
 Don’t interact with CP to release unused storage
 Stay active (rarely/never go idle)

If enough Linux guests are logged on, CP
notices it will overcommit real storage
 One or more such guests “lose”, are E-listed —

and stay there!

How Does This Manifest?

System is running along fine
 One guest too many is started
 Things “just stop”!

Dispatched guests “should” go idle
 Linux guests typically don’t, stay runnable all the time

Historically, guests doing I/O were “active”
 Recent releases have mostly eliminated this

Remember the test idle timer
 Guests never go idle (as far as CP can tell)
 Never get scheduled properly, so E-listing permanent!

Detection

CP INDICATE QUEUES EXPANDED shows:
LINUX902 Q3 PS 00013577/00013567 -232.0 A00
LINUX901 Q3 PS 00030109/00030099 -231.7 A00
VSCS Q1 R 00000128/00000106 .I.. -208.7 A00
VMLINUX3 Q3 IO 00052962/00051162 -.9398 A00
VMLINUX3 MP01 Q3 PS 00000000/000000000612 A00
LINUX123 E3 R 00177823/00196608 5255. A00

 HELP INDICATE QUEUES shows meaning of output
 CP privilege class E required
 Note: “deadline time” (sixth column) indicates when

CP thinks the guest will run
 Guest LINUX123 is not running any time soon…

Remediation

Buy lots more storage ($<6K/GB — cheap!)

Tune applications so guests do queue drop
 Obviously only meaningful if guests are nominally idle
 Remember cron et al. may wake them anyway

Log off some guests
 You didn’t need that WAS application, did you?

Tune guest storage sizes
 Linux uses “extra” storage for file buffers
 Smaller guests may actually perform better

Why Idle Guests are Important

CP analyzes storage use when guests go
idle
 Avoids taking pages from active guests

Three-pass process
 First pass analyzes users on dormant list—never

happens if Linux guests never go idle!
 Result: CP must steal pages, makes wrong guesses
 Causes thrashing—pages go out, come right back in

Linux and z/VM paging algorithms collide
 When Linux wants a page, where does it look? (LRU)
 Where is that page most likely to be?

Copyright 2007 Velocity Software, Inc. All Rights Reserved.
Other products and company names mentioned herein may be
trademarks of their respective owners.

Care
and

Feeding
of

Aptenodytes
Keeping

your penguins
from

becoming dogs

“Jiffies”

“Jiffies”: Frequent Linux timer pops
 Controlled via setting in /proc

“Correct” setting is perhaps unintuitive
 0 is what you want:
echo 0 > /proc/sys/kernel/hz_timer

Why do “jiffies” hurt?
 10ms is a lot less than the CP idle timer of 300ms
 Guests with the timer ON never go idle

Make sure “jiffies” are off!

Virtual Multiprocessors

Don’t use virtual MPs without good reason
 Most Linux applications don’t exploit MP
 Exception: apps that use more than one CPU of MIPS

Bogus advice, frequently heard:
“Define as many vCPUs as real CPUs”
 Valid only in lab, single-Linux-guest environment

Note: Linux doesn’t report MP usage
 Harder to prove MP need (or lack thereof)

Virtual Multiprocessors

Why does this hurt?
 Guest isn’t idle until all vCPUs are idle
 Virtual MP spreads timer events over vCPUs
 Thus MP = more transactions = more in-queue time

Bigger problem: significant CPU wastage
 Inter-vCPU management isn’t free
 Linux spin locks can use an entire CPU

Use virtual MP only if proven need

Extra Services

Be careful about cron and friends
 Services such as cron wake guests up from idle
 Obviously necessary in some cases, but examine,

understand, and experiment!

Understand requirement for every service

Update Services and Friends

Watch for the “thundering herd”
phenomenon
 Things like Red Hat Network tend to wake guests up
 All your guests waking up at

once is not a good thing!
 Examine, understand, and

stagger the wakeups

Avoid/aggregate services such as updates
 Why check for updates on every guest?
 Use a single update server!

64-bit Linux

z/VM no longer runs on 31-bit hardware
 31-bit guests still supported, but…

Natural assumption: 64-bit guests “better”
 64-bit guests require significantly more resources
 Page tables alone are twice as large (16MB per GB)
 Other control structures can also be significant

Use 64-bit guests only when > 2G virtual
memory or specific application requirement

Large Virtual Storage (Memory)

Intel boxes have fast CPU, RAM; slow disk
 Conventional wisdom: “Swapping is bad”

z/VM paging subsystem is pretty darned fast
 Conventional wisdom thus mostly wrong under z/VM

Most applications can stand to swap some
 Exception: Oracle Shared Global Area (SGA) must

stay in-memory for reasonable performance
 Other exceptions surely exist

Large Virtual Storage (Memory)

Example: 256MB virtual storage vs. 1024MB
 8MB more real storage required just for page tables
 16MB if 64-bit guest!
 Significant even without actually using the storage!

Tune virtual storage sizes
 “Squeeze until it hurts”
 Then give it a bit more (or not)

Before After

Virtual Storage and Linux Caching

Linux caches data (read and write)
 Data may be replicated five times:

1. Linux file buffers

2. z/VM minidisk cache/paging subsystem

3. Controller cache

4. Device cache

5. “Brown, round, & spinning”

Multiply cached data probably not helpful!
 Tuning virtual storage size controls this

VDISK vs. DASD

Swapping to DASD is slow
 Same as Intel, hence “Swapping is bad” ‘wisdom’
 But z/VM has VDISK (virtual disk in storage)
 “Minidisks” that exist in z/VM paging subsystem

Swapping to VDISK is way fast
 Linux still does I/O, but CP intercepts and handles
 Only slightly worse than page fault—and CP can

manage VDISK better (LRU problem again)

Use small virtual storage + Swap to DASD
to slow down guest that’s too fast ;-)

VDISK Myths and Realities

Fear: “VDISK will use too much real storage”
 Reality: VDISK lives in VM paging subsystem
 Linux virtual storage lives in VM paging subsystem
 Real storage use not really affected

Reality: VM does better managing both
 Use smaller Linux virtual storage + VDISK for swap
 VM controls both, rather than Linux caching data,

causing VM paging through LRU mismatch

Myth: “VDISK pages never migrate to DASD”
 Fact: CP Monitor records prove otherwise

VDISK Notes and Recommendation

VDISK notes:
 Max size: 2G-1 page (4194296 512-byte blocks)
 Control via CP SET VDISK command (privileged)

Use two VDISKs, prioritized
 Linux “moving cursor” algorithm wanders across disk
 With one, large VDISK, entire disk winds up “dirty”
 With two, Linux will use higher priority first
 Avoids old, “dirty” pages lingering in VM paging space
 Note: “higher priority” is numeric — 10 is higher than 1

(unlike your tasks at work!)

Minidisk Cache

Minidisk cache (MDC) is a powerful tool
 But only for data that actually gets reread
 And not if the data is cached by Linux too…

Default: MDC uses both main and XSTORE
 CP “Arbiter” that controls XSTORE use seems broken
 MDC can use huge amounts of XSTORE for no gain
 Even decent MDC hit ratio may not justify increased

paging load due to reduced main/XSTORE available

CP SET MDCACHE XSTORE 0M 0M

QUICKDSP ON

CP SET QUICKDSP ON sounds good
 “This guest is important, we want it to run fast!”

Reality: makes guest avoid scheduler, not
“run faster”
 Circumvents scheduler “smarts”
 Result: when storage overcommitted, CP thrashes
 Result: worse performance for everyone

Use QUICKDSP only by prescription*

* And for MAINT, when you’re doing performance tuning…!

SHAREs

ABSOLUTE SHAREs sound good
 “We can ensure that this machine gets xx% of a CPU!”

Reality: Difficult to manage with many guests
 With one or two, quite feasible—but at that point,

RELATIVE SHAREs work just as well
 Use ABSOLUTE for TCPIP et al (machines others

depend on) to ensure service even when system busy
 Note ABSOLUTE SHAREs are % of entire system

Leave SHARE at RELATIVE 100 unless
addressing specific performance problem

SRM

CP SRM settings provide some system
performance management “knobs”
 Be careful: These are big knobs

Misapplied, they will hurt!

Default SRM settings based on CMS users
 Most are still OK for z/Linux
 Be careful of “lore” suggesting changes unsupported

by measured results

SRM LDUBUF

Some “lore” suggests raising SRM LDUBUF is
a good idea
 Actual measured results suggest otherwise
 Controls the number of “loading” users (users with

significant paging activity) allowed in-queue

Never never increase this with z/Linux!
 In large shops, may actually want to lower it
 E.g., 50 page packs on 8 CHPIDs—CP probably can’t

really support that many loading users

SRM STORBUF and XSTOR

STORBUF controls CP’s storage usage
calculations by queue
 Linux guests are always Q3, so default incorrect
 Best to essentially disable its function
 Default: SET SRM STORBUF 125 95 75
 Suggest: SET SRM STORBUF 300 300 300

Also: SET SRM XSTOR 50%
 Includes 50% of expanded storage in calculations

Measure results on your system!

z/VM 5.2 and 5.3

IBM has done tons of work to make z/VM a
better host for Linux
 Example: fixes allow queue drop when I/O outstanding

z/VM 5.2/5.3 continue the tradition
 Many small enhancements that make Linux run better
 z/VM upgrades aren’t a big deal any more

If you aren’t on 5.2 or 5.3, get there ASAP!
 5.3 is better, but is also brand-new
 You decide whether “bleeding edge” is appropriate for

your shop

CMM

CMM: Collaborative Memory Management*
 Allows dynamic Linux storage tuning

Driver from IBM Böblingen
 Accepts commands via CP SMSG, allocates storage

within Linux, tells CP “fuhgeddaboudit”
 CP no longer has to manage those pages

Lets you “inflate a balloon” within Linux
 Linux continues operation, working set greatly reduced
 If swapping becomes a problem, release some pages!

* Or possibly “Cooperative Memory Management” — nobody seems to be sure!

CMM In Action

Linux without CMM Linux with CMM

4GB
virtual
storage
minus nn
pages

4GB
virtual
storage

Linux still thinks it has 4GB

“Rest” of storage not managed by VM

Multiply savings by n guests…

CMM Benefits

CMM avoids most of the complaints about
storage tuning
 “We don’t want to reboot”
 “This isn’t peak load, and we can’t reboot when it is!”

Critical for Linux success in some shops
 Real example: Oracle said “App needs 4GB”; Linuxen

have 4GB, but only 1GB really available!
 Apps folks still think they have 4GB
 Without CMM, n x 4GB = $$$ for more real storage (or

unacceptable performance)

CMM2

z9 adds hardware support for “CMM2”, aka
“CMMA” (“CMM Assist”)
 Cooperative z/VM–z/Linux page management
 Intended to reduce double paging, LRU thrashing

Adds CP SET and QUERY MEMASSIST
 Requires z/VM 5.2 with PTFs UM31784, UM31868
 SLES 10 SP1 supports via cmma=on IPL option
 No support in RHEL4 or RHEL5 (yet?)

No proven success in the field
 Stick with CMM(1) for now

XIP

XIP = eXecute-In-Place
 DCSSs under Linux, containing stored, shared data
 Manifest as special filesystem type

Use XIP when possible to share static data
 Common applications can save significant real storage
 Requires some management and care
 Evolving area, stay tuned!

Explore for common apps (SNMP, etc.)

Summary

Summary

Linux on System z is reaching adolescence
 Much progress made, lots more to do

Tuning Linux on z is an emerging science
 We’re still learning, and it’s a moving target

As always, use the community
z/Linux mailing list: LINUX-390@marist.edu

z/VM mailing list: IBM-VM@listserv.uark.edu

Measure, test, prove — don’t rely on
rumor, innuendo, and lore!

Questions?

Contact Info
Phil Smith III

703.476.4511 (direct)

650.964.8867 (company)

phil@velocity-software.com

Thanks to
Barton Robinson
Rob van der Heij

